1
|
Sun S, Mi C, Ma W, Mao P. Dynamic responses of germination characteristics and antioxidant systems to alfalfa (Medicago sativa) seed aging based on transcriptome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109205. [PMID: 39442418 DOI: 10.1016/j.plaphy.2024.109205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Seed aging poses a significant challenge to agronomic production and germplasm conservation. Reactive oxygen species (ROS) are highly involved in the aging process. However, dynamic response of germination characteristics and antioxidant system to seed aging are not yet very clear. This study explored the potential physiological mechanisms responsible for the reduced and rapid loss of seed vigor in alfalfa, and identified key genes regulating seed vigor. The germination percentage exhibited a decreased trend with the prolongation of aging duration. From 16 to 32 days of aging, the antioxidant enzyme activities of SOD, POD, CAT, DHAR and MDHAR declined significantly, which lead to the disruption of ROS balance and a significant increase in ROS levels, exacerbating seed aging. Based on transcriptome, 29 differentially expressed genes (DEGs) including SOD1, APX-2 and GST-7 within the ROS scavenging system showed a significantly down-regulated expression trend at aging of 16 and 24 days, indicating the abnormal function of antioxidant metabolism. Furthermore, some related genes including ATPF1B, ATPeF0C-3, NDUFS1, NDUFS3 and ND2 in the mitochondrial ETC exhibited a downturn following seed aging, which would result in the losing of seed vigor. This study has uncovered a significant array of potential target genes within the seed antioxidant system and mitochondrial ETC. These discoveries offer a wider lens for delving into the molecular regulatory mechanisms of seed aging. Further research is crucial to comprehensively elucidate the precise pathways through which these pivotal genes regulate seed vigor.
Collapse
Affiliation(s)
- Shoujiang Sun
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chunjiao Mi
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wen Ma
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Peisheng Mao
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Wang J, Yang B, Zhang F, Wang J, Xue K, Hussain Chang B, Zhang J, Qin X. Identification and Expression Analysis of Cytochrome P450 Genes Probably Involved in Triterpenoid Saponins Biosynthesis in Astragalus mongholicus. Int J Mol Sci 2024; 25:8333. [PMID: 39125903 PMCID: PMC11312233 DOI: 10.3390/ijms25158333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Cytochromes P450 (P450s) are one of the largest enzymatic protein families and play critical roles in the synthesis and metabolism of plant secondary metabolites. Astragaloside IV (AS-IV) is one of the primary active components in Astragalus herbs, exhibiting diverse biological activities and pharmacological effects. However, P450s involved in the astragaloside biosynthesis have not been systematically analyzed in Astragalus mongholicus (A. mongholicus). In this study, we identified 209 P450 genes from the genome of A. mongholicus (AmP450s), which were classified into nine clans and 47 families and performed a systematic overview of their physical and chemical properties, phylogeny, gene structures and conserved motifs. Weighted gene co-expression network analysis (WGCNA) revealed that AmP450s are critical in the astragaloside biosynthesis pathway. The expression levels of these AmP450s were verified by quantitative real-time PCR (qRT-PCR) analysis in the root, stem and leaf, showing that most AmP450s are abundant in the root. Additionally, the correlation analysis between gene expressions and AS-IV content showed that twelve AmP450s, especially CYP71A28, CYP71D16 and CYP72A69, may have significant potential in the biosynthesis of astragaloside. This study systematically investigates the P450s of A. mongholicus and offers valuable insights into further exploring the functions of CYP450s in the astragaloside biosynthesis pathway.
Collapse
Affiliation(s)
- Junxiu Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; (J.W.); (B.Y.); (F.Z.); (J.W.)
| | - Baoping Yang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; (J.W.); (B.Y.); (F.Z.); (J.W.)
| | - Fusheng Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; (J.W.); (B.Y.); (F.Z.); (J.W.)
| | - Jiaorui Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; (J.W.); (B.Y.); (F.Z.); (J.W.)
| | - Kunlun Xue
- College of Life Science, Shanxi University, Taiyuan 030006, China; (K.X.); (B.H.C.)
| | - Babar Hussain Chang
- College of Life Science, Shanxi University, Taiyuan 030006, China; (K.X.); (B.H.C.)
- Faculty of Crop Protection, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Jianqin Zhang
- College of Life Science, Shanxi University, Taiyuan 030006, China; (K.X.); (B.H.C.)
| | - Xuemei Qin
- College of Life Science, Shanxi University, Taiyuan 030006, China; (K.X.); (B.H.C.)
| |
Collapse
|
3
|
Im JH, Park CH, Shin JH, Oh YL, Oh M, Paek NC, Park YJ. Effects of Light on the Fruiting Body Color and Differentially Expressed Genes in Flammulina velutipes. J Fungi (Basel) 2024; 10:372. [PMID: 38921359 PMCID: PMC11204606 DOI: 10.3390/jof10060372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Light plays vital roles in fungal growth, development, reproduction, and pigmentation. In Flammulina velutipes, the color of the fruiting body exhibits distinct changes in response to light; however, the underlying molecular mechanisms remain unknown. Therefore, in this study, we aimed to analyze the F. velutipes transcriptome under red, green, and blue light-emitting diode (LED) lights to identify the key genes affecting the light response and fruiting body color in this fungus. Additionally, we conducted protein-protein interaction (PPI) network analysis of the previously reported fruiting body color-related gene, Fvpal1, to identify the hub genes. Phenotypic analysis revealed that fruiting bodies exposed to green and blue lights were darker than those untreated or exposed to red light, with the color intensifying more after 48 h of exposure to blue light compared to that after 24 h of exposure. Differentially expressed gene (DEG) analyses of all light treatments for 24 h revealed that the numbers of DEGs were 17, 74, and 257 under red, green, and blue lights, respectively. Subsequently, functional enrichment analysis was conducted of the DEGs identified under green and blue lights, which influenced the color of F. velutipes. In total, 103 of 168 downregulated DEGs under blue and green lights were included in the enrichment analysis. Among the DEGs enriched under both green and blue light treatments, four genes were related to monooxygenases, with three genes annotated as cytochrome P450s that are crucial for various metabolic processes in fungi. PPI network analysis of Fvpal1 revealed associations with 11 genes, among which the expression of one gene, pyridoxal-dependent decarboxylase, was upregulated in F. velutipes exposed to blue light. These findings contribute to our understanding of the molecular mechanisms involved in the fruiting body color changes in response to light and offer potential molecular markers for further exploration of light-mediated regulatory pathways.
Collapse
Affiliation(s)
- Ji-Hoon Im
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea;
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong-gun 27709, Republic of Korea; (Y.-L.O.); (M.O.)
| | - Che-Hwon Park
- Department of Medicinal Biosciences, Research Institute for Biomedicinal & Health Science, College of Biomedicinal and Health Science, Konkuk University, Chungju 27478, Republic of Korea; (C.-H.P.); (J.-H.S.)
| | - Ju-Hyeon Shin
- Department of Medicinal Biosciences, Research Institute for Biomedicinal & Health Science, College of Biomedicinal and Health Science, Konkuk University, Chungju 27478, Republic of Korea; (C.-H.P.); (J.-H.S.)
| | - Youn-Lee Oh
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong-gun 27709, Republic of Korea; (Y.-L.O.); (M.O.)
| | - Minji Oh
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong-gun 27709, Republic of Korea; (Y.-L.O.); (M.O.)
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| | - Young-Jin Park
- Department of Medicinal Biosciences, Research Institute for Biomedicinal & Health Science, College of Biomedicinal and Health Science, Konkuk University, Chungju 27478, Republic of Korea; (C.-H.P.); (J.-H.S.)
| |
Collapse
|
4
|
Hua C, Xu Z, Tang N, Xu Y, Zhang Y, Li C. Identification of P450 Candidates Associated with the Biosynthesis of Physalin-Class Compounds in Physalis angulata. Int J Mol Sci 2023; 24:14077. [PMID: 37762378 PMCID: PMC10531436 DOI: 10.3390/ijms241814077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The Physalis genus has long been used as traditional medicine in the treatment of various diseases. Physalins, the characteristic class of compounds in this genus, are major bioactive constituents. To date, the biogenesis of physalins remains largely unknown, except for the recently established knowledge that 24-methyldesmosterol is a precursor of physalin. To identify the genes encoding P450s that are putatively involved in converting 24-methyldesmosterol to physalins, a total of 306 P450-encoding unigenes were retrieved from our recently constructed P. angulata transcriptome. Extensive phylogenetic analysis proposed 21 P450s that might participate in physalin biosynthesis. To validate the candidates, we developed a virus-induced gene silencing (VIGS) system for P. angulata, and four P450 candidates were selected for the VIGS experiments. The reduction in the transcripts of the four P450 candidates by VIGS all led to decreased levels of physalin-class compounds in the P. angulata leaves. Thus, this study provides a number of P450 candidates that are likely associated with the biosynthesis of physalin-class compounds, forming a strong basis to reveal the unknown physalin biosynthetic pathway in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Changfu Li
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China; (C.H.); (Z.X.); (N.T.); (Y.X.); (Y.Z.)
| |
Collapse
|
5
|
Ritz M, Ahmad N, Brueck T, Mehlmer N. Differential RNA-Seq Analysis Predicts Genes Related to Terpene Tailoring in Caryopteris × clandonensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2305. [PMID: 37375930 DOI: 10.3390/plants12122305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Enzymatic terpene functionalization is an essential part of plant secondary metabolite diversity. Within this, multiple terpene-modifying enzymes are required to enable the chemical diversity of volatile compounds essential in plant communication and defense. This work sheds light on the differentially transcribed genes within Caryopteris × clandonensis that are capable of functionalizing cyclic terpene scaffolds, which are the product of terpene cyclase action. The available genomic reference was subjected to further improvements to provide a comprehensive basis, where the number of contigs was minimized. RNA-Seq data of six cultivars, Dark Knight, Grand Bleu, Good as Gold, Hint of Gold, Pink Perfection, and Sunny Blue, were mapped on the reference, and their distinct transcription profile investigated. Within this data resource, we detected interesting variations and additionally genes with high and low transcript abundancies in leaves of Caryopteris × clandonensis related to terpene functionalization. As previously described, different cultivars vary in their modification of monoterpenes, especially limonene, resulting in different limonene-derived molecules. This study focuses on predicting the cytochrome p450 enzymes underlying this varied transcription pattern between investigated samples. Thus, making them a reasonable explanation for terpenoid differences between these plants. Furthermore, these data provide the basis for functional assays and the verification of putative enzyme activities.
Collapse
Affiliation(s)
- Manfred Ritz
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Nadim Ahmad
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Thomas Brueck
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
6
|
Sethi A, Bhandawat A, Pati PK. Engineering medicinal plant-derived CYPs: a promising strategy for production of high-valued secondary metabolites. PLANTA 2022; 256:119. [PMID: 36378350 PMCID: PMC9664027 DOI: 10.1007/s00425-022-04024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Cytochorme P450s (CYPs) play a critical role in the catalysis of secondary metabolite biosynthetic pathways. For their commercial use, various strategies for metabolic pathway engineering using CYP as a potential target have been explored. Plants produce a vast diversity of secondary metabolites which are being used to treat various ailments and diseases. Some of these metabolites are difficult to obtain in large quantities limiting their industrial use. Cytochrome P450 enzymes (CYPs) are important catalysts in the biosynthesis of highly valued secondary metabolites, and are found in all domains of life. With the development of high-throughput sequencing and high-resolution mass spectrometry, new biosynthetic pathways and associated CYPs are being identified. In this review, we present CYPs identified from medicinal plants as a potential game changer in the metabolic engineering of secondary metabolic pathways. We present the achievements made so far in enhancing the production of important bioactivities through pathway engineering, giving some popular examples. At last, current challenges and possible strategies to overcome the limitations associated with CYP engineering to enhance the biosynthesis of target secondary metabolites are also highlighted.
Collapse
Affiliation(s)
- Anshika Sethi
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143 005, India
| | - Abhishek Bhandawat
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143 005, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143 005, India.
| |
Collapse
|
7
|
Transcriptome Profiling of the Resistance Response of Musa acuminata subsp. burmannicoides, var. Calcutta 4 to Pseudocercospora musae. Int J Mol Sci 2022; 23:ijms232113589. [DOI: 10.3390/ijms232113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Banana (Musa spp.), which is one of the world’s most popular and most traded fruits, is highly susceptible to pests and diseases. Pseudocercospora musae, responsible for Sigatoka leaf spot disease, is a principal fungal pathogen of Musa spp., resulting in serious economic damage to cultivars in the Cavendish subgroup. The aim of this study was to characterize genetic components of the early immune response to P. musae in Musa acuminata subsp. burmannicoides, var. Calcutta 4, a resistant wild diploid. Leaf RNA samples were extracted from Calcutta 4 three days after inoculation with fungal conidiospores, with paired-end sequencing conducted in inoculated and non-inoculated controls using lllumina HiSeq 4000 technology. Following mapping to the reference M. acuminata ssp. malaccensis var. Pahang genome, differentially expressed genes (DEGs) were identified and expression representation analyzed on the basis of gene ontology enrichment, Kyoto Encyclopedia of Genes and Genomes orthology and MapMan pathway analysis. Sequence data mapped to 29,757 gene transcript models in the reference Musa genome. A total of 1073 DEGs were identified in pathogen-inoculated cDNA libraries, in comparison to non-inoculated controls, with 32% overexpressed. GO enrichment analysis revealed common assignment to terms that included chitin binding, chitinase activity, pattern binding, oxidoreductase activity and transcription factor (TF) activity. Allocation to KEGG pathways revealed DEGs associated with environmental information processing, signaling, biosynthesis of secondary metabolites, and metabolism of terpenoids and polyketides. With 144 up-regulated DEGs potentially involved in biotic stress response pathways, including genes involved in cell wall reinforcement, PTI responses, TF regulation, phytohormone signaling and secondary metabolism, data demonstrated diverse early-stage defense responses to P. musae. With increased understanding of the defense responses occurring during the incompatible interaction in resistant Calcutta 4, these data are appropriate for the development of effective disease management approaches based on genetic improvement through introgression of candidate genes in superior cultivars.
Collapse
|
8
|
Thomson RES, D'Cunha SA, Hayes MA, Gillam EMJ. Use of engineered cytochromes P450 for accelerating drug discovery and development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:195-252. [PMID: 35953156 DOI: 10.1016/bs.apha.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Numerous steps in drug development, including the generation of authentic metabolites and late-stage functionalization of candidates, necessitate the modification of often complex molecules, such as natural products. While it can be challenging to make the required regio- and stereoselective alterations to a molecule using purely chemical catalysis, enzymes can introduce changes to complex molecules with a high degree of stereo- and regioselectivity. Cytochrome P450 enzymes are biocatalysts of unequalled versatility, capable of regio- and stereoselective functionalization of unactivated CH bonds by monooxygenation. Collectively they catalyze over 60 different biotransformations on structurally and functionally diverse organic molecules, including natural products, drugs, steroids, organic acids and other lipophilic molecules. This catalytic versatility and substrate range makes them likely candidates for application as potential biocatalysts for industrial chemistry. However, several aspects of the P450 catalytic cycle and other characteristics have limited their implementation to date in industry, including: their lability at elevated temperature, in the presence of solvents, and over lengthy incubation times; the typically low efficiency with which they metabolize non-natural substrates; and their lack of specificity for a single metabolic pathway. Protein engineering by rational design or directed evolution provides a way to engineer P450s for industrial use. Here we review the progress made to date toward engineering the properties of P450s, especially eukaryotic forms, for industrial application, and including the recent expansion of their catalytic repertoire to include non-natural reactions.
Collapse
Affiliation(s)
- Raine E S Thomson
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Stephlina A D'Cunha
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Martin A Hayes
- Compound Synthesis and Management, Discovery Sciences, BioPharmaceuticals R&D AstraZeneca, Mölndal, Sweden
| | - Elizabeth M J Gillam
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
9
|
Yang J, Li H, Ma R, Chang Y, Qin X, Xu J, Fu Y. Genome-wide transcriptome analysis and characterization of the cytochrome P450 flavonoid biosynthesis genes in pigeon pea (Cajanus cajan). PLANTA 2022; 255:120. [PMID: 35538269 DOI: 10.1007/s00425-022-03896-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
226 CcCYP450 genes were identified at the genomic level and were classified into 45 clades based on phylogenetic analysis. CcCYP75B165 gene was found that might play important roles in the biosynthesis of flavonoids in pigeon pea, and was significantly induced by methyl jasmonate (MeJA). The cytochrome P450 mono-oxygenase (CYP450) superfamily plays a key role in the flavonoid biosynthesis pathway and resists different kinds of stresses. Several CYP450 genes have been identified to be involved in the biosynthesis of crop protection agents. However, the CcCYP450 genes from pigeon pea have not been identified. Here, 226 CcCYP450 genes were identified at the genomic level by analysing the gene structure, distribution on chromosomes, gene duplication, and conserved motifs and were classified into 45 clades based on phylogenetic analysis. RNA-seq analysis revealed clear details of CcCYP450 genes that varied with time of MeJA (methyl jasmonate) induction. Among them, six CcCYP450 subfamily genes were found that might play important roles in the biosynthesis of flavonoids in pigeon pea. The overexpression of CcCYP75B165 in pigeon pea significantly induced the accumulation of genistin and downregulated the contents of cajaninstilbene acid, apigenin, isovitexin, and genistein and the expression of flavonoid synthase genes. This study provides theoretical guidance and plant genetic resources for cultivating new pigeon pea varieties with high flavonoid contents and exploring the molecular mechanisms of the biosynthesis of flavonoids under MeJA treatment.
Collapse
Affiliation(s)
- Jie Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Hongquan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Ruijin Ma
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Yuanhang Chang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Xiangyu Qin
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jian Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
10
|
Li L, Lin S, Chen Y, Wang Y, Xiao L, Ye X, Sun L, Zhan R, Xu H. Cytochrome P450 Monooxygenase/Cytochrome P450 Reductase Bi-Enzymatic System Isolated From Ilex asprella for Regio-Specific Oxidation of Pentacyclic Triterpenoids. FRONTIERS IN PLANT SCIENCE 2022; 13:831401. [PMID: 35422828 PMCID: PMC9004391 DOI: 10.3389/fpls.2022.831401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Ilex asprella is a plant from Aquifoliaceae. Its root is commonly used as folk medicinal materials in southern China. The chemical compositions of I. asprella are rich in pentacyclic triterpenoids, which show various biological activities and demonstrate a good prospect for drug development. The elucidation of biosynthesis mechanism of triterpenoids in I. asprella could lay important foundations for the production of these precious plant secondary metabolites by metabolic engineering. Our previous studies have revealed IaAO1 (a CYP716A210 homolog) responsible for the C-28 oxidation of α- and β-amyrin. Herein, we reported the identification of three more cytochrome P450 monooxygenase genes IaAO2 (a CYP716A212 homolog), IaAO4 (CYP714E88), IaAO5 (CYP93A220), and a cytochrome P450 reductase gene IaCPR by using Saccharomyces cerevisiae eukaryotic expression system and gas chromatography-mass spectrometry. Among them, the protein encoded by IaAO2 can catalyze the C-28 oxidation of α-amyrin and β-amyrin, IaAO4 can catalyze the C-23 oxidation of ursolic acid and oleanolic acid, while IaAO5 is responsible for the C-24 oxidation of β-amyrin. By introducing three genes IaAO1, IaAO4 and IaCPR into S. cerevisiae. We constructed an engineered yeast strain that can produce C-23 hydroxyl ursane-type triterpenoid derivatives. This study contributes to a thorough understanding of triterpenoid biosynthesis of medicinal plants and provides important tools for further metabolic engineering.
Collapse
|
11
|
Dippe M, Herrmann S, Pecher P, Funke E, Pietzsch M, Wessjohann L. Engineered bacterial flavin-dependent monooxygenases for the regiospecific hydroxylation of polycyclic phenols. Chembiochem 2022; 23:e202100480. [PMID: 34979058 PMCID: PMC9303722 DOI: 10.1002/cbic.202100480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/06/2021] [Indexed: 11/06/2022]
Abstract
4-Hydroxyphenylacetate 3-hydroxylase (4HPA3H), a flavin-dependent monooxygenase from E. coli that catalyzes the hydroxylation of monophenols to catechols, was modified by rational re-design to convert also more bulky substrates, especially phenolic natural products like phenylpropanoids, flavones or coumarins. Selected amino acid positions in the binding pocket of 4HPA3H were exchanged by residues from the homologous protein from Pseudomonas aeruginosa, yielding variants with improved conversion of spacious substrates such as the flavonoid naringenin or the alkaloid mimetic 2-hydroxycarbazole. Reactions were followed by an adapted Fe(III)-catechol chromogenic assay selective for the products. Especially substitution of the residue Y301 facilitated modulation of substrate specificity: introduction of non-aromatic but hydrophobic (iso)leucine resulted in the preference of the substrate ferulic acid (having a guaiacyl (guajacyl) moiety, part of the vanilloid motif) over unsubstituted monophenols. The in vivo (whole-cell biocatalysts) and in vitro (three-enzyme cascade) transformations of substrates by 4HPA3H and its optimized variants was strictly regiospecific and proceeded without generation of by-products.
Collapse
Affiliation(s)
- Martin Dippe
- Leibniz-Institut für Pflanzenbiochemie: Leibniz-Institut fur Pflanzenbiochemie, Bioorganic Chemistry, Weinberg 3, D-06120, Halle/Saale, GERMANY
| | - Susann Herrmann
- Leibniz-Institut für Pflanzenbiochemie: Leibniz-Institut fur Pflanzenbiochemie, Bioorganic Chemistry, Weinberg 3, D-06120, Halle, GERMANY
| | - Pascal Pecher
- Leibniz Institute of Plant Biochemistry: Leibniz-Institut fur Pflanzenbiochemie, Bioorganic Chemistry, GERMANY
| | - Evelyn Funke
- Leibniz-Institut fur Pflanzenbiochemie, Bioorganic Chemistry, GERMANY
| | - Markus Pietzsch
- Martin-Luther-Universität Halle-Wittenberg: Martin-Luther-Universitat Halle-Wittenberg, Institute of Pharmacy, Weinbergweg 22, D-06120, Halle, GERMANY
| | - Ludger Wessjohann
- Leibniz-Institute of Plant Biochemistry, Bioorganic Chemistry, Weinberg 3, 06120, Halle Saale, GERMANY
| |
Collapse
|
12
|
Huang R, Liu L, He X, Wang W, Hou Y, Chen J, Li Y, Zhou H, Tian T, Wang W, Xu Q, Yu Y, Zhou T. Isolation and Functional Characterization of Multiple NADPH-Cytochrome P450 Reductase Genes from Camellia sinensis in View of Catechin Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14926-14937. [PMID: 34859673 DOI: 10.1021/acs.jafc.1c04255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Catechins are critical constituents for the sensory quality and health-promoting benefits of tea. Cytochrome P450 monooxygenases are required for catechin biosynthesis and are dependent on NADPH-cytochrome P450 reductases (CPRs) to provide reducing equivalents for their activities. However, CPRs have not been identified in tea, and their relationship to catechin accumulation also remains unknown. Thus, three CsCPR genes were identified in this study, all of which had five CPR-related conserved domains and were targeted to the endoplasmic reticulum. These three recombinant CsCPR proteins could reduce cytochrome c using NADPH as an electron donor. Heterologous co-expression in yeast demonstrated that all the three CsCPRs could support the enzyme activities of CsC4H and CsF3'H. Correlation analysis indicated that the expression level of CsCPR1 (or CsCPR2 or CsCPR3) was positively correlated with 3',4',5'-catechin (or total catechins) content. Our results indicate that the CsCPRs are involved in the biosynthesis of catechins in tea leaves.
Collapse
Affiliation(s)
- Ronghao Huang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Lipeng Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Xuqiu He
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Wenzhao Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yihong Hou
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Jinfan Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yingying Li
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - He Zhou
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tian Tian
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Weidong Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Qingshan Xu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tianshan Zhou
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
13
|
Fang Y, Jiang J, Du Q, Luo L, Li X, Xie X. Cytochrome P450 Superfamily: Evolutionary and Functional Divergence in Sorghum ( Sorghum bicolor) Stress Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10952-10961. [PMID: 34495670 DOI: 10.1021/acs.jafc.1c03701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cytochrome P450 (CYP) genes encode enzymes that catalyze various growth-, development-, and stress-related reactions. Sorghum (Sorghum bicolor) is a type of C4 plant and an important cash crop. However, systematic identification and analysis of functional differentiation and evolution of CYP genes have not been carried out in this species. In the present study, we revealed that the sorghum genome contains 351 CYP genes, which can be divided into nine classes. These genes are from ancestors and repeated segments, rather than tandem repeats. Based on collinearity results, a large number of CYPs were extended before cotyledon differentiation, during the emergence of Gramineae, suggesting that genomewide duplication events and stress adaptation processes were important for the expansion of CYP genes. Their gene structure and motifs contain conserved regions and include various changes and loci. The expression characteristics and functional annotation of CYP genes indicated tissue specificity and selective expression. Overall, we identified all CYP genes in the sorghum genome and preliminarily explored their naming, structure, evolution, expression, and functional differentiation. The results advanced our understanding of plant gene family evolution and functional differentiation.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P. R. China
| | - Junmei Jiang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P. R. China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Qiaoli Du
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P. R. China
| | - Liting Luo
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P. R. China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
14
|
Rao S, Gou Y, Yu T, Cong X, Gui J, Zhu Z, Zhang W, Liao Y, Ye J, Cheng S, Xu F. Effects of selenate on Se, flavonoid, and glucosinolate in broccoli florets by combined transcriptome and metabolome analyses. Food Res Int 2021; 146:110463. [PMID: 34119247 DOI: 10.1016/j.foodres.2021.110463] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022]
Abstract
Broccoli is a nutritious vegetable popular all over the world. This study investigated the effects of different concentrations of selenate (0, 0.1, 0.2, 0.4, 0.8, and 1.6 mmol/L) on the selenium (Se), glucosinolate, and flavonoid contents of broccoli florets. Results showed that the total Se, selenomethionine, and methyl selenocysteine contents increased following selenate dosage. Interestingly, selenate treatment of 0.4 mmol/L decreased the flavonoid but increased the glucosinolate content. Metabolome analysis revealed changes in the individual contents of glucosinolates and flavonoids. Conjoint analysis of transcriptome and metabolome showed that the glucosinolate and flavonoid compounds were potentially regulated by two sulfate transporter genes (Sultr3;1 and Sultr4;2) and several cytochrome P450 genes (e.g., CYP71B21, CYP72C1, and CYP81F1). These new findings indicated that Se treatment may influence glucosinolate and flavonoid accumulation by regulating the expression of these genes. The results of this study provide some novel insights into the effects of Se on glucosinolates and flavonoids in broccoli florets and deepen our understanding of the regulatory network between some specific genes and these compounds.
Collapse
Affiliation(s)
- Shen Rao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Yuanyuan Gou
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Tian Yu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; Enshi Se-Run Health Tech Development Co. Ltd., Enshi 445000, China.
| | - Xin Cong
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; Enshi Se-Run Health Tech Development Co. Ltd., Enshi 445000, China.
| | - Jiaying Gui
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Zhenzhou Zhu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; National Selenium Rich Product Quality Supervision and Inspection Center, Enshi 445000, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
15
|
Banikamali M, Soltanloo H, Ramezanpour SS, Yamchi A, Sorahinobar M. Identification of salinity responsive genes in lavender through cDNA-AFLP. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00520. [PMID: 32963973 PMCID: PMC7490537 DOI: 10.1016/j.btre.2020.e00520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/13/2020] [Accepted: 08/10/2020] [Indexed: 01/01/2023]
Abstract
Currently, a global demand exists forlavender as a significant medicinal plant and source of essential oils. Freshwater and arable lands are two major factors that inhibit extensive farming of medicinal plants in Iran. Saline water from seas and salty soil may be new resources for agricultural use, especially for medicinal plants. We sought to extend our knowledge of the Lavandula angustifolia genome and molecular basis of its salinity tolerance by using cDNA amplified fragment length polymorphism (cDNA-AFLP) to investigate the changes in plant transcriptomes in response to NaCl. All identified transcript derived fragments (TDF) were assigned as novel L. angustifolia genes related to signal transduction, regulation of gene expression, alternative splicing, autophagy, and secondary metabolite biosynthesis. qRT-PCR analysis of the TDFs in response to different concentrations of NaCl revealed various levels of mRNA of the identified genes in this plant. Our findings provided primary insights into the molecular response of L. angustifolia to salinity.
Collapse
Affiliation(s)
- Mania Banikamali
- Department of Plant Breeding and Biotechnology, Faculty of Plant Production, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Golestan, Iran
| | - Hassan Soltanloo
- Department of Plant Breeding and Biotechnology, Faculty of Plant Production, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Golestan, Iran
| | - S Sanaz Ramezanpour
- Department of Plant Breeding and Biotechnology, Faculty of Plant Production, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Golestan, Iran
| | - Ahad Yamchi
- Department of Plant Breeding and Biotechnology, Faculty of Plant Production, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Golestan, Iran
| | - Mona Sorahinobar
- Department of Plant Biology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| |
Collapse
|
16
|
Busi R, Goggin DE, Onofri A, Boutsalis P, Preston C, Powles SB, Beckie HJ. Loss of trifluralin metabolic resistance in Lolium rigidum plants exposed to prosulfocarb recurrent selection. PEST MANAGEMENT SCIENCE 2020; 76:3926-3934. [PMID: 32638493 DOI: 10.1002/ps.5993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/29/2020] [Accepted: 07/08/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Resistance to the dinitroaniline herbicide trifluralin in Lolium rigidum (annual ryegrass) often is mediated by the enhanced capacity to metabolize the herbicide to less toxic polar conjugates and/or by functionally recessive target-site mutations in α-tubulin. RESULTS In two L. rigidum populations possessing enhanced trifluralin metabolism, resistance was largely reversed by recurrent selection with the thiocarbamate herbicide prosulfocarb (i.e. plant survival was two- to >20-fold lower). Their ability to metabolize trifluralin was significantly decreased (by ≈2.3-fold) following recurrent prosulfocarb selection, to levels comparable to those observed in susceptible plants or when trifluralin metabolism was inhibited by treatment with the insecticide phorate. CONCLUSIONS This study provides evidence that trait(s) enabling efficient trifluralin metabolism in L. rigidum are purged from the population under prosulfocarb recurrent selection. The level of trifluralin metabolism in vitro and its inhibition caused by phorate action on trifluralin-metabolizing enzyme(s) is equivalent to the effect produced by prosulfocarb selection. The hypothetical link between the two phenomena is that the putative monooxygenase(s) conferring trifluralin metabolic resistance also mediate the activation of prosulfocarb to its toxic sulfoxide. Thus, we speculate that survival to prosulfocarb via a lack of metabolic herbicide activation, and survival to trifluralin conferred by enhanced herbicide metabolism, are mutually exclusive. These findings not only open up a new research direction in terms of the interaction between different herbicide resistance mechanisms in L. rigidum, but also offer strategies for immediate management of the population dynamics of metabolism-based resistance in the field. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Roberto Busi
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Crawley, Western Australia, Australia
| | - Danica E Goggin
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Crawley, Western Australia, Australia
| | - Andrea Onofri
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Peter Boutsalis
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Christopher Preston
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Crawley, Western Australia, Australia
| | - Hugh J Beckie
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
17
|
Cheng Y, Liu H, Tong X, Liu Z, Zhang X, Li D, Jiang X, Yu X. Identification and analysis of CYP450 and UGT supergene family members from the transcriptome of Aralia elata (Miq.) seem reveal candidate genes for triterpenoid saponin biosynthesis. BMC PLANT BIOLOGY 2020; 20:214. [PMID: 32404131 PMCID: PMC7218531 DOI: 10.1186/s12870-020-02411-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/28/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Members of the cytochrome P450 (CYP450) and UDP-glycosyltransferase (UGT) gene superfamily have been shown to play essential roles in regulating secondary metabolite biosynthesis. However, the systematic identification of CYP450s and UGTs has not been reported in Aralia elata (Miq.) Seem, a highly valued medicinal plant. RESULTS In the present study, we conducted the RNA-sequencing (RNA-seq) analysis of the leaves, stems, and roots of A. elata, yielding 66,713 total unigenes. Following annotation and KEGG pathway analysis, we were able to identify 64 unigenes related to triterpenoid skeleton biosynthesis, 254 CYP450s and 122 UGTs, respectively. A total of 150 CYP450s and 92 UGTs encoding > 300 amino acid proteins were utilized for phylogenetic and tissue-specific expression analyses. This allowed us to cluster 150 CYP450s into 9 clans and 40 families, and then these CYP450 proteins were further grouped into two primary branches: A-type (53%) and non-A-type (47%). A phylogenetic analysis of 92 UGTs and other plant UGTs led to clustering into 16 groups (A-P). We further assessed the expression patterns of these CYP450 and UGT genes across A. elata tissues, with 23 CYP450 and 16 UGT members being selected for qRT-PCR validation, respectively. From these data, we identified CYP716A295 and CYP716A296 as the candidate genes most likely to be associated with oleanolic acid synthesis, while CYP72A763 and CYP72A776 were identified as being the most likely to play roles in hederagenin biosynthesis. We also selected five unigenes as the best candidates for oleanolic acid 3-O-glucosyltransferase. Finally, we assessed the subcellular localization of three CYP450 proteins within Arabidopsis protoplasts, highlighting the fact that they localize to the endoplasmic reticulum. CONCLUSIONS This study presents a systematic analysis of the CYP450 and UGT gene family in A. elata and provides a foundation for further functional characterization of these two multigene families.
Collapse
Affiliation(s)
- Yao Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Hanbing Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Xuejiao Tong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zaimin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Xin Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Dalong Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Xinmei Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| | - Xihong Yu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
18
|
Batista-Silva W, da Fonseca-Pereira P, Martins AO, Zsögön A, Nunes-Nesi A, Araújo WL. Engineering Improved Photosynthesis in the Era of Synthetic Biology. PLANT COMMUNICATIONS 2020; 1:100032. [PMID: 33367233 PMCID: PMC7747996 DOI: 10.1016/j.xplc.2020.100032] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/20/2020] [Accepted: 02/08/2020] [Indexed: 05/08/2023]
Abstract
Much attention has been given to the enhancement of photosynthesis as a strategy for the optimization of crop productivity. As traditional plant breeding is most likely reaching a plateau, there is a timely need to accelerate improvements in photosynthetic efficiency by means of novel tools and biotechnological solutions. The emerging field of synthetic biology offers the potential for building completely novel pathways in predictable directions and, thus, addresses the global requirements for higher yields expected to occur in the 21st century. Here, we discuss recent advances and current challenges of engineering improved photosynthesis in the era of synthetic biology toward optimized utilization of solar energy and carbon sources to optimize the production of food, fiber, and fuel.
Collapse
Affiliation(s)
- Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Wagner L. Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
19
|
Identification of Differentially Expressed Proteins in Sugarcane in Response to Infection by Xanthomonas albilineans Using iTRAQ Quantitative Proteomics. Microorganisms 2020; 8:microorganisms8010076. [PMID: 31947808 PMCID: PMC7023244 DOI: 10.3390/microorganisms8010076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 01/02/2023] Open
Abstract
Sugarcane can suffer severe yield losses when affected by leaf scald, a disease caused by Xanthomonas albilineans. This bacterial pathogen colonizes the vascular system of sugarcane, which can result in reduced plant growth and plant death. In order to better understand the molecular mechanisms involved in the resistance of sugarcane to leaf scald, a comparative proteomic study was performed with two sugarcane cultivars inoculated with X. albilineans: one resistant (LCP 85-384) and one susceptible (ROC20) to leaf scald. The iTRAQ (isobaric tags for relative and absolute quantification) approach at 0 and 48 h post-inoculation (hpi) was used to identify and annotate differentially expressed proteins (DEPs). A total of 4295 proteins were associated with 1099 gene ontology (GO) terms by GO analysis. Among those, 285 were DEPs during X. albilineans infection in cultivars LCP 85-384 and ROC20. One hundred seventy-two DEPs were identified in resistant cultivar LCP 85-384, and 113 of these proteins were upregulated and 59 were downregulated. One hundred ninety-two DEPs were found in susceptible cultivar ROC20 and half of these (92) were upregulated, whereas the other half corresponded to downregulated proteins. The significantly upregulated DEPs in LCP 85-384 were involved in metabolic pathways, the biosynthesis of secondary metabolites, and the phenylpropanoid biosynthesis pathway. Additionally, the expression of seven candidate genes related to photosynthesis and glycolytic pathways, plant innate immune system, glycosylation process, plant cytochrome P450, and non-specific lipid transfer protein was verified based on transcription levels in sugarcane during infection by X. albilineans. Our findings shed new light on the differential expression of proteins in sugarcane cultivars in response to infection by X. albilineans. The identification of these genes provides important information for sugarcane variety improvement programs using molecular breeding strategies.
Collapse
|
20
|
Zhang X, Li C, Wang L, Fei Y, Qin W. Analysis of Centranthera grandiflora Benth Transcriptome Explores Genes of Catalpol, Acteoside and Azafrin Biosynthesis. Int J Mol Sci 2019; 20:ijms20236034. [PMID: 31795510 PMCID: PMC6928798 DOI: 10.3390/ijms20236034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a major cause of health loss in the world. Prevention and treatment of this disease by traditional Chinese medicine is a promising method. Centranthera grandiflora Benth is a high-value medicinal herb in the prevention and treatment of CVDs; its main medicinal components include iridoid glycosides, phenylethanoid glycosides, and azafrin in roots. However, biosynthetic pathways of these components and their regulatory mechanisms are unknown. Furthermore, there are no genomic resources of this herb. In this article, we provide sequence and transcript abundance data for the root, stem, and leaf transcriptome of C. grandiflora Benth obtained by the Illumina Hiseq2000. More than 438 million clean reads were obtained from root, stem, and leaf libraries, which produced 153,198 unigenes. Based on databases annotation, a total of 557, 213, and 161 unigenes were annotated to catalpol, acteoside, and azafrin biosynthetic pathways, respectively. Differentially expressed gene analysis identified 14,875 unigenes differentially enriched between leaf and root with 8,054 upregulated genes and 6,821 downregulated genes. Candidate MYB transcription factors involved in catalpol, acteoside, and azafrin biosynthesis were also predicated. This work is the first transcriptome analysis in C. grandiflora Benth which will aid the deciphering of biosynthesis pathways and regulatory mechanisms of active components.
Collapse
Affiliation(s)
- Xiaodong Zhang
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (C.L.); (L.W.)
- Food and Bioengineering College, Xuchang University, Xuchang 461000, China
| | - Caixia Li
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (C.L.); (L.W.)
- Food and Bioengineering College, Xuchang University, Xuchang 461000, China
| | - Lianchun Wang
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (C.L.); (L.W.)
| | - Yahong Fei
- Yuxi Flyingbear Agricultural Development Company Limited, Yuxi 653100, China;
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
- Correspondence: ; Tel.: +1-807-343-8467
| |
Collapse
|
21
|
Savitskaya J, Protzko RJ, Li FZ, Arkin AP, Dueber JE. Iterative screening methodology enables isolation of strains with improved properties for a FACS-based screen and increased L-DOPA production. Sci Rep 2019; 9:5815. [PMID: 30967567 PMCID: PMC6456618 DOI: 10.1038/s41598-019-41759-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/05/2019] [Indexed: 12/20/2022] Open
Abstract
Optimizing microbial hosts for the large-scale production of valuable metabolites often requires multiple mutations and modifications to the host's genome. We describe a three-round screen for increased L-DOPA production in S. cerevisiae using FACS enrichment of an enzyme-coupled biosensor for L-DOPA. Multiple rounds of screening were enabled by a single build of a barcoded in vitro transposon-mediated disruption library. New background strains for screening were built for each iteration using results from previous iterations. The same in vitro transposon-mediated disruption library was integrated by homologous recombination into new background strains in each round of screening. Compared with creating new transposon insertions in each round, this method takes less time and saves the cost of additional sequencing to characterize transposon insertion sites. In the first two rounds of screening, we identified deletions that improved biosensor compartmentalization and, consequently, improved our ability to screen for L-DOPA production. In a final round, we discovered that deletion of heme oxygenase (HMX1) increases total heme concentration and increases L-DOPA production, using dopamine measurement as a proxy. We further demonstrated that deleting HMX1 may represent a general strategy for P450 function improvement by improving activity of a second P450 enzyme, BM3, which performs a distinct reaction.
Collapse
Affiliation(s)
- Judy Savitskaya
- University of California, Berkeley - UCSF Graduate Program in Bioengineering, Berkeley, CA, 94720, USA.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Ryan J Protzko
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Francesca-Zhoufan Li
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Adam P Arkin
- University of California, Berkeley - UCSF Graduate Program in Bioengineering, Berkeley, CA, 94720, USA. .,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA. .,Environmental Genomics & System Biology, Lawrence Berkeley National Lab, Berkeley, California, USA.
| | - John E Dueber
- University of California, Berkeley - UCSF Graduate Program in Bioengineering, Berkeley, CA, 94720, USA. .,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA. .,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
22
|
Contreras A, Leroy B, Mariage PA, Wattiez R. Proteomic analysis reveals novel insights into tanshinones biosynthesis in Salvia miltiorrhiza hairy roots. Sci Rep 2019; 9:5768. [PMID: 30962498 PMCID: PMC6453882 DOI: 10.1038/s41598-019-42164-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/26/2019] [Indexed: 12/29/2022] Open
Abstract
Salvia miltiorrhiza is a medicinal plant highly appreciated by its content of tanshinones and salvianolic acids. Tanshinones are of particular relevance for their anti-oxidant, anti-tumoral and anti-inflammatory properties. Abiotic and biotic agents as silver nitrate and yeast extract have shown efficiently to stimulate tanshinone accumulation, but the underlying molecular mechanism remains essentially unknown. By using hairy roots as experimental material and the elicitors mentioned, were obtained up to 22 mg of tanshinones per gram of dry weight. Differential label-free quantitative proteomic analysis was applied to study the proteins involved in tanshinone biosynthesis. A total of 2650 proteins were identified in roots extracts, of which 893 showed statistically (p < 0.05) significant change in relative abundance compared to control roots, 251 proteins were upregulated and 642 downregulated. Among the upregulated proteins the predominant functional categories were metabolism (47%), stress defense (18%) and redox homeostasis (10%). Within the metabolism category, isoprenoid metabolism enzymes, cytochromes P450 and FAD-binding berberine proteins showed abundance profile linked to tanshinone concentration. The results presented here allowed to propose 5 new cytochromes P450 and 5 berberine enzymes as candidates to be involved into tanshinone biosynthesis, a novel finding that opens new avenues to improve tanshinone production through biotechnological approaches.
Collapse
Affiliation(s)
- Angela Contreras
- Proteomics and Microbiology department, Research center for Biosciences, University of Mons, 20 place du Parc, Mons, 7000, Belgium
| | - Baptiste Leroy
- Proteomics and Microbiology department, Research center for Biosciences, University of Mons, 20 place du Parc, Mons, 7000, Belgium
| | | | - Ruddy Wattiez
- Proteomics and Microbiology department, Research center for Biosciences, University of Mons, 20 place du Parc, Mons, 7000, Belgium.
| |
Collapse
|
23
|
Zhou T, Luo X, Yu C, Zhang C, Zhang L, Song YB, Dong M, Shen C. Transcriptome analyses provide insights into the expression pattern and sequence similarity of several taxol biosynthesis-related genes in three Taxus species. BMC PLANT BIOLOGY 2019; 19:33. [PMID: 30665359 PMCID: PMC6341696 DOI: 10.1186/s12870-019-1645-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 01/11/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Taxol is an efficient anticancer drug; however, the accumulation of taxoids can vary hugely among Taxus species. The mechanism underlying differential accumulation of taxoids is largely unknown. Thus, comparative analysis of the transcriptomes in three Taxus species, including T. media, T. mairei and T. cuspidata, was performed. RESULTS KEGG enrichment analysis revealed that the diterpenoid biosynthesis and cytochrome P450 pathways were significantly enriched in different comparisons. Differential expressions of these taxol biosynthesis related genes might be a potential explanation for the interspecific differential accumulation of taxol and its derivatives. Besides, the sequences of several MEP pathway-associated genes, such as DXS, DXR, MCT, CMK, MDS, HDS, HDR, IPPI, and GGPPS, were re-assembled based on independent transcriptomes from the three Taxus species. Phylogenetic analysis of these MEP pathway-associated enzymes also showed a high sequence similarity between T. media and T. cuspidata. Moreover, 48 JA-related transcription factor (TF) genes, including 10 MYBs, 5 ERFs, 4 RAPs, 3 VTCs, and 26 other TFs, were analyzed. Differential expression of these JA-related TF genes suggested distinct responses to exogenous JA applications in the three Taxus species. CONCLUSIONS Our results provide insights into the expression pattern and sequence similarity of several taxol biosynthesis-related genes in three Taxus species. The data give us an opportunity to reveal the mechanism underlying the variations in the taxoid contents and to select the highest-yielding Taxus species.
Collapse
Affiliation(s)
- Ting Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
| | - Xiujun Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Chengchao Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430 USA
| | - Yao-bin Song
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
| | - Ming Dong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| |
Collapse
|
24
|
Li W, Xu R, Yan X, Liang D, Zhang L, Qin X, Caiyin Q, Zhao G, Xiao W, Hu Z, Qiao J. De novo leaf and root transcriptome analysis to explore biosynthetic pathway of Celangulin V in Celastrus angulatus maxim. BMC Genomics 2019; 20:7. [PMID: 30611193 PMCID: PMC6321707 DOI: 10.1186/s12864-018-5397-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Background Celastrus angulatus Maxim is a kind of crucial and traditional insecticidal plant widely distributed in the mountains of southwest China. Celangulin V is the efficient insecticidal sesquiterpenoid of C. angulatus and widely used in pest control in China, but the low yield and discontinuous supply impeded its further popularization and application. Fortunately, the development of synthetic biology provided an opportunity for sustainable supply of Celangulin V, for which understanding its biosynthetic pathway is indispensable. Results In this study, six cDNA libraries were prepared from leaf and root of C. angulatus before global transcriptome analyses using the BGISEQ-500 platform. A total of 104,950 unigenes were finally obtained with an average length of 1200 bp in six transcriptome databases of C. angulatus, in which 51,817 unigenes classified into 25 KOG classifications, 39,866 unigenes categorized into 55 GO functional groups, and 48,810 unigenes assigned to 135 KEGG pathways, 145 of which were putative biosynthetic genes of sesquiterpenoid and triterpenoid. 16 unigenes were speculated to be related to Celangulin V biosynthesis. De novo assembled sequences were verified by Quantitative Real-Time PCR (qRT-PCR) analysis. Conclusions This study is the first report on transcriptome analysis of C. angulatus, and 16 unigenes probably involved in the biosynthesis of Celangulin V were finally collected. The transcriptome data will make great contributions to research for this specific insecticidal plant and the further gene mining for biosynthesis of Celangulin V and other sesquiterpene polyol esters. Electronic supplementary material The online version of this article (10.1186/s12864-018-5397-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weiguo Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Ranran Xu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Xiaoguang Yan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Dongmei Liang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Lei Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Xiaoyu Qin
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Qinggele Caiyin
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Guangrong Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Wenhai Xiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Zhaonong Hu
- College of Plant Protection, Institute of Pesticide Science, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.,Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. .,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
| |
Collapse
|
25
|
Yu C, Guo H, Zhang Y, Song Y, Pi E, Yu C, Zhang L, Dong M, Zheng B, Wang H, Shen C. Identification of potential genes that contributed to the variation in the taxoid contents between two Taxus species (Taxus media and Taxus mairei). TREE PHYSIOLOGY 2017; 37:1659-1671. [PMID: 28985439 DOI: 10.1093/treephys/tpx091] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/22/2017] [Indexed: 05/20/2023]
Abstract
Taxol is currently a valuable anticancer drug; however, the accumulated mixture of taxoids can vary greatly among Taxus species. So far, there is very little genomic information for the genus Taxus, except for Taxus baccata. Transcriptome analysis is a powerful approach to explore the different regulatory mechanisms underlying the taxoid biosynthesis pathway in Taxus species. First, we quantified the variation in the taxoid contents between Taxus media and Taxus mairei. The contents of paclitaxel and 10-deacetylpaclitaxel in T. media are higher than that in T. mairei. Then, the transcriptome profiles of T. media and T. mairei were analyzed to investigate the altered expressions. A total of 20,704 significantly differentially expressed genes (DEGs), including 9865 unigenes predominantly expressed in T. media and 10,839 unigenes predominantly expressed in T. mairei, were identified. In total, 120 jasmonic acid-related DEGs were analyzed, suggesting variations in 'response to JA stimulus' and 'JA biosynthetic process' pathways between T. media and T. mairei. Furthermore, a number of genes related to the precursor supply, taxane skeleton formation and hydroxylation, and C13-side chain assembly were also identified. The differential expression of the candidate genes involved in taxoid biosynthetic pathways may explain the variation in the taxoid contents between T. media and T. mairei.
Collapse
Affiliation(s)
- Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Hong Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Yangyang Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Yaobin Song
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Chenliang Yu
- Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Ming Dong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou 311300, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
26
|
Lin H, Wang J, Qi M, Guo J, Rong Q, Tang J, Wu Y, Ma X, Huang L. Molecular cloning and functional characterization of multiple NADPH-cytochrome P450 reductases from Andrographis paniculata. Int J Biol Macromol 2017; 102:208-217. [DOI: 10.1016/j.ijbiomac.2017.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 01/07/2023]
|
27
|
Orchestrated Domain Movement in Catalysis by Cytochrome P450 Reductase. Sci Rep 2017; 7:9741. [PMID: 28852004 PMCID: PMC5575293 DOI: 10.1038/s41598-017-09840-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/31/2017] [Indexed: 12/16/2022] Open
Abstract
NADPH-cytochrome P450 reductase is a multi-domain redox enzyme which is a key component of the P450 mono-oxygenase drug-metabolizing system. We report studies of the conformational equilibrium of this enzyme using small-angle neutron scattering, under conditions where we are able to control the redox state of the enzyme precisely. Different redox states have a profound effect on domain orientation in the enzyme and we analyse the data in terms of a two-state equilibrium between compact and extended conformations. The effects of ionic strength show that the presence of a greater proportion of the extended form leads to an enhanced ability to transfer electrons to cytochrome c. Domain motion is intrinsically linked to the functionality of the enzyme, and we can define the position of the conformational equilibrium for individual steps in the catalytic cycle.
Collapse
|
28
|
Sun H, Li F, Xu Z, Sun M, Cong H, Qiao F, Zhong X. De novo leaf and root transcriptome analysis to identify putative genes involved in triterpenoid saponins biosynthesis in Hedera helix L. PLoS One 2017; 12:e0182243. [PMID: 28771546 PMCID: PMC5542655 DOI: 10.1371/journal.pone.0182243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/14/2017] [Indexed: 11/19/2022] Open
Abstract
Hedera helix L. is an important traditional medicinal plant in Europe. The main active components are triterpenoid saponins, but none of the potential enzymes involved in triterpenoid saponins biosynthesis have been discovered and annotated. Here is reported the first study of global transcriptome analyses using the Illumina HiSeq™ 2500 platform for H. helix. In total, over 24 million clean reads were produced and 96,333 unigenes were assembled, with an average length of 1385 nt; more than 79,085 unigenes had at least one significant match to an existing gene model. Differentially Expressed Gene analysis identified 6,222 and 7,012 unigenes which were expressed either higher or lower in leaf samples when compared with roots. After functional annotation and classification, two pathways and 410 unigenes related to triterpenoid saponins biosynthesis were discovered. The accuracy of these de novo sequences was validated by RT-qPCR analysis and a RACE clone. These data will enrich our knowledge of triterpenoid saponin biosynthesis and provide a theoretical foundation for molecular research on H. helix.
Collapse
Affiliation(s)
- Huapeng Sun
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture / Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Fang Li
- Horticulture & Landscape College, Hunan Agricultural University, Changsha, China
| | - Zijian Xu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Mengli Sun
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hanqing Cong
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture / Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Fei Qiao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture / Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
- * E-mail: (FQ); (X-hZ)
| | - Xiaohong Zhong
- Horticulture & Landscape College, Hunan Agricultural University, Changsha, China
- * E-mail: (FQ); (X-hZ)
| |
Collapse
|
29
|
Shen C, Guo H, Chen H, Shi Y, Meng Y, Lu J, Feng S, Wang H. Identification and analysis of genes associated with the synthesis of bioactive constituents in Dendrobium officinale using RNA-Seq. Sci Rep 2017. [PMID: 28298629 DOI: 10.1038/s41598-017-00292-8/2045-2322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Dendrobium officinale L. is an important traditional herb with high commercial value in China. Several bioactive constituents, including polysaccharides and alkaloids, reportedly make major contributions toward the excellent medicinal effect of D. officinale. In this study, the contents of polysaccharides and alkaloids in various organs of D. officinale were measured and compared. We took advantage of transcriptomes from four organs to explore biological mechanisms in the organ-specific distribution of active ingredients in D. officinale. Based on Kyoto Encyclopedia of Genes and Genomes pathways, unigenes related to the enzymes involved in fructose and mannose metabolism and unigenes associated with putative upstream elements of the alkaloid biosynthetic pathway were identified. A large number of candidates, including 35 full-length glycosyltransferase genes and 49 full-length P450 genes, were also identified based on the transcriptome data, and the organ-specific expression pattern of these genes was determined. Furthermore, differential expression of all candidate genes was analyzed in two Dendrobium species, D. nobile L. and D. officinale. The data will supply important clues to exploit useful genes involved in polysaccharide and alkaloid synthesis.
Collapse
Affiliation(s)
- Chenjia Shen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Hong Guo
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Hailing Chen
- Department of Geratology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, 310007, China
| | - Yujun Shi
- School of Foreign Languages, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yijun Meng
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jiangjie Lu
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Shangguo Feng
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China.
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China.
| | - Huizhong Wang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China.
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China.
| |
Collapse
|
30
|
Identification and analysis of genes associated with the synthesis of bioactive constituents in Dendrobium officinale using RNA-Seq. Sci Rep 2017; 7:187. [PMID: 28298629 PMCID: PMC5412657 DOI: 10.1038/s41598-017-00292-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 02/20/2017] [Indexed: 11/08/2022] Open
Abstract
Dendrobium officinale L. is an important traditional herb with high commercial value in China. Several bioactive constituents, including polysaccharides and alkaloids, reportedly make major contributions toward the excellent medicinal effect of D. officinale. In this study, the contents of polysaccharides and alkaloids in various organs of D. officinale were measured and compared. We took advantage of transcriptomes from four organs to explore biological mechanisms in the organ-specific distribution of active ingredients in D. officinale. Based on Kyoto Encyclopedia of Genes and Genomes pathways, unigenes related to the enzymes involved in fructose and mannose metabolism and unigenes associated with putative upstream elements of the alkaloid biosynthetic pathway were identified. A large number of candidates, including 35 full-length glycosyltransferase genes and 49 full-length P450 genes, were also identified based on the transcriptome data, and the organ-specific expression pattern of these genes was determined. Furthermore, differential expression of all candidate genes was analyzed in two Dendrobium species, D. nobile L. and D. officinale. The data will supply important clues to exploit useful genes involved in polysaccharide and alkaloid synthesis.
Collapse
|
31
|
Liao W, Zhao S, Zhang M, Dong K, Chen Y, Fu C, Yu L. Transcriptome Assembly and Systematic Identification of Novel Cytochrome P450s in Taxus chinensis. FRONTIERS IN PLANT SCIENCE 2017; 8:1468. [PMID: 28878800 PMCID: PMC5572210 DOI: 10.3389/fpls.2017.01468] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/07/2017] [Indexed: 05/06/2023]
Abstract
Taxus spp. is a highly valuable medicinal plant with multiple pharmacological effects on various cancers. Cytochrome P450s (CYP450s) play important roles in the biosynthesis of active compounds in Taxus spp., such as the famous diterpenoid, Taxol. However, some specific CYP450 enzymes involved in the biosynthesis of Taxol remain unknown, and the systematic identification of CYP450s in Taxus has not been reported. In this study, 118 full-length and 175 partial CYP450 genes were identified in Taxus chinensis transcriptomes. The 118 full-length genes were divided into 8 clans and 29 families. The CYP71 clan included all A-type genes (52) belonging to 11 families. The other seven clans possessed 18 families containing 66 non-A-type genes. Two new gymnosperm-specific families were discovered, and were named CYP864 and CYP947 respectively. Protein sequence alignments revealed that all of the T. chinensis CYP450s hold distinct conserved domains. The expression patterns of all 118 CYP450 genes during the long-time subculture and MeJA elicitation were analyzed. Additionally, the expression levels of 15 novel CYP725 genes in different Taxus species were explored. Considering all the evidence, 6 CYP725s were identified to be candidates for Taxol biosynthesis. The cis-regulatory elements involved in the transcriptional regulation were also identified in the promoter regions of CYP725s. This study presents a comprehensive overview of the CYP450 gene family in T. chinensis and can provide important insights into the functional gene studies of Taxol biosynthesis.
Collapse
Affiliation(s)
- Weifang Liao
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Shengying Zhao
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Meng Zhang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Kaige Dong
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Ying Chen
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Chunhua Fu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- *Correspondence: Chunhua Fu
| | - Longjiang Yu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Longjiang Yu
| |
Collapse
|
32
|
Nick P. Life versus 'biomass'-why application needs cell biology. PROTOPLASMA 2016; 253:1175-1176. [PMID: 27586792 DOI: 10.1007/s00709-016-1014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Peter Nick
- Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|