1
|
Xiong Y, Lu G, Li H, He J, Fan S, Yan S, Zhang L, Jia H, Li M. Integrating QTL mapping and transcriptomics to decipher the genetic architecture of sterol metabolism in Brassica napus L. HORTICULTURE RESEARCH 2024; 11:uhae196. [PMID: 39257541 PMCID: PMC11384122 DOI: 10.1093/hr/uhae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/11/2024] [Indexed: 09/12/2024]
Abstract
Sterols are secondary metabolites commonly found in rapeseed that play crucial physiological roles in plants and also benefit human health. Consequently, unraveling the genetic basis of sterol synthesis in rapeseed is highly important. In this study, 21 individual sterols as well as total sterol (TS) content were detected in a double haploid (DH) population of Brassica napus, and a total of 24 quantitative trait loci (QTL) and 157 mQTL were identified that were associated with TS and different individual sterols. Time-series transcriptomic analysis showed that the differentially expressed genes (DEGs) involved in sterol and lipid biosynthesis pathways were enriched. Additionally, a regulatory network between sterol-related DEGs and transcription factors (TFs) was established using coexpression analysis. Some candidate genes were identified with the integration of transcriptomic analysis and QTL mapping, and the key candidate gene BnSQS1.C03 was selected for further functional analysis. BnSQS1.C03 demonstrated squalene synthase activity in vitro and increased the TS by 3.8% when overexpressed in Arabidopsis. The present results provide new insights into sterol regulatory pathways and a valuable genetic basis for breeding rapeseed varieties with high sterol content in the future.
Collapse
Affiliation(s)
- Yiyi Xiong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| | - Guangyuan Lu
- College of Biology and Food Engineering, Kechuang 1st Road, Maonan District, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Huaixin Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| | - Jianjie He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| | - Shipeng Fan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| | - Shuxiang Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| | - Liangxiao Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuchang District, Wuhan 430062, China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| | - Maoteng Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| |
Collapse
|
2
|
Majidi M, Mirjalili MH, Farzaneh M, Rezadoost H. Fungal endophytes Fusarium solani SGGF14 and Alternaria tenuissima SGGF21 enhance the glycyrrhizin production by modulating its key biosynthetic genes in licorice (Glycyrrhiza glabra L.). J Appl Microbiol 2024; 135:lxae199. [PMID: 39182158 DOI: 10.1093/jambio/lxae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
AIMS To identify promising fungal endophytes that are able to produce glycyrrhizin and enhance it in licorice and the mechanisms involved. METHODS AND RESULTS Fifteen fungal endophytes were isolated from Glycyrrhiza glabra L. rhizomes among which SGGF14 and SGGF21 isolates were found to produce glycyrrhizin by 4.29 and 2.58 µg g-1 dry weight in the first generation of their culture. These isolates were identified as Fusarium solani and Alternaria tenuissima, respectively, based on morphological characteristics and sequence analysis of internal transcribed spacer, TEF1, ATPase, and CAL regions. Subsequently, G. glabra plants were inoculated with these fungal isolates to examine their effect on glycyrrhizin production, plant growth parameters and the expression of key genes involved in glycyrrhizin pathway: SQS1, SQS2, bAS, CAS, LUS, CYP88D6, and CYP72A154. Endophytes were able to enhance glycyrrhizin content by 133%-171% in the plants. Natural control (NC) plants, harboring all natural endophytes, had better growth compared to SGGF14- and SGGF21-inoculated and endophyte-free (EF) plants. Expression of SQS1, SQS2, CYP88D6, and CYP72A154 was upregulated by inoculation with endophytes. LUS and CAS were downregulated after endophyte inoculation. Expression of bAS was higher in SGGF21-inoculated plants when compared with NC, EF, and SGGF14-inoculated plants. CONCLUSIONS Two selected fungal endophytes of G. glabra can produce glycyrrhizin and enhance glycyrrhizin content in planta by modulating the expression of key genes in glycyrrhizin biosynthetic pathway.
Collapse
Affiliation(s)
- Mehdi Majidi
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Mohsen Farzaneh
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Hassan Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| |
Collapse
|
3
|
Lv X, Zhu L, Ma D, Zhang F, Cai Z, Bai H, Hui J, Li S, Xu X, Li M. Integrated Metabolomics and Transcriptomics Analyses Highlight the Flavonoid Compounds Response to Alkaline Salt Stress in Glycyrrhiza uralensis Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5477-5490. [PMID: 38416716 DOI: 10.1021/acs.jafc.3c07139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Glycyrrhiza uralensis is a saline-alkali-tolerant plant whose aerial parts are rich in flavonoids; however, the role of these flavonoids in saline-alkali tolerance remains unclear. Herein, we performed physiological, metabolomics, and transcriptomics analyses in G. uralensis leaves under alkaline salt stress for different durations. Alkaline salt stress stimulated excessive accumulation of reactive oxygen species and consequently destroyed the cell membrane, causing cell death, and G. uralensis initiated osmotic regulation and the antioxidant system to respond to stress. In total, 803 metabolites, including 244 flavonoids, were detected via metabolomics analysis. Differentially altered metabolites and differentially expressed genes were coenriched in flavonoid-related pathways. Genes such as novel.4890, Glyur001511s00039602, and Glyur000775s00025737 were highly expressed, and flavonoid metabolites such as 2'-hydroxygenistein, apigenin, and 3-O-methylquercetin were upregulated. Thus, flavonoids as nonenzymatic antioxidants play an important role in stress tolerance. These findings provide novel insights into the response of G. uralensis to alkaline salt stress.
Collapse
Affiliation(s)
- Xuelian Lv
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
- Agricultural Biotechnology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Lin Zhu
- College of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Dongmei Ma
- College of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Fengju Zhang
- College of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Zhengyun Cai
- Department of Life and Food Science, Ningxia University, Yinchuan 750021, China
| | - Haibo Bai
- Agricultural Biotechnology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Jian Hui
- Agricultural Biotechnology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Shuhua Li
- Agricultural Biotechnology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Xing Xu
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
| | - Ming Li
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| |
Collapse
|
4
|
Friis G, Smith EG, Lovelock CE, Ortega A, Marshell A, Duarte CM, Burt JA. Rapid diversification of grey mangroves (Avicennia marina) driven by geographic isolation and extreme environmental conditions in the Arabian Peninsula. Mol Ecol 2024; 33:e17260. [PMID: 38197286 DOI: 10.1111/mec.17260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 11/13/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Biological systems occurring in ecologically heterogeneous and spatially discontinuous habitats provide an ideal opportunity to investigate the relative roles of neutral and selective factors in driving lineage diversification. The grey mangroves (Avicennia marina) of Arabia occur at the northern edge of the species' range and are subject to variable, often extreme, environmental conditions, as well as historic large fluctuations in habitat availability and connectivity resulting from Quaternary glacial cycles. Here, we analyse fully sequenced genomes sampled from 19 locations across the Red Sea, the Arabian Sea and the Persian/Arabian Gulf (PAG) to reconstruct the evolutionary history of the species in the region and to identify adaptive mechanisms of lineage diversification. Population structure and phylogenetic analyses revealed marked genetic structure correlating with geographic distance and highly supported clades among and within the seas surrounding the Arabian Peninsula. Demographic modelling showed times of divergence consistent with recent periods of geographic isolation and low marine connectivity during glaciations, suggesting the presence of (cryptic) glacial refugia in the Red Sea and the PAG. Significant migration was detected within the Red Sea and the PAG, and across the Strait of Hormuz to the Arabian Sea, suggesting gene flow upon secondary contact among populations. Genetic-environment association analyses revealed high levels of adaptive divergence and detected signs of multi-loci local adaptation driven by temperature extremes and hypersalinity. These results support a process of rapid diversification resulting from the combined effects of historical factors and ecological selection and reveal mangrove peripheral environments as relevant drivers of lineage diversity.
Collapse
Affiliation(s)
- Guillermo Friis
- Center for Genomics and Systems Biology (CGSB) and Mubadala ACCESS Center, New York University - Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Edward G Smith
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Catherine E Lovelock
- School of Environment, The University of Queensland, St Lucia, Queensland, Australia
| | - Alejandra Ortega
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alyssa Marshell
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - John A Burt
- Center for Genomics and Systems Biology (CGSB) and Mubadala ACCESS Center, New York University - Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Darwish H, Al-Osaimi GS, Al Kashgry NAT, Sonbol H, Alayafi AAM, Alabdallah NM, Al-Humaid A, Al-Harbi NA, Al-Qahtani SM, Abbas ZK, Darwish DBE, Ibrahim MFM, Noureldeen A. Evaluating the genotoxicity of salinity stress and secondary products gene manipulation in lime, Citrus aurantifolia, plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1211595. [PMID: 37502705 PMCID: PMC10369181 DOI: 10.3389/fpls.2023.1211595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
Salinity is a significant abiotic stress that has a profound effect on growth, the content of secondary products, and the genotoxicity of cells. Lime, Citrus aurantifolia, is a popular plant belonging to the family Rutaceae. The interest in cultivating this plant is due to the importance of its volatile oil, which is included in many pharmaceutical industries, but C. aurantifolia plants are affected by the NaCl salinity levels. In the present study, a comet assay test has been applied to evaluate the genotoxic impact of salinity at 0, 50, 100, and 200 mM of NaCl on C. aurantifolia tissue-cultured plants. Furthermore, terpene gene expression was investigated using a semi-quantitative real-time polymerase chain reaction. Results from the two analyses revealed that 200 mM of NaCl stress resulted in high levels of severe damage to the C. aurantifolia plants' DNA tail 21.8%, tail length 6.56 µm, and tail moment 3.19 Unit. The relative highest expression of RtHK and TAT genes was 2.08, and 1.693, respectively, when plants were exposed to 200 mM of NaCl, whereas pv4CL2RT expressed 1.50 in plants subjected to 100 mM of NaCl. The accumulation of transcripts for the RTMYB was 0.951 when plants were treated with NaCl at 50 mM, and RtGPPS gene was significantly decreased to 0.446 during saline exposure at 100 mM. We conclude that the comet assay test offers an appropriate tool to detect DNA damage as well as RtHK, TAT, and pv4CL2RT genes having post-transcriptional regulation in C. aurantifolia plant cells under salinity stress. Future studies are needed to assess the application of gene expression and comet assay technologies using another set of genes that show vulnerability to different stresses on lime and other plants.
Collapse
Affiliation(s)
- Hadeer Darwish
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
- Department of Medicinal and Aromatic Plants, Horticulture Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ghaida S. Al-Osaimi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | | | - Hana Sonbol
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Aisha A. M. Alayafi
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdulrahman Al-Humaid
- Plant Production and Protection Department, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Doaa Bahaa Eldin Darwish
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ahmed Noureldeen
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- Department of Agricultural Zoology, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Zhang Y, Lang D, Zhang W, Zhang X. Bacillus cereus Enhanced Medicinal Ingredient Biosynthesis in Glycyrrhiza uralensis Fisch. Under Different Conditions Based on the Transcriptome and Polymerase Chain Reaction Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:858000. [PMID: 35720602 PMCID: PMC9201524 DOI: 10.3389/fpls.2022.858000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to evaluate the effect of Bacillus cereus (B. cereus) on the seedling growth and accumulation of medicinal ingredients of Glycyrrhiza uralensis Fisch. (G. uralensis) under control and salt stress conditions. Our results revealed the different effects of B. cereus on the seedling growth and accumulation of medicinal ingredients particularly in different conditions based on the transcriptome and polymerase chain reaction (PCR) analysis. Under the control condition, B. cereus significantly increased the expression level of the β-AS, SQS, CHS, LUS, UGAT, CYP72A154, and CYP88D6 genes and liquiritigenin content. Under salt stress, B. cereus significantly increased root length and lateral root number of G. uralensis seedlings, the expression level of HMGR, β-AS, CHS, LUS, UGAT, CYP72A154, CYP88D6, and SE genes, and the contents of glycyrrhizic acid and glycyrrhetinic acid. Notably, the effect of B. cereus on the seedling growth and the medicinal ingredient biosynthesis was different under control and salt stress conditions. Specifically, the effect of B. cereus on the seedling growth under salt stress was greater than that under the control condition. Moreover, B. cereus increased liquiritigenin content under the control condition, which is closely related to flavone and flavonol biosynthesis, while it increased the contents of glycyrrhizic acid and glycyrrhetinic acid under salt stress, which is closely related to phenylpropanoid biosynthesis, and the MVA pathway is also involved. All in all, endophytes B. cereus could be used as a sustainable tool to develop effective bioinoculants to enhance the contents of medicinal ingredients in G. uralensis.
Collapse
Affiliation(s)
- Yu Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
- Shaanxi Academy of Traditional Chinese Medicine, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
| | - Duoyong Lang
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, China
| | - Wenjin Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xinhui Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, China
| |
Collapse
|
7
|
Bano N, Fakhrah S, Mohanty CS, Bag SK. Transcriptome Meta-Analysis Associated Targeting Hub Genes and Pathways of Drought and Salt Stress Responses in Cotton ( Gossypium hirsutum): A Network Biology Approach. FRONTIERS IN PLANT SCIENCE 2022; 13:818472. [PMID: 35548277 PMCID: PMC9083274 DOI: 10.3389/fpls.2022.818472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/21/2022] [Indexed: 06/12/2023]
Abstract
Abiotic stress tolerance is an intricate feature controlled through several genes and networks in the plant system. In abiotic stress, salt, and drought are well known to limit cotton productivity. Transcriptomics meta-analysis has arisen as a robust method to unravel the stress-responsive molecular network in crops. In order to understand drought and salt stress tolerance mechanisms, a meta-analysis of transcriptome studies is crucial. To confront these issues, here, we have given details of genes and networks associated with significant differential expression in response to salt and drought stress. The key regulatory hub genes of drought and salt stress conditions have notable associations with functional drought and salt stress-responsive (DSSR) genes. In the network study, nodulation signaling pathways 2 (NSP2), Dehydration-responsive element1 D (DRE1D), ethylene response factor (ERF61), cycling DOF factor 1 (CDF1), and tubby like protein 3 (TLP3) genes in drought and tubby like protein 1 (TLP1), thaumatin-like proteins (TLP), ethylene-responsive transcription factor ERF109 (EF109), ETS-Related transcription Factor (ELF4), and Arabidopsis thaliana homeodomain leucine-zipper gene (ATHB7) genes in salt showed the significant putative functions and pathways related to providing tolerance against drought and salt stress conditions along with the significant expression values. These outcomes provide potential candidate genes for further in-depth functional studies in cotton, which could be useful for the selection of an improved genotype of Gossypium hirsutum against drought and salt stress conditions.
Collapse
Affiliation(s)
- Nasreen Bano
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shafquat Fakhrah
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, India
| | - Chandra Sekhar Mohanty
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sumit Kumar Bag
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Gupta S, Singh R, Sharma A, Rather GA, Lattoo SK, Dhar MK. Comparative transcriptome mining for terpenoid biosynthetic pathway genes in wild and cultivated species of Plantago. PROTOPLASMA 2022; 259:439-452. [PMID: 34191123 DOI: 10.1007/s00709-021-01663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Plantagos are important economical and medicinal plants that possess several bioactive secondary metabolites, such as phenolics, iridoids, triterpenes, and alkaloids. Triterpenoids are the ubiquitous and dynamic secondary metabolites that are deployed by plants for chemical interactions and protection under biotic/abiotic stress. Plantago ovata, a cultivated species, is the source of psyllium, while Plantago major, a wild species, has significant therapeutic potential. Wild species are considered more tolerant to stressful conditions in comparison to their cultivated allies. In view of this, the present study aimed to decipher the terpenoid biosynthetic pathway operative in P. ovata and P. major using a comparative transcriptomics approach. Majority of terpenoid biosynthetic genes were observed as upregulated in P. major including rate limiting genes of MVA (HMGR) and MEP (DXR) pathways and genes (α-AS, BAS, SM, and CYP716) involved in ursolic acid biosynthesis, an important triterpenoid prevalent in Plantago species. The HPLC output further confirmed the higher concentration of ursolic acid in P. major as compared to P. ovata leaf samples, respectively. In addition to terpenoid biosynthesis, KEGG annotation revealed the involvement of differentially expressed unigenes in several metabolic pathways, aminoacyl-tRNA biosynthesis, biosynthesis of antibiotics, and biosynthesis of secondary metabolites. MYB was found as the most abundant transcription factor family in Plantago transcriptome. We have been able to generate valuable information which can help in improving terpenoid production in Plantago. Additionally, the present study has laid a strong foundation for deciphering other important metabolic pathways in Plantago.
Collapse
Affiliation(s)
- Suruchi Gupta
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
| | - Ravail Singh
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
| | - Arti Sharma
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
| | - Gulzar A Rather
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
| | - Surrinder K Lattoo
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
| | - Manoj K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India.
| |
Collapse
|
9
|
Dang H, Zhang T, Li Y, Li G, Zhuang L, Pu X. Population Evolution, Genetic Diversity and Structure of the Medicinal Legume, Glycyrrhiza uralensis and the Effects of Geographical Distribution on Leaves Nutrient Elements and Photosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 12:708709. [PMID: 35069610 PMCID: PMC8782460 DOI: 10.3389/fpls.2021.708709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/13/2021] [Indexed: 05/27/2023]
Abstract
Glycyrrhiza uralensis is a valuable medicinal legume, which occurs widely in arid and semi-arid regions. G. uralensis demand has risen steeply due to its high medical and commercial value. Interpret genome-wide information can stimulate the G. uralensis development as far as its increased bioactive compound levels, and plant yield are concerned. In this study, leaf nutrient concentration and photosynthetic chlorophyll index of G. uralensis were evaluated to determine the G. uralensis growth physiology in three habitats. We observed that G. uralensis nutrient levels and photosynthesis differed significantly in three regions (p < 0.05). Whole-genome re-sequencing of the sixty G. uralensis populations samples from different habitats was performed using an Illumina HiSeq sequencing platform to elucidate the distribution patterns, population evolution, and genetic diversity of G. uralensis. 150.06 Gb high-quality clean data was obtained after strict filtering. The 895237686 reads were mapped against the reference genome, with an average 89.7% mapping rate and 87.02% average sample coverage rate. A total of 6985987 SNPs were identified, and 117970 high-quality SNPs were obtained after filtering, which were subjected to subsequent analysis. Principal component analysis (PCA) based on interindividual SNPs and phylogenetic analysis based on interindividual SNPs showed that the G. uralensis samples could be categorized into central, southern, and eastern populations, which reflected strong genetic differentiation due to long periods of geographic isolation. In this study, a total of 131 candidate regions were screened, and 145 candidate genes (such as Glyur001802s00036258, Glyur003702s00044485, Glyur001802s00036257, Glyur007364s00047495, Glyur000028s00003476, and Glyur000398s00034457) were identified by selective clearance analysis based on Fst and θπ values. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed significant enrichment of 110 GO terms including carbohydrate metabolic process, carbohydrate biosynthetic process, carbohydrate derivative biosynthetic process, and glucose catabolic process (p < 0.05). Alpha-linolenic acid metabolism, biosynthesis of unsaturated fatty acids, and fatty acid degradation pathways were significantly enriched (p < 0.05). This study provides information on the genetic diversity, genetic structure, and population adaptability of the medicinal legumes, G. uralensis. The data obtained in this study provide valuable information for plant development and future optimization of breeding programs for functional genes.
Collapse
Affiliation(s)
- Hanli Dang
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Tao Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Yuanyuan Li
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Guifang Li
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Li Zhuang
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Xiaozhen Pu
- College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
10
|
Zhao G, Wang M, Luo C, Li J, Gong H, Zheng X, Liu X, Luo J, Wu H. Metabolome and Transcriptome Analyses of Cucurbitacin Biosynthesis in Luffa ( Luffa acutangula). FRONTIERS IN PLANT SCIENCE 2022; 13:886870. [PMID: 35747880 PMCID: PMC9209774 DOI: 10.3389/fpls.2022.886870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/13/2022] [Indexed: 05/17/2023]
Abstract
Cucurbitacins are extremely bitter compounds mainly present in Cucurbitaceae, where Luffa belongs. However, there is no comprehensive analysis of cucurbitacin biosynthesis in Luffa fruit. Therefore, this study analyzed bitter (WM709) and non-bitter (S1174) genotypes of Luffa to reveal the underlying mechanism of cucurbitacin biosynthesis by integrating metabolome and transcriptome analyses. A total of 422 metabolites were detected, including vitamins, essential amino acids, antioxidants, and antitumor substances. Of these, 131 metabolites showed significant differences between bitter (WM709) and non-bitter (S1174) Luffa fruits. The levels of isocucurbitacin B, cucurbitacin D, 23,24-dihydro cucurbitacin E, cucurbitacin F were significantly higher in bitter than in non-bitter Luffa. Transcriptome analysis showed that Bi, cytochromes P450s (CYP450s), and acyltransferase (ACT) of the cucurbitacin biosynthesis pathway, were significantly up-regulated. Moreover, drought stress and abscisic acid (ABA) activated genes of the cucurbitacin biosynthesis pathway. Furthermore, dual-luciferase reporter and yeast one-hybrid assays demonstrated that ABA-response element binding factor 1 (AREB1) binds to the Bi promoter to activate Bi expression. Comparative analysis of the Luffa and cucumber genomes showed that Bi, CYP450s, and ACT are located in the conserved syntenic loci, and formed a cucurbitacin biosynthesis cluster. This study provides important insights into major genes and metabolites of the cucurbitacin biosynthetic pathway, deepening the understanding of regulatory mechanisms of cucurbitacin biosynthesis in Luffa.
Collapse
Affiliation(s)
- Gangjun Zhao
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Meng Wang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Caixia Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Junxing Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hao Gong
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoming Zheng
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoxi Liu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianning Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Jianning Luo,
| | - Haibin Wu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Haibin Wu,
| |
Collapse
|
11
|
Dang H, Zhang T, Wang Z, Li G, Zhao W, Lv X, Zhuang L. Succession of endophytic fungi and arbuscular mycorrhizal fungi associated with the growth of plant and their correlation with secondary metabolites in the roots of plants. BMC PLANT BIOLOGY 2021; 21:165. [PMID: 33820543 PMCID: PMC8022407 DOI: 10.1186/s12870-021-02942-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/23/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND To decipher the root and microbial interaction, secondary metabolite accumulation in roots and the microbial community's succession model during the plant's growth period demands an in-depth investigation. However, till now, no comprehensive study is available on the succession of endophytic fungi and arbuscular mycorrhizal fungi (AMF) with roots of medicinal licorice plants and the effects of endophytic fungi and AMF on the secondary metabolite accumulation in licorice plant's root. RESULTS In the current study, interaction between root and microbes in 1-3 years old medicinal licorice plant's root and rhizospheric soil was investigated. Secondary metabolites content in licorice root was determined using high-performance liquid chromatography (HPLC). The composition and diversity of endophytic and AMF in the root and soil were deciphered using high-throughput sequencing technology. During the plant's growth period, as compared to AMF, time and species significantly affected the diversity and richness of endophytic fungi, such as Ascomycota, Basidiomycota, Fusarium, Cladosporium, Sarocladium. The growth period also influenced the AMF diversity, evident by the significant increase in the relative abundance of Glomus and the significant decrease in the relative abundance of Diversispora. It indicated a different succession pattern between the endophytic fungal and AMF communities. Meanwhile, distance-based redundancy analysis and Mantel tests revealed root's water content and secondary metabolites (glycyrrhizic acid, liquiritin, and total flavonoids), which conferred endophytic fungi and AMF diversity. Additionally, plant growth significantly altered soil's physicochemical properties, which influenced the distribution of endophytic fungal and AMF communities. CONCLUSIONS This study indicated a different succession pattern between the endophytic fungal and AMF communities. During the plant's growth period, the contents of three secondary metabolites in roots increased per year, which contributed to the overall differences in composition and distribution of endophytic fungal and AMF communities. The endophytic fungal communities were more sensitive to secondary metabolites than AMF communities. The current study provides novel insights into the interaction between rhizospheric microbes and root exudates.
Collapse
Affiliation(s)
- Hanli Dang
- College of life Sciences, Shihezi University, Shihezi City, 832003, Xinjiang, China
| | - Tao Zhang
- College of life Sciences, Shihezi University, Shihezi City, 832003, Xinjiang, China
| | - Zhongke Wang
- College of life Sciences, Shihezi University, Shihezi City, 832003, Xinjiang, China
| | - Guifang Li
- College of life Sciences, Shihezi University, Shihezi City, 832003, Xinjiang, China
| | - Wenqin Zhao
- College of life Sciences, Shihezi University, Shihezi City, 832003, Xinjiang, China
| | - Xinhua Lv
- College of life Sciences, Shihezi University, Shihezi City, 832003, Xinjiang, China
| | - Li Zhuang
- College of life Sciences, Shihezi University, Shihezi City, 832003, Xinjiang, China.
| |
Collapse
|
12
|
Dang H, Zhang T, Li G, Mu Y, Lv X, Wang Z, Zhuang L. Root-associated endophytic bacterial community composition and structure of three medicinal licorices and their changes with the growing year. BMC Microbiol 2020; 20:291. [PMID: 32957914 PMCID: PMC7507641 DOI: 10.1186/s12866-020-01977-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The dried roots and rhizomes of medicinal licorices are widely used worldwide as a traditional medicinal herb, which are mainly attributed to a variety of bioactive compounds that can be extracted from licorice root. Endophytes and plants form a symbiotic relationship, which is an important source of host secondary metabolites. RESULTS In this study, we used high-throughput sequencing technology and high-performance liquid chromatography to explore the composition and structure of the endophytic bacterial community and the content of bioactive compounds (glycyrrhizic acid, liquiritin and total flavonoids) in different species of medicinal licorices (Glycyrrhiza uralensis, Glycyrrhiza glabra, and Glycyrrhiza inflata) and in different planting years (1-3 years). Our results showed that the contents of the bioactive compounds in the roots of medicinal licorices were not affected by the species, but were significantly affected by the main effect growing year (1-3) (P < 0.05), and with a trend of stable increase in the contents observed with each growing year. In 27 samples, a total of 1,979,531 effective sequences were obtained after quality control, and 2432 effective operational taxonomic units (OTUs) were obtained at 97% identity. The phylum Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes, and the genera unified-Rhizobiaceae, Pseudomonas, Novosphingobium, and Pantoea were significantly dominant in the 27 samples. Distance-based redundancy analysis (db-RDA) showed that the content of total flavonoids explained the differences in composition and distribution of endophytic bacterial communities in roots of cultivated medicinal liquorices to the greatest extent. Total soil salt was the most important factor that significantly affected the endophytic bacterial community in soil factors, followed by ammonium nitrogen and nitrate nitrogen. Among the leaf nutrition factors, leaf water content had the most significant effect on the endophytic bacterial community, followed by total phosphorus and total potassium. CONCLUSIONS This study not only provides information on the composition and distribution of endophytic bacteria in the roots of medicinal licorices, but also reveals the influence of abiotic factors on the community of endophytic bacteria and bioactive compounds, which provides a reference for improving the quality of licorice.
Collapse
Affiliation(s)
- Hanli Dang
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Tao Zhang
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Guifang Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Yudi Mu
- 1300 UNIVERSITY Ave, Madison, WI, 53706, USA
| | - Xinhua Lv
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Zhongke Wang
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Li Zhuang
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
13
|
Wang H, Song W, Tao W, Zhang J, Zhang X, Zhao J, Yong J, Gao X, Guo L. Identification wild and cultivated licorice by multidimensional analysis. Food Chem 2020; 339:128111. [PMID: 33152888 DOI: 10.1016/j.foodchem.2020.128111] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/18/2020] [Accepted: 09/13/2020] [Indexed: 12/26/2022]
Abstract
Licorice is known as a botanical source in medicine and a sweetening agent in food products. Commercial licorice is from the source of wild and cultivated G. uralensis. It was recognized that the material basis of wild and cultivated licorice is different. This study systematically investigated the difference between them by multidimensional analysis technology. The results showed that the content of starch grain, total dietary fibre (TDF), and 11 secondary metabolite components was significantly different in wild and cultivated licorice. principal component analysis (PCA) and orthogonal partial least square (OPLS-DA) analyses showed that the wild and cultivated licorice samples could be clearly separated based on the acquired data of microscopic, macromolecular substance and secondary metabolite analysis. The main markers were starch grain, isoliquiritin apioside, liquirtin apioside and TDF. Additionally, NIR spectroscpy combined with PLS-DA has demonstrated a suitable, fast and nondestructive methodology for authentication of wild and cultivated licorice.
Collapse
Affiliation(s)
- Hanqing Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China; Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Wen Song
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Weiwei Tao
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Juanhong Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Xia Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Jianjun Zhao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Jingjiao Yong
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Xiaojuan Gao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing 100700, PR China
| |
Collapse
|
14
|
Behdad A, Mohsenzadeh S, Azizi M, Moshtaghi N. Salinity effects on physiological and phytochemical characteristics and gene expression of two Glycyrrhiza glabra L. populations. PHYTOCHEMISTRY 2020; 171:112236. [PMID: 31923723 DOI: 10.1016/j.phytochem.2019.112236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/01/2019] [Accepted: 12/19/2019] [Indexed: 05/28/2023]
Abstract
Glycyrrhiza glabra (licorice) is a medicinal plant with valuable specialised metabolites such as triterpene sweetener glycyrrhizin. Salinity stress is the main environmental stress limiting plant growth and development. The effects of six levels of NaCl (0, 100, 200, 400, 600, and 800 mM) on growth, osmolyte content, oxidative stress markers, antioxidant enzyme activities, K+/Na+ ratio, glycyrrhizin content, and gene expression of glycyrrhizin biosynthesis (bAS, CYP88D6, and CYP72A154) were investigated in licorice rhizomes of two populations. The results showed that the salt stress progressively reduced the growth parameters and increased the proline concentrations in the rhizomes. K+/Na+ ratio showed a significant decrease under salinity as compared to the controls. Salt stress resulted in oxidative stress on the rhizomes, as indicated by increased lipid peroxidation and hydrogen peroxide concentrations and elevated the activities of antioxidant enzymes (i.e., ascorbate peroxidase and superoxide dismutase). The glycyrrhizin content increased only under 100 and 200 mM NaCl treatments. The same trend was observed in the expression of bAS, CYP88D6, and CYP72A154 genes in Fars population. Fars population was found to have more glycyrrhizin content than Khorasan population. But, growth, glycyrrhizin content, and biosynthesis genes of glycyrrhizin showed more reduction in Khorasan population as compared to those of Fars population. The results indicate that the application of 100 mM NaCl up-regulated the expression of key genes involved in the biosynthesis of triterpenoid saponins and directly enhanced the production of glycyrrhizin. Accordingly, G. glabra can be introduced as a halophyte plant.
Collapse
Affiliation(s)
- Assieh Behdad
- Biology Department, Shiraz University, Shiraz, 71454, Iran.
| | | | - Majid Azizi
- Department of Horticultural Science, Ferdowsi University of Mashhad, Iran.
| | - Nasrin Moshtaghi
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran.
| |
Collapse
|