1
|
Trinh DC. PHS1ΔP as a promising tool to study microtubule-related processes in plant sciences. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 40169153 DOI: 10.1111/plb.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/12/2025] [Indexed: 04/03/2025]
Abstract
Microtubules are an essential cell component that controls various biological processes, notably cell division and cellulose deposition in the cell wall. Traditionally, research involving microtubules relies on analysing mutants with altered microtubule properties or treating plant tissues with drugs that interfere with microtubule behaviours. Both approaches have problems, such as not being specific. Recently, a modified version of the tubulin kinase PROPYZAMID-HYPERSENSITIVE 1 (PHS1), named PHS1ΔP, that can efficiently depolymerize microtubules has emerged as a promising tool to manipulate microtubules with high spatial and temporal accuracy. This has been successfully used to address several microtubule-related research questions and is expected to be adopted more widely by researchers in the future.
Collapse
Affiliation(s)
- D-C Trinh
- Department of Life Sciences, University of Science and Technology of Ha Noi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
2
|
Bozdaganyan M, Fedorov V, Kholina E, Kovalenko I, Gudimchuk N, Orekhov P. Exploring tubulin-paclitaxel binding modes through extensive molecular dynamics simulations. Sci Rep 2025; 15:8378. [PMID: 40069250 PMCID: PMC11897383 DOI: 10.1038/s41598-025-92805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Cancer treatment remains a pressing challenge, with paclitaxel playing a pivotal role in chemotherapy by disrupting mitotic spindle dynamics through microtubule stabilization. However, the molecular details of paclitaxel interaction with β-tubulin, its target, remain elusive, impeding efforts to overcome drug resistance and optimize efficacy. Here, we employ extensive molecular dynamics simulations to probe the binding modes of paclitaxel within tubulin protofilaments. Our simulations reveal a spectrum of paclitaxel binding poses, correlated with conformational changes in neighboring residues, proposing the ligand (un)binding route. These diverse binding modes exhibit varied interaction patterns and binding energies, elucidating the complex interplay between paclitaxel-tubulin interactions and the conformational dynamics of the M-loop. Furthermore, key residues influencing paclitaxel affinity and resistance are identified, enhancing our mechanistic understanding of the drug-binding mechanism. Finally, we uncover a novel high-affinity binding mode characterized by paclitaxel penetration into a subpocket formed by helices 1, 7, and loop B9-B10 of β-tubulin concerted with the rotational isomerization around a bond connecting the tetracyclic baccatin core with the N-benzoyl-β-phenylisoserine side chain, offering potential avenues for drug development. Our study advances the understanding of paclitaxel mode of action and informs strategies for rational drug design of antitumor agents.
Collapse
Affiliation(s)
- Marine Bozdaganyan
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vladimir Fedorov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ekaterina Kholina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ilya Kovalenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Nikita Gudimchuk
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Philipp Orekhov
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China.
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Sechenov University, Moscow, 119146, Russia.
| |
Collapse
|
3
|
Ilbeigi K, Barata C, Barbosa J, Bertram MG, Caljon G, Costi MP, Kroll A, Margiotta-Casaluci L, Thoré ES, Bundschuh M. Assessing Environmental Risks during the Drug Development Process for Parasitic Vector-Borne Diseases: A Critical Reflection. ACS Infect Dis 2024; 10:1026-1033. [PMID: 38533709 PMCID: PMC11019539 DOI: 10.1021/acsinfecdis.4c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Parasitic vector-borne diseases (VBDs) represent nearly 20% of the global burden of infectious diseases. Moreover, the spread of VBDs is enhanced by global travel, urbanization, and climate change. Treatment of VBDs faces challenges due to limitations of existing drugs, as the potential for side effects in nontarget species raises significant environmental concerns. Consequently, considering environmental risks early in drug development processes is critically important. Here, we examine the environmental risk assessment process for veterinary medicinal products in the European Union and identify major gaps in the ecotoxicity data of these drugs. By highlighting the scarcity of ecotoxicological data for commonly used antiparasitic drugs, we stress the urgent need for considering the One Health concept. We advocate for employing predictive tools and nonanimal methodologies such as New Approach Methodologies at early stages of antiparasitic drug research and development. Furthermore, adopting progressive approaches to mitigate ecological risks requires the integration of nonstandard tests that account for real-world complexities and use environmentally relevant exposure scenarios. Such a strategy is vital for a sustainable drug development process as it adheres to the principles of One Health, ultimately contributing to a healthier and more sustainable world.
Collapse
Affiliation(s)
- Kayhan Ilbeigi
- Laboratory
of Microbiology, Parasitology and Hygiene, University of Antwerp, 2610 Wilrijk, Belgium
| | - Carlos Barata
- Institute
of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - João Barbosa
- Blue
Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Michael G. Bertram
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
- Department
of Zoology, Stockholm University, Svante Arrhenius väg 18b, 114 18 Stockholm, Sweden
- School of
Biological Sciences, Monash University, 25 Rainforest Walk, 3800 Melbourne, Australia
| | - Guy Caljon
- Laboratory
of Microbiology, Parasitology and Hygiene, University of Antwerp, 2610 Wilrijk, Belgium
| | - Maria Paola Costi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, 41125 Modena, Italy
| | - Alexandra Kroll
- Swiss
Centre for Applied Ecotoxicology, CH-8600 Dübendorf, Switzerland
| | - Luigi Margiotta-Casaluci
- Institute
of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, WC2R 2LS London, United Kingdom
| | - Eli S.J. Thoré
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
- Department
of Zoology, Stockholm University, Svante Arrhenius väg 18b, 114 18 Stockholm, Sweden
- TRANSfarm - Science, Engineering,
& Technology Group, KU
Leuven, 3360 Lovenjoel, Belgium
| | - Mirco Bundschuh
- iES
Landau, Institute for Environmental Sciences,
RPTU Kaiserslautern-Landau, Fortstrasse 7, 76829 Landau, Germany
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences, Lennart Hjelms väg 9, SWE-75007 Uppsala, Sweden
| |
Collapse
|
4
|
Monti L, Liu LJ, Varricchio C, Lucero B, Alle T, Yang W, Bem-Shalom I, Gilson M, Brunden KR, Brancale A, Caffrey CR, Ballatore C. Structure-Activity Relationships, Tolerability and Efficacy of Microtubule-Active 1,2,4-Triazolo[1,5-a]pyrimidines as Potential Candidates to Treat Human African Trypanosomiasis. ChemMedChem 2023; 18:e202300193. [PMID: 37429821 PMCID: PMC10615688 DOI: 10.1002/cmdc.202300193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Tubulin and microtubules (MTs) are potential protein targets to treat parasitic infections and our previous studies have shown that the triazolopyrimidine (TPD) class of MT-active compounds hold promise as antitrypanosomal agents. MT-targeting TPDs include structurally related but functionally diverse congeners that interact with mammalian tubulin at either one or two distinct interfacial binding sites; namely, the seventh and vinca sites, which are found within or between α,β-tubulin heterodimers, respectively. Evaluation of the activity of 123 TPD congeners against cultured Trypanosoma brucei enabled a robust quantitative structure-activity relationship (QSAR) model and the prioritization of two congeners for in vivo pharmacokinetics (PK), tolerability and efficacy studies. Treatment of T. brucei-infected mice with tolerable doses of TPDs significantly decreased blood parasitemia within 24 h. Further, two once-weekly doses at 10 mg/kg of a candidate TPD significantly extended the survival of infected mice relative to infected animals treated with vehicle. Further optimization of dosing and/or the dosing schedule of these CNS-active TPDs may provide alternative treatments for human African trypanosomiasis.
Collapse
Affiliation(s)
- Ludovica Monti
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
- Present affiliation: Chemistry Department, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, W12 0BZ, London, UK
| | - Lawrence J Liu
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
| | - Carmine Varricchio
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF103NB, Cardiff, UK
| | - Bobby Lucero
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
| | - Thibault Alle
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
| | - Wenqian Yang
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
| | - Ido Bem-Shalom
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
| | - Michael Gilson
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
| | - Kurt R Brunden
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce Street, 19104-6323, Philadelphia, PA, USA
| | - Andrea Brancale
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF103NB, Cardiff, UK
- Present affiliation: Vysoká škola chemicko-technologická v Praze, Department of Organic Chemistry, Technická 5, 16628, Prague 6, Czech Republic
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
| | - Carlo Ballatore
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
| |
Collapse
|
5
|
Zhou J, Wang A, Song Y, Liu N, Wang J, Li Y, Liang X, Li G, Chu H, Wang HW. Structural insights into the mechanism of GTP initiation of microtubule assembly. Nat Commun 2023; 14:5980. [PMID: 37749104 PMCID: PMC10519996 DOI: 10.1038/s41467-023-41615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
In eukaryotes, the dynamic assembly of microtubules (MT) plays an important role in numerous cellular processes. The underlying mechanism of GTP triggering MT assembly is still unknown. Here, we present cryo-EM structures of tubulin heterodimer at their GTP- and GDP-bound states, intermediate assembly states of GTP-tubulin, and final assembly stages of MT. Both GTP- and GDP-tubulin heterodimers adopt similar curved conformations with subtle flexibility differences. In head-to-tail oligomers of tubulin heterodimers, the inter-dimer interface of GDP-tubulin exhibits greater flexibility, particularly in tangential bending. Cryo-EM of the intermediate assembly states reveals two types of tubulin lateral contacts, "Tube-bond" and "MT-bond". Further, molecular dynamics (MD) simulations show that GTP triggers lateral contact formation in MT assembly in multiple sequential steps, gradually straightening the curved tubulin heterodimers. Therefore, we propose a flexible model of GTP-initiated MT assembly, including the formation of longitudinal and lateral contacts, to explain the nucleation and assembly of MT.
Collapse
Affiliation(s)
- Ju Zhou
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
- University of California Berkeley, Berkeley, CA, USA
| | - Anhui Wang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Yinlong Song
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nan Liu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
| | - Jia Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
| | - Yan Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Xin Liang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China.
| | - Hong-Wei Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Montecinos F, Sackett DL. Structural Changes, Biological Consequences, and Repurposing of Colchicine Site Ligands. Biomolecules 2023; 13:biom13050834. [PMID: 37238704 DOI: 10.3390/biom13050834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Microtubule-targeting agents (MTAs) bind to one of several distinct sites in the tubulin dimer, the subunit of microtubules. The binding affinities of MTAs may vary by several orders of magnitude, even for MTAs that specifically bind to a particular site. The first drug binding site discovered in tubulin was the colchicine binding site (CBS), which has been known since the discovery of the tubulin protein. Although highly conserved throughout eukaryotic evolution, tubulins show diversity in their sequences between tubulin orthologs (inter-species sequence differences) and paralogs (intraspecies differences, such as tubulin isotypes). The CBS is promiscuous and binds to a broad range of structurally distinct molecules that can vary in size, shape, and affinity. This site remains a popular target for the development of new drugs to treat human diseases (including cancer) and parasitic infections in plants and animals. Despite the rich knowledge about the diversity of tubulin sequences and the structurally distinct molecules that bind to the CBS, a pattern has yet to be found to predict the affinity of new molecules that bind to the CBS. In this commentary, we briefly discuss the literature evidencing the coexistence of the varying binding affinities for drugs that bind to the CBS of tubulins from different species and within species. We also comment on the structural data that aim to explain the experimental differences observed in colchicine binding to the CBS of β-tubulin class VI (TUBB1) compared to other isotypes.
Collapse
Affiliation(s)
- Felipe Montecinos
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dan L Sackett
- Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Monti L, Liu LJ, Varricchio C, Lucero B, Alle T, Yang W, Bem-Shalom I, Gilson M, Brunden KR, Brancale A, Caffrey CR, Ballatore C. Structure-Activity Relationships, Tolerability and Efficacy of Microtubule-Active 1,2,4-Triazolo[1,5- a ]pyrimidines as Potential Candidates to Treat Human African Trypanosomiasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.11.532093. [PMID: 36945407 PMCID: PMC10028969 DOI: 10.1101/2023.03.11.532093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Tubulin and microtubules (MTs) are potential protein targets to treat parasitic infections and our previous studies have shown that the triazolopyrimidine (TPD) class of MT- active compounds hold promise as antitrypanosomal agents. MT-targeting TPDs include structurally related but functionally diverse congeners that interact with mammalian tubulin at either one or two distinct interfacial binding sites; namely, the seventh and vinca sites, which are found within or between α,β-tubulin heterodimers, respectively. Evaluation of the activity of 123 TPD congeners against cultured Trypanosoma brucei enabled a robust quantitative structure-activity relationship (QSAR) model and the prioritization of two congeners for in vivo pharmacokinetics (PK), tolerability and efficacy studies. Treatment of T. brucei -infected mice with tolerable doses of TPDs 3 and 4 significantly decreased blood parasitemia within 24 h. Further, two once-weekly doses of 4 at 10 mg/kg significantly extended the survival of infected mice relative to infected animals treated with vehicle. Further optimization of dosing and/or the dosing schedule of these CNS-active TPDs may provide alternative treatments for human African trypanosomiasis.
Collapse
|
8
|
Michels L, Bronkhorst J, Kasteel M, de Jong D, Albada B, Ketelaar T, Govers F, Sprakel J. Molecular sensors reveal the mechano-chemical response of Phytophthora infestans walls and membranes to mechanical and chemical stress. Cell Surf 2022; 8:100071. [PMID: 35059532 PMCID: PMC8760408 DOI: 10.1016/j.tcsw.2021.100071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 11/15/2022] Open
Abstract
Phytophthora infestans, causal agent of late blight in potato and tomato, remains challenging to control. Unravelling its biomechanics of host invasion, and its response to mechanical and chemical stress, could provide new handles to combat this devastating pathogen. Here we introduce two fluorescent molecular sensors, CWP-BDP and NR12S, that reveal the micromechanical response of the cell wall-plasma membrane continuum in P. infestans during invasive growth and upon chemical treatment. When visualized by live-cell imaging, CWP-BDP reports changes in cell wall (CW) porosity while NR12S reports variations in chemical polarity and lipid order in the plasma membrane (PM). During invasive growth, mechanical interactions between the pathogen and a surface reveal clear and localized changes in the structure of the CW. Moreover, the molecular sensors can reveal the effect of chemical treatment to CW and/or PM, thereby revealing the site-of-action of crop protection agents. This mechano-chemical imaging strategy resolves, non-invasively and with high spatio-temporal resolution, how the CW-PM continuum adapts and responds to abiotic stress, and provides information on the dynamics and location of cellular stress responses for which, to date, no other methods are available.
Collapse
Affiliation(s)
- Lucile Michels
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Jochem Bronkhorst
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Michiel Kasteel
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
- Laboratory of Cell Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Djanick de Jong
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| |
Collapse
|
9
|
Guan P, Zhou J, Girel S, Zhu X, Schwab M, Zhang K, Wang-Müller Q, Bigler L, Nick P. Anti-microtubule activity of the traditional Chinese medicine herb Northern Ban Lan (Isatis tinctoria) leads to glucobrassicin. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:2058-2074. [PMID: 34636476 DOI: 10.1111/jipb.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Traditional Chinese medicine (TCM) belongs to the most elaborate and extensive systems of plant-based healing. The herb Northern Ban Lan (Isatis tinctoria) is famous for its antiviral and anti-inflammatory activity. Although numerous components isolated from I. tinctoria have been characterized so far, their modes of action have remained unclear. Here, we show that extracts from I. tinctoria exert anti-microtubular activity. Using time-lapse microscopy in living tobacco BY-2 (Nicotiana tabacum L. cv Bright Yellow 2) cells expressing green fluorescent protein-tubulin, we use activity-guided fractionation to screen out the biologically active compounds of I. tinctoria. Among 54 fractions obtained from either leaves or roots of I. tinctoria by methanol (MeOH/H2 O 8:2), or ethyl acetate extraction, one specific methanolic root fraction was selected, because it efficiently and rapidly eliminated microtubules. By combination of further purification with ultra-high-performance liquid chromatography and high-resolution tandem mass spectrometry most of the bioactivity could be assigned to the glucosinolate compound glucobrassicin. Glucobrassicin can also affect microtubules and induce apoptosis in HeLa cells. In the light of these findings, the antiviral activity of Northern Ban Lan is discussed in the context of microtubules being hijacked by many viral pathogens for cell-to-cell spread.
Collapse
Affiliation(s)
- Pingyin Guan
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Jianning Zhou
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Sergey Girel
- Department of Chemistry, University of Zürich, Winterthurerstr.190, CH-8057, Zürich, Switzerland
| | - Xin Zhu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Marian Schwab
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Kunxi Zhang
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Qiyan Wang-Müller
- Research Institute of Organic Agriculture FiBL, Ackerstrasse 113, CH-5070, Frick, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zürich, Winterthurerstr.190, CH-8057, Zürich, Switzerland
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| |
Collapse
|
10
|
Wordeman L, Vicente JJ. Microtubule Targeting Agents in Disease: Classic Drugs, Novel Roles. Cancers (Basel) 2021; 13:5650. [PMID: 34830812 PMCID: PMC8616087 DOI: 10.3390/cancers13225650] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Microtubule-targeting agents (MTAs) represent one of the most successful first-line therapies prescribed for cancer treatment. They interfere with microtubule (MT) dynamics by either stabilizing or destabilizing MTs, and in culture, they are believed to kill cells via apoptosis after eliciting mitotic arrest, among other mechanisms. This classical view of MTA therapies persisted for many years. However, the limited success of drugs specifically targeting mitotic proteins, and the slow growing rate of most human tumors forces a reevaluation of the mechanism of action of MTAs. Studies from the last decade suggest that the killing efficiency of MTAs arises from a combination of interphase and mitotic effects. Moreover, MTs have also been implicated in other therapeutically relevant activities, such as decreasing angiogenesis, blocking cell migration, reducing metastasis, and activating innate immunity to promote proinflammatory responses. Two key problems associated with MTA therapy are acquired drug resistance and systemic toxicity. Accordingly, novel and effective MTAs are being designed with an eye toward reducing toxicity without compromising efficacy or promoting resistance. Here, we will review the mechanism of action of MTAs, the signaling pathways they affect, their impact on cancer and other illnesses, and the promising new therapeutic applications of these classic drugs.
Collapse
Affiliation(s)
| | - Juan Jesus Vicente
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA;
| |
Collapse
|
11
|
Inhibition of cell expansion enhances cortical microtubule stability in the root apex of Arabidopsis thaliana. ACTA ACUST UNITED AC 2021; 28:13. [PMID: 34082808 PMCID: PMC8173746 DOI: 10.1186/s40709-021-00143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/18/2021] [Indexed: 12/04/2022]
Abstract
Background Cortical microtubules regulate cell expansion by determining cellulose microfibril orientation in the root apex of Arabidopsis thaliana. While the regulation of cell wall properties by cortical microtubules is well studied, the data on the influence of cell wall to cortical microtubule organization and stability remain scarce. Studies on cellulose biosynthesis mutants revealed that cortical microtubules depend on Cellulose Synthase A (CESA) function and/or cell expansion. Furthermore, it has been reported that cortical microtubules in cellulose-deficient mutants are hypersensitive to oryzalin. In this work, the persistence of cortical microtubules against anti-microtubule treatment was thoroughly studied in the roots of several cesa mutants, namely thanatos, mre1, any1, prc1-1 and rsw1, and the Cellulose Synthase Interacting 1 protein (csi1) mutant pom2-4. In addition, various treatments with drugs affecting cell expansion were performed on wild-type roots. Whole mount tubulin immunolabeling was applied in the above roots and observations were performed by confocal microscopy. Results Cortical microtubules in all mutants showed statistically significant increased persistence against anti-microtubule drugs, compared to those of the wild-type. Furthermore, to examine if the enhanced stability of cortical microtubules was due to reduced cellulose biosynthesis or to suppression of cell expansion, treatments of wild-type roots with 2,6-dichlorobenzonitrile (DCB) and Congo red were performed. After these treatments, cortical microtubules appeared more resistant to oryzalin, than in the control. Conclusions According to these findings, it may be concluded that inhibition of cell expansion, irrespective of the cause, results in increased microtubule stability in A. thaliana root. In addition, cell expansion does not only rely on cortical microtubule orientation but also plays a regulatory role in microtubule dynamics, as well. Various hypotheses may explain the increased cortical microtubule stability under decreased cell expansion such as the role of cell wall sensors and the presence of less dynamic cortical microtubules. Supplementary Information The online version contains supplementary material available at 10.1186/s40709-021-00143-8.
Collapse
|
12
|
Alonso VL, Carloni ME, Gonçalves CS, Martinez Peralta G, Chesta ME, Pezza A, Tavernelli LE, Motta MCM, Serra E. Alpha-Tubulin Acetylation in Trypanosoma cruzi: A Dynamic Instability of Microtubules Is Required for Replication and Cell Cycle Progression. Front Cell Infect Microbiol 2021; 11:642271. [PMID: 33777851 PMCID: PMC7991793 DOI: 10.3389/fcimb.2021.642271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
Trypanosomatids have a cytoskeleton arrangement that is simpler than what is found in most eukaryotic cells. However, it is precisely organized and constituted by stable microtubules. Such microtubules compose the mitotic spindle during mitosis, the basal body, the flagellar axoneme and the subpellicular microtubules, which are connected to each other and also to the plasma membrane forming a helical arrangement along the central axis of the parasite cell body. Subpellicular, mitotic and axonemal microtubules are extensively acetylated in Trypanosoma cruzi. Acetylation on lysine (K) 40 of α-tubulin is conserved from lower eukaryotes to mammals and is associated with microtubule stability. It is also known that K40 acetylation occurs significantly on flagella, centrioles, cilia, basal body and the mitotic spindle in eukaryotes. Several tubulin posttranslational modifications, including acetylation of K40, have been cataloged in trypanosomatids, but the functional importance of these modifications for microtubule dynamics and parasite biology remains largely undefined. The primary tubulin acetyltransferase was recently identified in several eukaryotes as Mec-17/ATAT, a Gcn5-related N-acetyltransferase. Here, we report that T. cruzi ATAT acetylates α-tubulin in vivo and is capable of auto-acetylation. TcATAT is located in the cytoskeleton and flagella of epimastigotes and colocalizes with acetylated α-tubulin in these structures. We have expressed TcATAT with an HA tag using the inducible vector pTcINDEX-GW in T. cruzi. Over-expression of TcATAT causes increased levels of the alpha tubulin acetylated species, induces morphological and ultrastructural defects, especially in the mitochondrion, and causes a halt in the cell cycle progression of epimastigotes, which is related to an impairment of the kinetoplast division. Finally, as a result of TcATAT over-expression we observed that parasites became more resistant to microtubule depolymerizing drugs. These results support the idea that α-tubulin acetylation levels are finely regulated for the normal progression of T. cruzi cell cycle.
Collapse
Affiliation(s)
- Victoria Lucia Alonso
- Laboratorio de Biología y Bioquímica de Trypanosoma cruzi, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
- Facultad de Ciencias Bioquimicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Mara Emilia Carloni
- Facultad de Ciencias Bioquimicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Camila Silva Gonçalves
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil
| | - Gonzalo Martinez Peralta
- Laboratorio de Biología y Bioquímica de Trypanosoma cruzi, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
- Facultad de Ciencias Bioquimicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Maria Eugenia Chesta
- Facultad de Ciencias Médicas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Alejandro Pezza
- Laboratorio de Biología y Bioquímica de Trypanosoma cruzi, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
| | - Luis Emilio Tavernelli
- Laboratorio de Biología y Bioquímica de Trypanosoma cruzi, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
| | - Maria Cristina M. Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil
| | - Esteban Serra
- Laboratorio de Biología y Bioquímica de Trypanosoma cruzi, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
- Facultad de Ciencias Bioquimicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| |
Collapse
|
13
|
Graham BP, Haigler CH. Microtubules exert early, partial, and variable control of cotton fiber diameter. PLANTA 2021; 253:47. [PMID: 33484350 DOI: 10.1007/s00425-020-03557-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/30/2020] [Indexed: 05/07/2023]
Abstract
Variable cotton fiber diameter is set early in anisotropic elongation by cell-type-specific processes involving the temporal and spatial regulation of microtubules in the apical region. Cotton fibers are single cells that originate from the seed epidermis of Gossypium species. Then, they undergo extreme anisotropic elongation and limited diametric expansion. The details of cellular morphogenesis determine the quality traits that affect fiber uses and value, such as length, strength, and diameter. Lower and more consistent diameter would increase the competitiveness of cotton fiber with synthetic fiber, but we do not know how this trait is controlled. The complexity of the question is indicated by the existence of fibers in two major width classes in the major commercial species: broad and narrow fibers exist in commonly grown G. hirsutum, whereas G. barbadense produces only narrow fiber. To further understand how fiber diameter is controlled, we used ovule cultures, morphology measurements, and microtubule immunofluorescence to observe the effects of microtubule antagonists on fiber morphology, including shape and diameter within 80 µm of the apex. The treatments were applied at either one or two days post-anthesis during different stages of fiber morphogenesis. The results showed that inhibiting the presence and/or dynamic activity of microtubules caused larger diameter tips to form, with greater effects often observed with earlier treatment. The presence and geometry of a microtubule-depleted-zone below the apex were transiently correlated with the apical diameter of the narrow tip types. Similarly, the microtubule antagonists had somewhat different effects between tip types. Overall, the results demonstrate cell-type-specific mechanisms regulating fiber expansion within 80 µm of the apex, with variation in the impact of microtubules between tip types and over developmental time.
Collapse
Affiliation(s)
- Benjamin P Graham
- Department of Crop and Soil Sciences and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Candace H Haigler
- Department of Crop and Soil Sciences and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
14
|
Majolo F, Caye B, Stoll SN, Leipelt J, Abujamra AL, Goettert MI. Prevention and Therapy of Prostate Cancer: An Update on Alternatives for Treatment and Future Perspectives. CURRENT DRUG THERAPY 2020. [DOI: 10.2174/1574885514666190917150635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostate cancer is one of the most prevalent cancer types in men worldwide. With the
progression of the disease to independent stimulation by androgen hormones, it becomes more difficult
to control its progress. In addition, several studies have shown that chronic inflammation is
directly related to the onset and progression of this cancer. For many decades, conventional chemotherapeutic
drugs have not made significant progress in the treatment of prostate cancer. However,
the discovery of docetaxel yielded the first satisfactory responses of increased survival of
patients. In addition, alternative therapies using biomolecules derived from secondary metabolites
of natural products are promising in the search for new treatments. Despite the advances in the
treatment of this disease in the last two decades, the results are still insufficient and conventional
therapies do not present the expected results they once promised. Thus, a revision and
(re)establishment of prostate cancer therapeutic strategies are necessary. In this review, we also
approach suggested treatments for molecular biomarkers in advanced prostate cancer.
Collapse
Affiliation(s)
- Fernanda Majolo
- Instituto do Cérebro do Rio Grande do Sul (InsCer), Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Bruna Caye
- Laboratatório de Cultura de Células, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari – UNIVATES, Lajeado, Brazil
| | - Stefani Natali Stoll
- Laboratatório de Cultura de Células, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari – UNIVATES, Lajeado, Brazil
| | - Juliano Leipelt
- Laboratatório de Cultura de Células, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari – UNIVATES, Lajeado, Brazil
| | - Ana Lúcia Abujamra
- Laboratatório de Cultura de Células, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari – UNIVATES, Lajeado, Brazil
| | - Márcia Inês Goettert
- Laboratatório de Cultura de Células, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari – UNIVATES, Lajeado, Brazil
| |
Collapse
|
15
|
Sai KKS, Prabhakaran J, Damuka N, Craft S, Rajagopal SA, Mintz A, Mann J, Kumar D. Synthesis and Initial In Vivo Evaluations of [
11
C]WX‐132‐18B, a Microtubule PET Imaging Agent. ChemistrySelect 2020. [DOI: 10.1002/slct.202001827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Jaya Prabhakaran
- Department of PsychiatryColumbia University Irving Medical Center 1051 Riverside Drive New York 10032 USA
- Area of Molecular Imaging and neuropathologyNew York State Psychiatric Institute 1051 Riverside Drive New York 10032 USA
| | - Naresh Damuka
- Department of RadiologyWake Forest University School of Medicine Winston-Salem North Carolina 27157 USA
| | - Suzanne Craft
- Department of Internal MedicineWake Forest University School of Medicine Winston Salem North Carolina 27157 USA
| | - Shamyaa A. Rajagopal
- Department of RadiologyWake Forest University School of Medicine Winston-Salem North Carolina 27157 USA
| | - Akiva Mintz
- Department of RadiologyColumbia University Irving Medical Center New York 10032 USA
| | - John Mann
- Department of PsychiatryColumbia University Irving Medical Center 1051 Riverside Drive New York 10032 USA
- Area of Molecular Imaging and neuropathologyNew York State Psychiatric Institute 1051 Riverside Drive New York 10032 USA
- Department of RadiologyColumbia University Irving Medical Center New York 10032 USA
| | - Dileep Kumar
- Area of Molecular Imaging and neuropathologyNew York State Psychiatric Institute 1051 Riverside Drive New York 10032 USA
| |
Collapse
|
16
|
Preliminary Results, Perspectives, and Proposal for a Screening Method of In Vitro Susceptibility of Prototheca Species to Antimicrotubular Agents. Antimicrob Agents Chemother 2020; 64:AAC.01392-19. [PMID: 31871079 DOI: 10.1128/aac.01392-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022] Open
Abstract
Microorganisms belonging to the genus Prototheca are achlorophyllous microalgae, occasionally behaving as environmental pathogens that cause severe mastitis in milk cows, as well as localized or systemic infections in humans and animals. Among the different species belonging to the genus, Prototheca zopfii genotype 2 (recently reclassified as P. bovis) and P. blaschkeae are most commonly associated with bovine mastitis. To date, no pharmacological treatment is available to cure protothecal mastitis, and infected animals must be quarantined to avoid spreading the infection. The few antibiotic and antifungal drugs effective in vitro against Prototheca give poor results in vivo This failure is likely due to the lack of specificity of such drugs. As microalgae are more closely related to plants than to bacteria or fungi, an alternative possibility is to test molecules with herbicidal properties, in particular, antimicrotubular herbicides, for which plant rather than animal tubulin is the selective target. Once a suitable test protocol was set up, a panel of 11 antimicrotubular agents belonging to different chemical classes and selective for plant tubulin were tested for the ability to inhibit growth of Prototheca cells in vitro Two dinitroanilines, dinitramine and chloralin, showed strong inhibitory effects on P. blaschkeae at low micromolar concentrations, with half-maximal inhibitory concentrations (IC50) of 4.5 and 3 μM, respectively, while both P. zopfii genotype 1 (now reclassified as P. ciferrii) and P. bovis showed susceptibility to dinitramine only, to different degrees. Suitable screening protocols for antimitotic agents are suggested.
Collapse
|
17
|
Dileep Kumar JS, Prabhakaran J, Damuka N, Hines JW, Norman S, Dodda M, John Mann J, Mintz A, Sai KKS. In vivo comparison of N- 11CH 3 vs O- 11CH 3 radiolabeled microtubule targeted PET ligands. Bioorg Med Chem Lett 2020; 30:126785. [PMID: 31753695 PMCID: PMC11659960 DOI: 10.1016/j.bmcl.2019.126785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 11/22/2022]
Abstract
Altered dynamics of microtubules (MT) are implicated in the pathophysiology of a number of brain diseases. Therefore, radiolabeled MT targeted ligands that can penetrate the blood brain barrier (BBB) may offer a direct and sensitive approach for diagnosis, and assessing the clinical potential of MT targeted therapeutics using PET imaging. We recently reported two BBB penetrating radioligands, [11C]MPC-6827 and [11C]HD-800 as specific PET ligands for imaging MTs in brain. The major metabolic pathway of the above molecules is anticipated to be via the initial labeling site, O-methyl, compared to the N-methyl group. Herein, we report the radiosynthesis of N-11CH3-MPC-6827 and N-11CH3-HD-800 and a comparison of their in vivo binding with the corresponding O-11CH3 analogues using microPET imaging and biodistribution methods. Both O-11CH3 and N-11CH3 labeled MT tracers exhibit high specific binding and brain. The N-11CH3 labeled PET ligands demonstrated similar in vivo binding characteristics compared with the corresponding O-11CH3 labeled tracers, [11C]MPC-6827 and [11C]HD-800 respectively.
Collapse
Affiliation(s)
- J S Dileep Kumar
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA.
| | - Jaya Prabhakaran
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Medical Center, New York, USA
| | - Naresh Damuka
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA
| | - Justin Wayne Hines
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Skylar Norman
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Meghana Dodda
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - J John Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Medical Center, New York, USA; Department of Radiology, Columbia University Medical Center, New York, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, USA
| | | |
Collapse
|
18
|
Wang Y, Tappertzhofen N, Méndez‐Sánchez D, Bawn M, Lyu B, Ward JM, Hailes HC. Design and Use of de novo Cascades for the Biosynthesis of New Benzylisoquinoline Alkaloids. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yu Wang
- Department of ChemistryUniversity College London 20 Gordon Street London WC1H 0AJ UK
| | - Nadine Tappertzhofen
- Department of ChemistryUniversity College London 20 Gordon Street London WC1H 0AJ UK
| | - Daniel Méndez‐Sánchez
- Department of ChemistryUniversity College London 20 Gordon Street London WC1H 0AJ UK
| | - Maria Bawn
- Department of Biochemical EngineeringUniversity College London London WC1E 6BT UK
| | - Boyu Lyu
- Department of Biochemical EngineeringUniversity College London London WC1E 6BT UK
| | - John M. Ward
- Department of Biochemical EngineeringUniversity College London London WC1E 6BT UK
| | - Helen C. Hailes
- Department of ChemistryUniversity College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
19
|
Wang Y, Tappertzhofen N, Méndez-Sánchez D, Bawn M, Lyu B, Ward JM, Hailes HC. Design and Use of de novo Cascades for the Biosynthesis of New Benzylisoquinoline Alkaloids. Angew Chem Int Ed Engl 2019; 58:10120-10125. [PMID: 31100182 DOI: 10.1002/anie.201902761] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/10/2019] [Indexed: 11/06/2022]
Abstract
The benzylisoquinoline alkaloids (BIAs) are an important group of secondary metabolites from higher plants and have been reported to show significant biological activities. The production of BIAs through synthetic biology approaches provides a higher-yielding strategy than traditional synthetic methods or isolation from plant material. However, the reconstruction of BIA pathways in microorganisms by combining heterologous enzymes can also give access to BIAs through cascade reactions. Most importantly, non-natural BIAs can be generated through such artificial pathways. In the current study, we describe the use of tyrosinases and decarboxylases and combine these with a transaminase enzyme and norcoclaurine synthase for the efficient synthesis of several BIAs, including six non-natural alkaloids, in cascades from l-tyrosine and analogues.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Nadine Tappertzhofen
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Daniel Méndez-Sánchez
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Maria Bawn
- Department of Biochemical Engineering, University College London, London, WC1E 6BT, UK
| | - Boyu Lyu
- Department of Biochemical Engineering, University College London, London, WC1E 6BT, UK
| | - John M Ward
- Department of Biochemical Engineering, University College London, London, WC1E 6BT, UK
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| |
Collapse
|
20
|
Morello L, Pydiura N, Galinousky D, Blume Y, Breviario D. Flax tubulin and CesA superfamilies represent attractive and challenging targets for a variety of genome- and base-editing applications. Funct Integr Genomics 2019; 20:163-176. [PMID: 30826923 DOI: 10.1007/s10142-019-00667-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Flax is both a valuable resource and an interesting model crop. Despite a long history of flax genetic transformation only one transgenic linseed cultivar has been so far registered in Canada. Implementation and use of the genome-editing technologies that allow site-directed modification of endogenous genes without the introduction of foreign genes might improve this situation. Besides its potential for boosting crop yields, genome editing is now one of the best tools for carrying out reverse genetics and it is emerging as an especially versatile tool for studying basic biology. A complex interplay between the flax tubulin family (6 α-, 14 β-, and 2 γ-tubulin genes), the building block of microtubules, and the CesA (15-16 genes), the subunit of the multimeric cellulose-synthesizing complex devoted to the oriented deposition of the cellulose microfibrils is fundamental for the biosynthesis of the cell wall. The role of the different members of each family in providing specificities to the assembled complexes in terms of structure, dynamics, activity, and interaction remains substantially obscure. Genome-editing strategies, recently shown to be successful in flax, can therefore be useful to unravel the issue of functional redundancy and provide evidence for specific interactions between different members of the tubulin and CesA gene families, in relation to different phase and mode of cell wall biosynthesis.
Collapse
Affiliation(s)
- Laura Morello
- Istituto di Biologia e Biotecnologia Agraria IBBA-CNR, Via Alfonso Corti 12, 20133, Milan, Italy
| | - Nikolay Pydiura
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho St. 2a, Kyiv, 04123, Ukraine
| | - Dmitry Galinousky
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Akademicheskaya St. 27, 220072, Minsk, Belarus
| | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho St. 2a, Kyiv, 04123, Ukraine.
| | - Diego Breviario
- Istituto di Biologia e Biotecnologia Agraria IBBA-CNR, Via Alfonso Corti 12, 20133, Milan, Italy.
| |
Collapse
|
21
|
Visetsouk MR, Falat EJ, Garde RJ, Wendlick JL, Gutzman JH. Basal epithelial tissue folding is mediated by differential regulation of microtubules. Development 2018; 145:dev.167031. [PMID: 30333212 PMCID: PMC6262788 DOI: 10.1242/dev.167031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/09/2018] [Indexed: 01/02/2023]
Abstract
The folding of epithelial tissues is crucial for development of three-dimensional structure and function. Understanding this process can assist in determining the etiology of developmental disease and engineering of tissues for the future of regenerative medicine. Folding of epithelial tissues towards the apical surface has long been studied, but the molecular mechanisms that mediate epithelial folding towards the basal surface are just emerging. Here, we utilize zebrafish neuroepithelium to identify mechanisms that mediate basal tissue folding to form the highly conserved embryonic midbrain-hindbrain boundary. Live imaging revealed Wnt5b as a mediator of anisotropic epithelial cell shape, both apically and basally. In addition, we uncovered a Wnt5b-mediated mechanism for specific regulation of basal anisotropic cell shape that is microtubule dependent and likely to involve JNK signaling. We propose a model in which a single morphogen can differentially regulate apical versus basal cell shape during tissue morphogenesis. Summary: Examination of cell shape changes during zebrafish neuroepithelium tissue folding reveals that Wnt5b specifically regulates basal anisotropic cell shape via a microtubule-dependent mechanism, likely involving JNK signaling.
Collapse
Affiliation(s)
- Mike R Visetsouk
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, USA
| | - Elizabeth J Falat
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, USA
| | - Ryan J Garde
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, USA
| | - Jennifer L Wendlick
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, USA
| | - Jennifer H Gutzman
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, USA
| |
Collapse
|
22
|
Vicente-Blázquez A, González M, Álvarez R, Del Mazo S, Medarde M, Peláez R. Antitubulin sulfonamides: The successful combination of an established drug class and a multifaceted target. Med Res Rev 2018; 39:775-830. [PMID: 30362234 DOI: 10.1002/med.21541] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/02/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
Tubulin, the microtubules and their dynamic behavior are amongst the most successful antitumor, antifungal, antiparasitic, and herbicidal drug targets. Sulfonamides are exemplary drugs with applications in the clinic, in veterinary and in the agrochemical industry. This review summarizes the actual state and recent progress of both fields looking from the double point of view of the target and its drugs, with special focus onto the structural aspects. The article starts with a brief description of tubulin structure and its dynamic assembly and disassembly into microtubules and other polymers. Posttranslational modifications and the many cellular means of regulating and modulating tubulin's biology are briefly presented in the tubulin code. Next, the structurally characterized drug binding sites, their occupying drugs and the effects they induce are described, emphasizing on the structural requirements for high potency, selectivity, and low toxicity. The second part starts with a summary of the favorable and highly tunable combination of physical-chemical and biological properties that render sulfonamides a prototypical example of privileged scaffolds with representatives in many therapeutic areas. A complete description of tubulin-binding sulfonamides is provided, covering the different species and drug sites. Some of the antimitotic sulfonamides have met with very successful applications and others less so, thus illustrating the advances, limitations, and future perspectives of the field. All of them combine in a mechanism of action and a clinical outcome that conform efficient drugs.
Collapse
Affiliation(s)
- Alba Vicente-Blázquez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Myriam González
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Sara Del Mazo
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Manuel Medarde
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
23
|
Monti L, Wang SC, Oukoloff K, Smith AB, Brunden KR, Caffrey CR, Ballatore C. Brain-Penetrant Triazolopyrimidine and Phenylpyrimidine Microtubule Stabilizers as Potential Leads to Treat Human African Trypanosomiasis. ChemMedChem 2018; 13:1751-1754. [PMID: 29969537 DOI: 10.1002/cmdc.201800404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 11/07/2022]
Abstract
In vitro whole-organism screens of Trypanosoma brucei with representative examples of brain-penetrant microtubule (MT)-stabilizing agents identified lethal triazolopyrimidines and phenylpyrimidines with sub-micromolar potency. In mammalian cells, these antiproliferative compounds disrupt MT integrity and decrease total tubulin levels. Their parasiticidal potency, combined with their generally favorable pharmacokinetic properties, which include oral bioavailability and brain penetration, suggest that these compounds are potential leads against human African trypanosomiasis.
Collapse
Affiliation(s)
- Ludovica Monti
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Steven C Wang
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Killian Oukoloff
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Kurt R Brunden
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104-6323, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Carlo Ballatore
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
24
|
Tan Y, Zheng J, Liu X, Lu M, Zhang C, Xing B, Du X. Loss of nucleolar localization of NAT10 promotes cell migration and invasion in hepatocellular carcinoma. Biochem Biophys Res Commun 2018; 499:1032-1038. [PMID: 29634924 DOI: 10.1016/j.bbrc.2018.04.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 11/16/2022]
Abstract
NAT10, a nucleolar acetyltransferase, participates in a variety of cellular processes including ribosome biogenesis and DNA damage response. Immunohistochemistry staining showed that cytoplasmic and membranous NAT10 is related to the clinical pathologic characteristics in human cancer tissues. However, the mechanism about how NAT10 translocates from the nucleolus to cytoplasm and membrane is unclear. Here, we obtain a NAT10 deletion mutant localizing in cytoplasm and membrane. Bioinformatics analysis showed that residues 68-75 and 989-1018 are two potential nuclear localization signals (NLS) of NAT10. GFP-NAT10 deletion mutant (Δ989-1018) predominantly translocates into cytoplasm with faint signal retained in the nucleolus, while GFP-NAT10(Δ68-75) still remains in the nucleolus and nucleoplasm, indicating residues 989-1018 is the main nucleolar localization signal (NuLS). GFP-NAT10-D3, with both fragments (residues 68-75 and 989-1018) deleted, completely excludes from the nucleolus and translocates to cytoplasm and membrane. Therefore, complete NuLSs of NAT10 should include residues 68-75 and 989-1018. The cytoplasmic and membranous NAT10 mutant (Flag-NAT10-D3) colocalizes with α-tubulin in cytoplasm and with integrin on cell membrane. Importantly, Flag-NAT10-D3 promotes α-tubulin acetylation and stabilizes microtubules. Consequently, Flag-NAT10-D3 promotes migration and invasion in hepatocellular carcinoma (HCC) cells. Statistical analysis of immunohistochemistry staining of NAT10 in HCC tissues demonstrates that the cytoplasmic NAT10 is correlated with poorer prognosis compared with nuclear NAT10, while the membranous NAT10 predicts the poorest clinical outcome of the patients. We thus provide the evidence for the function of cytoplasmic and membranous NAT10 in the metastasis and prognosis of HCC patients.
Collapse
Affiliation(s)
- Yuqin Tan
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jiaojiao Zheng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, No. 52, Fu-Cheng Road, Beijing, 100142, China
| | - Min Lu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chunfeng Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Baocai Xing
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, No. 52, Fu-Cheng Road, Beijing, 100142, China
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
25
|
Kumar JSD, Solingapuram Sai KK, Prabhakaran J, Oufkir HR, Ramanathan G, Whitlow CT, Dileep H, Mintz A, Mann JJ. Radiosynthesis and in Vivo Evaluation of [ 11C]MPC-6827, the First Brain Penetrant Microtubule PET Ligand. J Med Chem 2018; 61:2118-2123. [PMID: 29457976 DOI: 10.1021/acs.jmedchem.8b00028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abnormalities of microtubules (MTs) are implicated in the pathogenesis of many CNS diseases. Despite the potential of an MT imaging agents, no PET ligand is currently available for in vivo imaging of MTs in the brain. We radiolabeled [11C]MPC-6827, a high affinity MTA, and demonstrated its specific binding in rat and mice brain using PET imaging. Our experiments show that [11C]MPC-6827 has specific binding to MT in brain, and it is the first MT-binding PET ligand.
Collapse
Affiliation(s)
- J S Dileep Kumar
- Molecular Imaging and Neuropathology Division , New York State Psychiatric Institute , 1051 Riverside Drive , New York , New York 10032 , United States
| | | | - Jaya Prabhakaran
- Molecular Imaging and Neuropathology Division , New York State Psychiatric Institute , 1051 Riverside Drive , New York , New York 10032 , United States.,Department of Psychiatry , Columbia University Medical Center , New York , New York 10032 , United States
| | - Hakeem R Oufkir
- Department of Radiology , Wake Forest Medical Center , Winston Salem , North Carolina 27157 , United States
| | - Gayathri Ramanathan
- Department of Radiology , Wake Forest Medical Center , Winston Salem , North Carolina 27157 , United States
| | - Christopher T Whitlow
- Department of Radiology , Wake Forest Medical Center , Winston Salem , North Carolina 27157 , United States
| | - Hima Dileep
- Molecular Imaging and Neuropathology Division , New York State Psychiatric Institute , 1051 Riverside Drive , New York , New York 10032 , United States.,Department of Psychiatry , Columbia University Medical Center , New York , New York 10032 , United States
| | - Akiva Mintz
- Department of Radiology , Wake Forest Medical Center , Winston Salem , North Carolina 27157 , United States
| | - J John Mann
- Molecular Imaging and Neuropathology Division , New York State Psychiatric Institute , 1051 Riverside Drive , New York , New York 10032 , United States.,Department of Psychiatry , Columbia University Medical Center , New York , New York 10032 , United States
| |
Collapse
|
26
|
Faulkner C, Zhou J, Evrard A, Bourdais G, MacLean D, Häweker H, Eckes P, Robatzek S. An automated quantitative image analysis tool for the identification of microtubule patterns in plants. Traffic 2017; 18:683-693. [PMID: 28746801 DOI: 10.1111/tra.12505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 07/23/2017] [Accepted: 07/23/2017] [Indexed: 12/20/2022]
Abstract
High throughput confocal imaging poses challenges in the computational image analysis of complex subcellular structures such as the microtubule cytoskeleton. Here, we developed CellArchitect, an automated image analysis tool that quantifies changes to subcellular patterns illustrated by microtubule markers in plants. We screened microtubule-targeted herbicides and demonstrate that high throughput confocal imaging with integrated image analysis by CellArchitect can distinguish effects induced by the known herbicides indaziflam and trifluralin. The same platform was used to examine 6 other compounds with herbicidal activity, and at least 3 different effects induced by these compounds were profiled. We further show that CellArchitect can detect subcellular patterns tagged by actin and endoplasmic reticulum markers. Thus, the platform developed here can be used to automate image analysis of complex subcellular patterns for purposes such as herbicide discovery and mode of action characterisation. The capacity to use this tool to quantitatively characterize cellular responses lends itself to application across many areas of biology.
Collapse
Affiliation(s)
| | - Ji Zhou
- Norwich Research Park, The Sainsbury Laboratory, Norwich, UK
| | | | - Gildas Bourdais
- Norwich Research Park, The Sainsbury Laboratory, Norwich, UK
| | - Dan MacLean
- Norwich Research Park, The Sainsbury Laboratory, Norwich, UK
| | - Heidrun Häweker
- Norwich Research Park, The Sainsbury Laboratory, Norwich, UK
| | - Peter Eckes
- Bayer AG, Crop Science Division, Industrial Park Hoechst, Frankfurt, Germany
| | - Silke Robatzek
- Norwich Research Park, The Sainsbury Laboratory, Norwich, UK
| |
Collapse
|
27
|
Valigurová A, Vaškovicová N, Diakin A, Paskerova GG, Simdyanov TG, Kováčiková M. Motility in blastogregarines (Apicomplexa): Native and drug-induced organisation of Siedleckia nematoides cytoskeletal elements. PLoS One 2017. [PMID: 28640849 PMCID: PMC5480980 DOI: 10.1371/journal.pone.0179709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies on motility of Apicomplexa concur with the so-called glideosome concept applied for apicomplexan zoites, describing a unique mechanism of substrate-dependent gliding motility facilitated by a conserved form of actomyosin motor and subpellicular microtubules. In contrast, the gregarines and blastogregarines exhibit different modes and mechanisms of motility, correlating with diverse modifications of their cortex. This study focuses on the motility and cytoskeleton of the blastogregarine Siedleckia nematoides Caullery et Mesnil, 1898 parasitising the polychaete Scoloplos cf. armiger (Müller, 1776). The blastogregarine moves independently on a solid substrate without any signs of gliding motility; the motility in a liquid environment (in both the attached and detached forms) rather resembles a sequence of pendular, twisting, undulation, and sometimes spasmodic movements. Despite the presence of key glideosome components such as pellicle consisting of the plasma membrane and the inner membrane complex, actin, myosin, subpellicular microtubules, micronemes and glycocalyx layer, the motility mechanism of S. nematoides differs from the glideosome machinery. Nevertheless, experimental assays using cytoskeletal probes proved that the polymerised forms of actin and tubulin play an essential role in the S. nematoides movement. Similar to Selenidium archigregarines, the subpellicular microtubules organised in several layers seem to be the leading motor structures in blastogregarine motility. The majority of the detected actin was stabilised in a polymerised form and appeared to be located beneath the inner membrane complex. The experimental data suggest the subpellicular microtubules to be associated with filamentous structures (= cross-linking protein complexes), presumably of actin nature.
Collapse
Affiliation(s)
- Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
- * E-mail:
| | - Naděžda Vaškovicová
- Institute of Scientific Instruments of the CAS, v. v. i., Královopolská 147, Brno, Czech Republic
| | - Andrei Diakin
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Gita G. Paskerova
- Department of Invertebrate Zoology, Faculty of Biology, Saint-Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, Russian Federation
| | - Timur G. Simdyanov
- Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory 1–12, Moscow, Russian Federation
| | - Magdaléna Kováčiková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| |
Collapse
|
28
|
G Silva M, Knowles DP, Antunes S, Domingos A, Esteves MA, Suarez CE. Inhibition of the in vitro growth of Babesia bigemina, Babesia caballi and Theileria equi parasites by trifluralin analogues. Ticks Tick Borne Dis 2017; 8:593-597. [PMID: 28416183 DOI: 10.1016/j.ttbdis.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
Bovine and equine babesiosis caused by Babesia bovis, Babesia bigemina and Babesia caballi, along with equine theileriosis caused by Theileria equi are global tick-borne hemoprotozoan diseases characterized by fever, anemia, weight losses and abortions. A common feature of these diseases are transition from acute to chronic phases, in which parasites may persist in the hosts for life. Antiprotozoal drugs are important for managing infection and disease. Previous research demonstrated that trifluralin analogues, designated (TFLAs) 1-15, which specifically bind to regions of alpha-tubulin protein in plants and protozoan parasites, have the ability to inhibit the in vitro growth of B. bovis. The inhibitory activity of TFLAs 1-15 minus TFLA 5 was tested in vitro against cultured B. bigemina, B. caballi and T. equi. The four TFLAs with greatest inhibitory activity were then analyzed for hemolytic activity and toxicity against erythrocytes. All TFLAs tested in the study showed inhibitory effects against the three parasite species. TFLA 2, TFLA 11, TFLA 13 and TFLA 14 were the most effective inhibitors for the three species tested, with estimated IC50 between 5.1 and 10.1μM at 72h. The drug's solvent (DMSO/ethanol) did not statistically affect the growth of the parasites nor cause hemolysis. Also, TFLA 2, 13 and 14 did not cause statistically significant hemolytic activity on bovine and equine erythrocytes at 15μM, and TFLA 2, 11 and 13 had no detectable toxic effects on bovine and equine erythrocytes at 15μM, suggesting that these drugs do not compromise erythrocyte viability. The demonstrated ability of the trifluralin analogues to inhibit in vitro growth of Babesia spp. and Theileria equi, and their lack of toxic effects on erythrocytes supports further in vivo testing and eventually their development as novel alternatives for the treatment of babesiosis and theileriosis.
Collapse
Affiliation(s)
- Marta G Silva
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | - Donald P Knowles
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA; Animal Disease Research Unit, USDA-ARS, 3003 ADBF, WSU, Pullman, WA, 99163-6630, USA.
| | - Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Rua da Junqueira 100, 1349-008 Lisboa, Portugal.
| | - Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Rua da Junqueira 100, 1349-008 Lisboa, Portugal.
| | - Maria A Esteves
- Laboratório Nacional de Energia e Geologia, LNEG, Paço do Lumiar, 22, 1649-038 Lisboa, Portugal.
| | - Carlos E Suarez
- Animal Disease Research Unit, USDA-ARS, 3003 ADBF, WSU, Pullman, WA, 99163-6630, USA.
| |
Collapse
|
29
|
Laurin Y, Eyer J, Robert CH, Prevost C, Sacquin-Mora S. Mobility and Core-Protein Binding Patterns of Disordered C-Terminal Tails in β-Tubulin Isotypes. Biochemistry 2017; 56:1746-1756. [PMID: 28290671 DOI: 10.1021/acs.biochem.6b00988] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although they play a significant part in the regulation of microtubule structure, dynamics, and function, the disordered C-terminal tails of tubulin remain invisible to experimental structural methods and do not appear in the crystallographic structures that are currently available in the Protein Data Bank. Interestingly, these tails concentrate most of the sequence variability between tubulin isotypes and are the sites of the principal post-translational modifications undergone by this protein. Using homology modeling, we developed two complete models for the human αI/βI- and αI/βIII-tubulin isotypes that include their C-terminal tails. We then investigated the conformational variability of the two β-tails using long time-scale classical molecular dynamics simulations that revealed similar features, notably the unexpected presence of common anchoring regions on the surface of the tuulin dimer, but also distinctive mobility or interaction patterns, some of which could be related to the tail lengths and charge distributions. We also observed in our simulations that the C-terminal tail from the βI isotype, but not the βIII isotype, formed contacts in the putative binding site of a recently discovered peptide that disrupts microtubule formation in glioma cells. Hindering the binding site in the βI isotype would be consistent with this peptide's preferential disruption of microtubule formation in glioma, whose cells overexpress βIII, compared to normal glial cells. While these observations need to be confirmed with more intensive sampling, our study opens new perspectives for the development of isotype-specific chemotherapy drugs.
Collapse
Affiliation(s)
- Yoann Laurin
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Joel Eyer
- Laboratoire de Neurobiologie & Transgenèse, UPRES EA 3143, INSERM, Centre Hospitalier Universitaire , Angers, France
| | - Charles H Robert
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Chantal Prevost
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
30
|
Sueth-Santiago V, Moraes JDBB, Sobral Alves ES, Vannier-Santos MA, Freire-de-Lima CG, Castro RN, Mendes-Silva GP, Del Cistia CDN, Magalhães LG, Andricopulo AD, Sant´Anna CMR, Decoté-Ricardo D, Freire de Lima ME. The Effectiveness of Natural Diarylheptanoids against Trypanosoma cruzi: Cytotoxicity, Ultrastructural Alterations and Molecular Modeling Studies. PLoS One 2016; 11:e0162926. [PMID: 27658305 PMCID: PMC5033595 DOI: 10.1371/journal.pone.0162926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/11/2016] [Indexed: 12/13/2022] Open
Abstract
Curcumin (CUR) is the major constituent of the rhizomes of Curcuma longa and has been widely investigated for its chemotherapeutic properties. The well-known activity of CUR against Leishmania sp., Trypanosoma brucei and Plasmodium falciparum led us to investigate its activity against Trypanosoma cruzi. In this work, we tested the cytotoxic effects of CUR and other natural curcuminoids on different forms of T. cruzi, as well as the ultrastructural changes induced in epimastigote form of the parasite. CUR was verified as the curcuminoid with more significant trypanocidal properties (IC50 10.13 μM on epimastigotes). Demethoxycurcumin (DMC) was equipotent to CUR (IC50 11.07 μM), but bisdemethoxycurcumin (BDMC) was less active (IC50 45.33 μM) and cyclocurcumin (CC) was inactive. In the experiment with infected murine peritoneal macrophages all diarylheptanoids were more active than the control in the inhibition of the trypomastigotes release. The electron microscopy images showed ultrastructural changes associated with the cytoskeleton of the parasite, indicating tubulin as possible target of CUR in T. cruzi. The results obtained by flow cytometry analysis of DNA content of the parasites treated with natural curcuminoids suggested a mechanism of action on microtubules related to the paclitaxel`s mode of action. To better understand the mechanism of action highlighted by electron microscopy and flow cytometry experiments we performed the molecular docking of natural curcuminoids on tubulin of T. cruzi in a homology model and the results obtained showed that the observed interactions are in accordance with the IC50 values found, since there CUR and DMC perform similar interactions at the binding site on tubulin while BDMC do not realize a hydrogen bond with Lys163 residue due to the absence of methoxyl groups. These results indicate that trypanocidal properties of CUR may be related to the cytoskeletal alterations.
Collapse
Affiliation(s)
- Vitor Sueth-Santiago
- Universidade Federal Rural do Rio de Janeiro, Instituto de Ciências Exatas, Departamento de Química, BR 465, Km 07, CEP: 23.890-000, Seropédica, RJ, Brazil
| | - Julliane de B. B. Moraes
- Universidade Federal Rural do Rio de Janeiro, Instituto de Veterinária, Departamento de Microbiologia e Imunologia Veterinária, BR 465, Km 07, CEP: 23.890-000, Seropédica, RJ, Brazil
| | - Eliomara Sousa Sobral Alves
- Laboratório de Biologia Parasitária, Centro de Pesquisas Gonçalo Moniz (CPqGM-Fiocruz), Rua Waldemar Falcão, 121, Candeal, CEP: 40.296-710, Salvador, BA, Brazil
| | - Marcos André Vannier-Santos
- Laboratório de Biologia Parasitária, Centro de Pesquisas Gonçalo Moniz (CPqGM-Fiocruz), Rua Waldemar Falcão, 121, Candeal, CEP: 40.296-710, Salvador, BA, Brazil
| | - Célio G. Freire-de-Lima
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Ilha do Fundão, Cidade Universitária, CEP: 21.941-902, Rio de Janeiro, RJ, Brazil
| | - Rosane N. Castro
- Universidade Federal Rural do Rio de Janeiro, Instituto de Ciências Exatas, Departamento de Química, BR 465, Km 07, CEP: 23.890-000, Seropédica, RJ, Brazil
| | - Gustavo Peron Mendes-Silva
- Universidade Federal Rural do Rio de Janeiro, Instituto de Ciências Exatas, Departamento de Química, BR 465, Km 07, CEP: 23.890-000, Seropédica, RJ, Brazil
| | - Catarina de Nigris Del Cistia
- Universidade Federal Rural do Rio de Janeiro, Instituto de Ciências Exatas, Departamento de Matemática, BR 465, Km 07, CEP: 23.890-000, Seropédica, RJ, Brazil
| | - Luma Godoy Magalhães
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, CP 396, CEP: 13.560-970, São Carlos, SP, Brazil
| | - Adriano Defini Andricopulo
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, CP 396, CEP: 13.560-970, São Carlos, SP, Brazil
| | - Carlos Mauricio R. Sant´Anna
- Universidade Federal Rural do Rio de Janeiro, Instituto de Ciências Exatas, Departamento de Química, BR 465, Km 07, CEP: 23.890-000, Seropédica, RJ, Brazil
| | - Debora Decoté-Ricardo
- Universidade Federal Rural do Rio de Janeiro, Instituto de Veterinária, Departamento de Microbiologia e Imunologia Veterinária, BR 465, Km 07, CEP: 23.890-000, Seropédica, RJ, Brazil
- * E-mail: (MEFL); (DDR)
| | - Marco Edilson Freire de Lima
- Universidade Federal Rural do Rio de Janeiro, Instituto de Ciências Exatas, Departamento de Química, BR 465, Km 07, CEP: 23.890-000, Seropédica, RJ, Brazil
- * E-mail: (MEFL); (DDR)
| |
Collapse
|
31
|
Sun J, Peebles CAM. Engineering overexpression of ORCA3 and strictosidine glucosidase in Catharanthus roseus hairy roots increases alkaloid production. PROTOPLASMA 2016; 253:1255-64. [PMID: 26351111 DOI: 10.1007/s00709-015-0881-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/20/2015] [Indexed: 05/20/2023]
Abstract
Catharanthus roseus produces many pharmaceutically important terpenoid indole alkaloids (TIAs) such as vinblastine, vincristine, ajmalicine, and serpentine. Past metabolic engineering efforts have pointed to the tight regulation of the TIA pathway and to multiple rate-limiting reactions. Transcriptional regulator ORCA3 (octadecanoid responsive Catharanthus AP2-domain protein), activated by jasmonic acid, plays a central role in regulating the TIA pathway. In this study, overexpressing ORCA3 under the control of a glucocorticoid-inducible promoter in C. roseus hairy roots resulted in no change in the total amount of TIAs measured. RT-qPCR results showed that ORCA3 overexpression triggered the upregulation of transcripts of most of the known TIA pathway genes. One notable exception was the decrease in strictosidine glucosidase (SGD) transcripts. These results corresponded to previously published results. In this study, ORCA3 and SGD were both engineered in hairy roots under the control of a glucocorticoid-inducible promoter. Co-overexpression of ORCA3 and SGD resulted in a significant (p < 0.05) increase in serpentine by 44 %, ajmalicine by 32 %, catharanthine by 38 %, tabersonine by 40 %, lochnericine by 60 % and hörhammericine by 56 % . The total alkaloid pool was increased significantly by 47 %. Thus, combining overexpression of a positive regulator and a pathway gene which is not controlled by this regulator provided a way to enhance alkaloid production.
Collapse
Affiliation(s)
- Jiayi Sun
- Chemical and Biological Engineering Department, Colorado State University, Campus delivery 1301, Fort Collins, CO, 80523-1301, USA
| | - Christie A M Peebles
- Chemical and Biological Engineering Department, Colorado State University, Campus delivery 1301, Fort Collins, CO, 80523-1301, USA.
| |
Collapse
|
32
|
Nick P. Life versus 'biomass'-why application needs cell biology. PROTOPLASMA 2016; 253:1175-1176. [PMID: 27586792 DOI: 10.1007/s00709-016-1014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Peter Nick
- Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
33
|
Kanehira Y, Togami K, Tada H, Chono S. Tumor distribution and anti-tumor effect of doxorubicin following intrapulmonary administration to mice with metastatic lung tumor. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Szaflarski W, Fay MM, Kedersha N, Zabel M, Anderson P, Ivanov P. Vinca alkaloid drugs promote stress-induced translational repression and stress granule formation. Oncotarget 2016; 7:30307-22. [PMID: 27083003 PMCID: PMC5058682 DOI: 10.18632/oncotarget.8728] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/31/2016] [Indexed: 12/03/2022] Open
Abstract
Resistance to chemotherapy drugs is a serious therapeutic problem and its underlying molecular mechanisms are complex. Stress granules (SGs), cytoplasmic ribonucleoprotein complexes assembled in cells exposed to stress, are implicated in various aspects of cancer cell metabolism and survival. SGs promote the survival of stressed cells by reprogramming gene expression and inhibiting pro-apoptotic signaling cascades. We show that the vinca alkaloid (VA) class of anti-neoplastic agents potently activates a SG-mediated stress response program. VAs inhibit translation initiation by simultaneous activation of eIF4E-BP1 and phosphorylation of eIF2α, causing polysome disassembly and SG assembly. VA-induced SGs contain canonical SG components but lack specific signaling molecules. Blocking VA-induced SG assembly by inactivating eIF4EBP1 or inhibiting eIF2α phosphorylation decreases cancer cell viability and promotes apoptosis. Our data describe previously unappreciated effects of VAs on cellular RNA metabolism and illuminate the roles of SGs in cancer cell survival.
Collapse
Affiliation(s)
- Witold Szaflarski
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Marta M Fay
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nancy Kedersha
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Maciej Zabel
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Paul Anderson
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pavel Ivanov
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and M.I.T., Cambridge, MA, USA
| |
Collapse
|
35
|
Analysis of the cytoskeleton organization and its possible functions in male earthworm germ-line cysts equipped with a cytophore. Cell Tissue Res 2016; 366:175-89. [PMID: 27068922 PMCID: PMC5031758 DOI: 10.1007/s00441-016-2398-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/16/2016] [Indexed: 12/12/2022]
Abstract
We studied the organization of F-actin and the microtubular cytoskeleton in male germ-line cysts in the seminal vesicles of the earthworm Dendrobaena veneta using light, fluorescent and electron microscopy along with both chemically fixed tissue and life cell imaging. Additionally, in order to follow the functioning of the cytoskeleton, we incubated the cysts in colchicine, nocodazole, cytochalasin D and latrunculin A. The male germ-line cells of D. veneta are interconnected via stable intercellular bridges (IB), and form syncytial cysts. Each germ cell has only one IB that connects it to the anuclear central cytoplasmic mass, the cytophore. During the studies, we analyzed the cytoskeleton in spermatogonial, spermatocytic and spermatid cysts. F-actin was detected in the cortical cytoplasm and forms distinct rings in the IBs. The arrangement of the microtubules changed dynamically during spermatogenesis. The microtubules are distributed evenly in whole spermatogonial and spermatocytic cysts; however, they primarily accumulate within the IBs in spermatogonia. In early spermatids, microtubules pass through the IBs and are present in whole cysts. During spermatid elongation, the microtubules form a manchette while they are absent in the cytophore and in the IBs. Use of cytoskeletal drugs did not alter the general morphology of the cysts. Detectable effects—the occurrence of nuclei in the late spermatids and manchette fragments in the cytophore—were observed only after incubation in nocodazole. Our results suggest that the microtubules are responsible for cytoplasmic/organelle transfer between the germ cells and the cytophore during spermatogenesis and for the positioning of the spermatid nuclei.
Collapse
|
36
|
Torijano-Gutiérrez S, Vilanova C, Díaz-Oltra S, Murga J, Falomir E, Carda M, Redondo-Horcajo M, Díaz JF, Barasoain I, Marco JA. The Mechanism of the Interactions of Pironetin Analog/Combretastatin A-4 Hybrids with Tubulin. Arch Pharm (Weinheim) 2015; 348:541-7. [PMID: 26085125 DOI: 10.1002/ardp.201500106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/27/2015] [Accepted: 05/06/2015] [Indexed: 12/20/2022]
Abstract
We here report an investigation of the interactions with tubulin of two types of molecules of a hybrid structural type consisting in a combretastatin A-4 moiety and a simplified pironetin fragment. The cytotoxicities of the molecules on two reference tumoral cell lines were measured. In addition, the effects of the compounds on the cell cycle and on microtubule assembly were observed. The dynamics of microtubule polymerization was investigated by means of immunofluorescence assays. It was thus established that at least some of the compounds under study exert their cytotoxic action by means of interaction with tubulin.
Collapse
Affiliation(s)
| | - Concepción Vilanova
- Departamento de Química Inorgánica y Orgánica, Universidad Jaume I, Castellón, Spain
| | - Santiago Díaz-Oltra
- Departamento de Química Inorgánica y Orgánica, Universidad Jaume I, Castellón, Spain
| | - Juan Murga
- Departamento de Química Inorgánica y Orgánica, Universidad Jaume I, Castellón, Spain
| | - Eva Falomir
- Departamento de Química Inorgánica y Orgánica, Universidad Jaume I, Castellón, Spain
| | - Miguel Carda
- Departamento de Química Inorgánica y Orgánica, Universidad Jaume I, Castellón, Spain
| | | | | | | | - Juan Alberto Marco
- Departamento de Química Orgánica, Universidad Valencia, Burjassot, Spain
| |
Collapse
|
37
|
Laurin Y, Savarin P, Robert CH, Takahashi M, Eyer J, Prevost C, Sacquin-Mora S. Investigating the Structural Variability and Binding Modes of the Glioma Targeting NFL-TBS.40–63 Peptide on Tubulin. Biochemistry 2015; 54:3660-9. [DOI: 10.1021/acs.biochem.5b00146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yoann Laurin
- Laboratoire
de Biochimie Théorique, UPR 9080 CNRS Institut de Biologie Physico-Chimique,13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Savarin
- Université
Paris 13, Sorbonne Paris Cité, CSPBAT, UMR 7244 CNRS, 74 rue Marcel Cachin, 93017 Bobigny, France
| | - Charles H. Robert
- Laboratoire
de Biochimie Théorique, UPR 9080 CNRS Institut de Biologie Physico-Chimique,13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Masayuki Takahashi
- School
of Bioscience and Biotechnology, Tokyo Institue of Technology 2-12-1-M6-14
Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Joel Eyer
- Laboratoire de Neurobiologie & Transgenèse, UPRES EA 3143, INSERM, Centre Hospitalier Universitaire, Angers, France
| | - Chantal Prevost
- Laboratoire
de Biochimie Théorique, UPR 9080 CNRS Institut de Biologie Physico-Chimique,13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sophie Sacquin-Mora
- Laboratoire
de Biochimie Théorique, UPR 9080 CNRS Institut de Biologie Physico-Chimique,13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
38
|
Colchicine treatment reversibly blocks cytokinesis but not mitosis in Trypanosoma cruzi epimastigotes. Parasitol Res 2014; 114:641-9. [DOI: 10.1007/s00436-014-4227-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/06/2014] [Indexed: 01/13/2023]
|