1
|
Hale B, Watts C, Conatser M, Brown E, Wijeratne AJ. Fine-scale characterization of the soybean rhizosphere microbiome via synthetic long reads and avidity sequencing. ENVIRONMENTAL MICROBIOME 2024; 19:46. [PMID: 38997772 PMCID: PMC11241880 DOI: 10.1186/s40793-024-00590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND The rhizosphere microbiome displays structural and functional dynamism driven by plant, microbial, and environmental factors. While such plasticity is a well-evidenced determinant of host health, individual and community-level microbial activity within the rhizosphere remain poorly understood, due in part to the insufficient taxonomic resolution achieved through traditional marker gene amplicon sequencing. This limitation necessitates more advanced approaches (e.g., long-read sequencing) to derive ecological inferences with practical application. To this end, the present study coupled synthetic long-read technology with avidity sequencing to investigate eukaryotic and prokaryotic microbiome dynamics within the soybean (Glycine max) rhizosphere under field conditions. RESULTS Synthetic long-read sequencing permitted de novo reconstruction of the entire 18S-ITS1-ITS2 region of the eukaryotic rRNA operon as well as all nine hypervariable regions of the 16S rRNA gene. All full-length, mapped eukaryotic amplicon sequence variants displayed genus-level classification, and 44.77% achieved species-level classification. The resultant eukaryotic microbiome encompassed five kingdoms (19 genera) of protists in addition to fungi - a depth unattainable with conventional short-read methods. In the prokaryotic fraction, every full-length, mapped amplicon sequence variant was resolved at the species level, and 23.13% at the strain level. Thirteen species of Bradyrhizobium were thereby distinguished in the prokaryotic microbiome, with strain-level identification of the two Bradyrhizobium species most reported to nodulate soybean. Moreover, the applied methodology delineated structural and compositional dynamism in response to experimental parameters (i.e., growth stage, cultivar, and biostimulant application), unveiled a saprotroph-rich core microbiome, provided empirical evidence for host selection of mutualistic taxa, and identified key microbial co-occurrence network members likely associated with edaphic and agronomic properties. CONCLUSIONS This study is the first to combine synthetic long-read technology and avidity sequencing to profile both eukaryotic and prokaryotic fractions of a plant-associated microbiome. Findings herein provide an unparalleled taxonomic resolution of the soybean rhizosphere microbiota and represent significant biological and technological advancements in crop microbiome research.
Collapse
Affiliation(s)
- Brett Hale
- AgriGro Incorporated, Doniphan, MO, USA
- Arkansas Biosciences Institute, Arkansas State University, State University, AR, USA
- College of Science and Mathematics, Arkansas State University, State University, AR, USA
| | - Caitlin Watts
- College of Agriculture, Arkansas State University, State University, AR, USA
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Matthew Conatser
- College of Agriculture, Arkansas State University, State University, AR, USA
| | - Edward Brown
- College of Agriculture, Arkansas State University, State University, AR, USA
| | - Asela J Wijeratne
- Arkansas Biosciences Institute, Arkansas State University, State University, AR, USA.
- College of Science and Mathematics, Arkansas State University, State University, AR, USA.
| |
Collapse
|
2
|
Hiltunen Thorén M, Onuț-Brännström I, Alfjorden A, Pecková H, Swords F, Hooper C, Holzer AS, Bass D, Burki F. Comparative genomics of Ascetosporea gives new insight into the evolutionary basis for animal parasitism in Rhizaria. BMC Biol 2024; 22:103. [PMID: 38702750 PMCID: PMC11069148 DOI: 10.1186/s12915-024-01898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Ascetosporea (Endomyxa, Rhizaria) is a group of unicellular parasites infecting aquatic invertebrates. They are increasingly being recognized as widespread and important in marine environments, causing large annual losses in invertebrate aquaculture. Despite their importance, little molecular data of Ascetosporea exist, with only two genome assemblies published to date. Accordingly, the evolutionary origin of these parasites is unclear, including their phylogenetic position and the genomic adaptations that accompanied the transition from a free-living lifestyle to parasitism. Here, we sequenced and assembled three new ascetosporean genomes, as well as the genome of a closely related amphizoic species, to investigate the phylogeny, origin, and genomic adaptations to parasitism in Ascetosporea. RESULTS Using a phylogenomic approach, we confirm the monophyly of Ascetosporea and show that Paramyxida group with Mikrocytida, with Haplosporida being sister to both groups. We report that the genomes of these parasites are relatively small (12-36 Mb) and gene-sparse (~ 2300-5200 genes), while containing surprisingly high amounts of non-coding sequence (~ 70-90% of the genomes). Performing gene-tree aware ancestral reconstruction of gene families, we demonstrate extensive gene losses at the origin of parasitism in Ascetosporea, primarily of metabolic functions, and little gene gain except on terminal branches. Finally, we highlight some functional gene classes that have undergone expansions during evolution of the group. CONCLUSIONS We present important new genomic information from a lineage of enigmatic but important parasites of invertebrates and illuminate some of the genomic innovations accompanying the evolutionary transition to parasitism in this lineage. Our results and data provide a genetic basis for the development of control measures against these parasites.
Collapse
Affiliation(s)
- Markus Hiltunen Thorén
- Department of Organismal Biology, Uppsala University, Norbyv. 18D, Uppsala, SE-752 36, Sweden.
- Present Address: Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius V. 20 A, Stockholm, SE-114 18, Sweden.
- Present Address: The Royal Swedish Academy of Sciences, Stockholm, SE-114 18, Sweden.
| | - Ioana Onuț-Brännström
- Present Address: Department of Ecology and Genetics, Uppsala University, Norbyv. 18D, Uppsala, SE-752 36, Sweden
- Present Address: Natural History Museum, Oslo University, Oslo, 0562, Norway
| | - Anders Alfjorden
- Department of Organismal Biology, Uppsala University, Norbyv. 18D, Uppsala, SE-752 36, Sweden
| | - Hana Pecková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, 370 05, Czech Republic
| | - Fiona Swords
- Marine Institute, Rinville, Oranmore, H91R673, Ireland
| | - Chantelle Hooper
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK
- Sustainable Aquaculture Futures, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, 370 05, Czech Republic
- Division of Fish Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - David Bass
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK
- Sustainable Aquaculture Futures, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Natural History Museum (NHM), Science, London, SW7 5BD, UK
| | - Fabien Burki
- Department of Organismal Biology, Uppsala University, Norbyv. 18D, Uppsala, SE-752 36, Sweden.
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Shiratori T, Ishida KI. Rhabdamoeba marina is a heterotrophic relative of chlorarachnid algae. J Eukaryot Microbiol 2024; 71:e13010. [PMID: 37941507 DOI: 10.1111/jeu.13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Rhabdamoeba marina is a unique and poorly reported amoeba with an uncertain phylogenetic position. We successfully cultured R. marina from coastal seawater in Japan and performed a molecular phylogenetic analysis using the small subunit ribosomal RNA (SSU rRNA) gene sequence. Our phylogenetic analysis showed that R. marina branched as a basal lineage of Chlorarachnea, a group of marine photosynthetic algae belonging to the phylum Cercozoa within the supergroup Rhizaria. By comparing the ecological and morphological characteristics of R. marina with those of photosynthetic chlorarachneans and other cercozoans, we gained insight into the evolution and acquisition of plastids in Chlorarachnida.
Collapse
Affiliation(s)
- Takashi Shiratori
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ken-Ichiro Ishida
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
4
|
Bernhard JM, Fisher LA, Murphy Q, Sen L, Yeh HD, Louyakis A, Gomaa F, Reilly M, Batta-Lona PG, Bucklin A, Le Roux V, Visscher PT. Transition from stromatolite to thrombolite fabric: potential role for reticulopodial protists in lake microbialites of a Proterozoic ecosystem analog. Front Microbiol 2023; 14:1210781. [PMID: 37965561 PMCID: PMC10642914 DOI: 10.3389/fmicb.2023.1210781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
Prior observations suggest that foraminiferan protists use their reticulopodia (anastomosing pseudopodia) to alter sediment fabric by disrupting laminations of subtidal marine stromatolites, erasing the layered structures in an experimental setting. Because microbialites and foraminifera are found in non-marine settings, we hypothesized that foraminifera living in lakes could also disrupt layered microbialite fabric. With this aim and using a variety of multidisciplinary approaches, we conducted field surveys and an experiment on microbialites from Green Lake (GL; Fayetteville, New York State, United States), which has been studied as a Proterozoic ecosystem analog. The lake is meromictic and alkaline, receiving calcium sulfate-rich water in the monimolimnion; it supports a well-developed carbonate platform that provides access to living and relict microbialites. The living microbialites grow from early spring to autumn, forming a laminated mat at their surface (top ~5 mm), but a clotted or massive structure exists at depth (> ~ 1 cm). We observed a morphotype of "naked" foraminiferan-like protist in samples from GL microbialites and sediments; thus, considered the possibility of freshwater foraminiferan impact on microbialite fabric. Results of an experiment that seeded the cultured freshwater foraminifer Haplomyxa saranae onto the GL microbialite surface indicates via micro-CT scanning and anisotropy analysis that the introduced foraminifer impacted uppermost microbialite layering (n = 3 cores); those cores with an added inhibitor lacked changes in anisotropy for two of those three cores. Thus, it remains plausible that the much smaller, relatively common, native free-form reticulate protist, which we identified as Chlamydomyxa labyrinthuloides, can disrupt microbialite fabrics on sub-millimeter scales. Our observations do not exclude contributions of other possible causal factors.
Collapse
Affiliation(s)
- Joan M. Bernhard
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Luke A. Fisher
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| | - Quinne Murphy
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| | - Leena Sen
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, United States
| | - Heidi D. Yeh
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Artemis Louyakis
- Department of Marine Sciences, Northeastern University, Boston, MA, United States
| | - Fatma Gomaa
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Megan Reilly
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
- Department of Marine Sciences, Northeastern University, Boston, MA, United States
| | - Paola G. Batta-Lona
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| | - Ann Bucklin
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| | - Veronique Le Roux
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Pieter T. Visscher
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| |
Collapse
|
5
|
Shshkin-Skar Y. Reschetnjakaera nom. n. (gen.) pro Schizodiscus Dogiel 1952 non Clarke 1888, nec Kittl 1891, nec Kishinouye 1902 (Polycystina, Birifrangentia, Rhizaria), with the six new combinations and notes on the name Birifrangentia. Zootaxa 2023; 5351:497-500. [PMID: 38221470 DOI: 10.11646/zootaxa.5351.4.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Yegor Shshkin-Skar
- Independent researcher; Hrukr 1; IS-203 Kpavogur; Hfuborgarsvi; Iceland.
| |
Collapse
|
6
|
Garvetto A, Murúa P, Kirchmair M, Salvenmoser W, Hittorf M, Ciaghi S, Harikrishnan SL, Gachon CMM, Burns JA, Neuhauser S. Phagocytosis underpins the biotrophic lifestyle of intracellular parasites in the class Phytomyxea (Rhizaria). THE NEW PHYTOLOGIST 2023; 238:2130-2143. [PMID: 36810975 PMCID: PMC10953367 DOI: 10.1111/nph.18828] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/06/2023] [Indexed: 05/04/2023]
Abstract
Phytomyxea are intracellular biotrophic parasites infecting plants and stramenopiles, including the agriculturally impactful Plasmodiophora brassicae and the brown seaweed pathogen Maullinia ectocarpii. They belong to the clade Rhizaria, where phagotrophy is the main mode of nutrition. Phagocytosis is a complex trait of eukaryotes, well documented for free-living unicellular eukaryotes and specific cellular types of animals. Data on phagocytosis in intracellular, biotrophic parasites are scant. Phagocytosis, where parts of the host cell are consumed at once, is seemingly at odds with intracellular biotrophy. Here we provide evidence that phagotrophy is part of the nutritional strategy of Phytomyxea, using morphological and genetic data (including a novel transcriptome of M. ectocarpii). We document intracellular phagocytosis in P. brassicae and M. ectocarpii by transmission electron microscopy and fluorescent in situ hybridization. Our investigations confirm molecular signatures of phagocytosis in Phytomyxea and hint at a small specialized subset of genes used for intracellular phagocytosis. Microscopic evidence confirms the existence of intracellular phagocytosis, which in Phytomyxea targets primarily host organelles. Phagocytosis seems to coexist with the manipulation of host physiology typical of biotrophic interactions. Our findings resolve long debated questions on the feeding behaviour of Phytomyxea, suggesting an unrecognized role for phagocytosis in biotrophic interactions.
Collapse
Affiliation(s)
- Andrea Garvetto
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| | - Pedro Murúa
- Laboratorio de Macroalgas, Instituto de AcuiculturaUniversidad Austral de ChilePuerto Montt5480000Chile
| | - Martin Kirchmair
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| | - Willibald Salvenmoser
- Institute of ZoologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| | - Michaela Hittorf
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| | - Stefan Ciaghi
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| | - Srilakshmy L. Harikrishnan
- Centre for Plant Systems BiologyVIBZwijnaarde 71Ghent9052Belgium
- Department of Plant Biotechnology and BioinformaticsGhent UniversityZwijnaarde 71Ghent9052Belgium
| | - Claire M. M. Gachon
- Muséum National d'Histoire Naturelle, UMR 7245, CNRS CP 2657 rue Cuvier75005ParisFrance
- Scottish Association for Marine ScienceScottish Marine InstituteDunbegObanPA37 1QAUK
| | - John A. Burns
- Bigelow Laboratory for Ocean Sciences60 Bigelow Dr.East BoothbayME04544USA
| | - Sigrid Neuhauser
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| |
Collapse
|
7
|
The Status of Molecular Analyses of Isolates of Acanthamoeba Maintained by International Culture Collections. Microorganisms 2023; 11:microorganisms11020295. [PMID: 36838260 PMCID: PMC9961329 DOI: 10.3390/microorganisms11020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Acanthamoeba is among the most ubiquitous protistan groups in nature. Knowledge of the biological diversity of Acanthamoeba comes in part from the use of strains maintained by the major microbial culture collections, ATCC and CCAP. Standard strains are vital to ensure the comparability of research. The diversity of standard strains of Acanthamoeba in the culture collections is reviewed, emphasizing the extent of genotypic studies based on DNA sequencing of the small subunit ribosomal RNA from the nucleus (18S rRNA gene; Rns) or the mitochondria (16S-like rRNA gene; rns). Over 170 different strains have been maintained at some time by culture centers. DNA sequence information is available for more than 70% of these strains. Determination of the genotypic classification of standard strains within the genus indicates that frequencies of types within culture collections only roughly mirror that from clinical or environmental studies, with significant differences in the frequency of some genotypes. Culture collections include the type of isolate from almost all named species of Acanthamoeba, allowing an evaluation of the validity of species designations. Multiple species are found to share the same Sequence Type, while multiple Sequence Types have been identified for different strains that share the same species name. Issues of sequence reliability and the possibility that a small number of standard strains have been mislabeled when studied are also examined, leading to potential problems for comparative analyses. It is important that all species have reliable genotype designations. The culture collections should be encouraged to assist in completing the molecular inventory of standard strains, while workers in the Acanthamoeba research community should endeavor to ensure that strains representative of genotypes that are missing from the culture collection are provided to the culture centers for preservation.
Collapse
|
8
|
Situ J, Xi P, Lin L, Huang W, Song Y, Jiang Z, Kong G. Signal and regulatory mechanisms involved in spore development of Phytophthora and Peronophythora. Front Microbiol 2022; 13:984672. [PMID: 36160220 PMCID: PMC9500583 DOI: 10.3389/fmicb.2022.984672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Oomycetes cause hundreds of destructive plant diseases, threatening agricultural production and food security. These fungus-like eukaryotes show multiple sporulation pattern including the production of sporangium, zoospore, chlamydospore and oospore, which are critical for their survival, dispersal and infection on hosts. Recently, genomic and genetic technologies have greatly promoted the study of molecular mechanism of sporulation in the genus Phytophthora and Peronophythora. In this paper, we characterize the types of asexual and sexual spores and review latest progress of these two genera. We summarize the genes encoding G protein, mitogen-activated protein kinase (MAPK) cascade, transcription factors, RNA-binding protein, autophagy-related proteins and so on, which function in the processes of sporangium production and cleavage, zoospore behaviors and oospore formation. Meanwhile, various molecular, chemical and electrical stimuli in zoospore behaviors are also discussed. Finally, with the molecular mechanism of sporulation in Phytophthora and Peronophythora is gradually being revealed, we propose some thoughts for the further research and provide the alternative strategy for plant protection against phytopathogenic oomycetes.
Collapse
Affiliation(s)
- Junjian Situ
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Long Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Weixiong Huang
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yu Song
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- *Correspondence: Guanghui Kong,
| |
Collapse
|
9
|
Gerbracht JV, Harding T, Simpson AGB, Roger AJ, Hess S. Comparative transcriptomics reveals the molecular toolkit used by an algivorous protist for cell wall perforation. Curr Biol 2022; 32:3374-3384.e5. [PMID: 35700733 DOI: 10.1016/j.cub.2022.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/11/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Microbial eukaryotes display a stunning diversity of feeding strategies, ranging from generalist predators to highly specialized parasites. The unicellular "protoplast feeders" represent a fascinating mechanistic intermediate, as they penetrate other eukaryotic cells (algae and fungi) like some parasites but then devour their cell contents by phagocytosis.1 Besides prey recognition and attachment, this complex behavior involves the local, pre-phagocytotic dissolution of the prey cell wall, which results in well-defined perforations of species-specific size and structure.2 Yet the molecular processes that enable protoplast feeders to overcome cell walls of diverse biochemical composition remain unknown. We used the flagellate Orciraptor agilis (Viridiraptoridae, Rhizaria) as a model protoplast feeder and applied differential gene expression analysis to examine its penetration of green algal cell walls. Besides distinct expression changes that reflect major cellular processes (e.g., locomotion and cell division), we found lytic carbohydrate-active enzymes that are highly expressed and upregulated during the attack on the alga. A putative endocellulase (family GH5_5) with a secretion signal is most prominent, and a potential key factor for cell wall dissolution. Other candidate enzymes (e.g., lytic polysaccharide monooxygenases) belong to families that are largely uncharacterized, emphasizing the potential of non-fungal microeukaryotes for enzyme exploration. Unexpectedly, we discovered various chitin-related factors that point to an unknown chitin metabolism in Orciraptor agilis, potentially also involved in the feeding process. Our findings provide first molecular insights into an important microbial feeding behavior and new directions for cell biology research on non-model eukaryotes.
Collapse
Affiliation(s)
- Jennifer V Gerbracht
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Tommy Harding
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Alastair G B Simpson
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Sebastian Hess
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany; Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
10
|
Cavalier-Smith T. Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi. PROTOPLASMA 2022; 259:487-593. [PMID: 34940909 PMCID: PMC9010356 DOI: 10.1007/s00709-021-01665-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/03/2021] [Indexed: 05/19/2023]
Abstract
I thoroughly discuss ciliary transition zone (TZ) evolution, highlighting many overlooked evolutionarily significant ultrastructural details. I establish fundamental principles of TZ ultrastructure and evolution throughout eukaryotes, inferring unrecognised ancestral TZ patterns for Fungi, opisthokonts, and Corticata (i.e., kingdoms Plantae and Chromista). Typical TZs have a dense transitional plate (TP), with a previously overlooked complex lattice as skeleton. I show most eukaryotes have centriole/TZ junction acorn-V filaments (whose ancestral function was arguably supporting central pair microtubule-nucleating sites; I discuss their role in centriole growth). Uniquely simple malawimonad TZs (without TP, simpler acorn) pinpoint the eukaryote tree's root between them and TP-bearers, highlighting novel superclades. I integrate TZ/ciliary evolution with the best multiprotein trees, naming newly recognised major eukaryote clades and revise megaclassification of basal kingdom Protozoa. Recent discovery of non-photosynthetic phagotrophic flagellates with genome-free plastids (Rhodelphis), the sister group to phylum Rhodophyta (red algae), illuminates plant and chromist early evolution. I show previously overlooked marked similarities in cell ultrastructure between Rhodelphis and Picomonas, formerly considered an early diverging chromist. In both a nonagonal tube lies between their TP and an annular septum surrounding their 9+2 ciliary axoneme. Mitochondrial dense condensations and mitochondrion-linked smooth endomembrane cytoplasmic partitioning cisternae further support grouping Picomonadea and Rhodelphea as new plant phylum Pararhoda. As Pararhoda/Rhodophyta form a robust clade on site-heterogeneous multiprotein trees, I group Pararhoda and Rhodophyta as new infrakingdom Rhodaria of Plantae within subkingdom Biliphyta, which also includes Glaucophyta with fundamentally similar TZ, uniquely in eukaryotes. I explain how biliphyte TZs generated viridiplant stellate-structures.
Collapse
|
11
|
Goleń J, Tyszka J, Godos K, Janse M. A Model of F-actin Organization in Granuloreticulopodia in Foraminifera: Morphogenetic and Evolutionary Implications from Novel Fluorescent and Polarised Light Observations. Protist 2022; 173:125886. [DOI: 10.1016/j.protis.2022.125886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/22/2022] [Accepted: 05/08/2022] [Indexed: 11/29/2022]
|
12
|
Biard T. Diversity and ecology of Radiolaria in modern oceans. Environ Microbiol 2022; 24:2179-2200. [PMID: 35412019 PMCID: PMC9322464 DOI: 10.1111/1462-2920.16004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
Among the many inhabitants of planktonic communities, several lineages have biomineralized intricate skeletons. These have existed for millions of years and include the Radiolaria, a group of marine protists, many of which bear delicate mineral skeletons of different natures. Radiolaria are well known for their paleontological signatures, but little is known about the ecology of modern assemblages. They are found from polar to tropical regions, in the sunlit layers of the ocean down to the deep and cold bathypelagic. They are closely involved in the biogeochemical cycles of silica, carbon and strontium sulfate, carrying important amounts of such elements to the deep ocean. However, relatively little is known on the actual extent of genetic diversity or biogeographic patterns. The rapid emergence and acceptance of molecular approaches have nevertheless led to major advances in our understanding of diversity within and evolutionary relationships between major radiolarian groups. Here, we review the state of knowledge relating to the classification, diversity and ecology of extant radiolarian orders, highlighting the substantial gaps in our understanding of the extent of their contribution to marine biodiversity and their role in marine food webs.
Collapse
Affiliation(s)
- Tristan Biard
- Laboratoire d'Océanologie et de Géosciences, Univ. Littoral Côte d'opale/ Univ. Lille/ CNRS/ IRD, Wimereux, France
| |
Collapse
|
13
|
Dumack K, Gerdzhikov D, Klisarova D. Phylogenetic analysis confirms the taxonomic placement of the marine flagellate Hermesinum adriaticum (Thecofilosea, Cercozoa, Rhizaria). J Eukaryot Microbiol 2022; 69:e12905. [PMID: 35303760 DOI: 10.1111/jeu.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hermesinum adriaticum is a rare marine and brackish flagellate that is of considerable interest due to its markable and fossilizable siliceous skeleton. Based on this skeleton, Hermesinum was initially considered a microalga of the Dictyochophyceae (Ochrophyta, Stramenopiles). Later on, it was assigned to the Ebriida due to its similarity to Ebria tripartita. The taxonomic assignment of the Ebriida however changed several times until it was placed within the Thecofilosea (Cercozoa, Rhizaria), based on genetic data of Ebria tripartita. We sequenced the 18S marker gene sequence of Hermesinum and confirm the close relationship of Ebria and Hermesinum.
Collapse
Affiliation(s)
- Kenneth Dumack
- University of Cologne, Terrestrial Ecology, Institute of Zoology, Zülpicher Str. 47b, 50674, Köln, Germany
| | - Dimitar Gerdzhikov
- Institute of Fish Resources, Agricultural Academy, Varna, 9000, Bulgaria
| | - Daniela Klisarova
- Institute of Fish Resources, Agricultural Academy, Varna, 9000, Bulgaria.,Medical University, Department of Anatomy, Histology, Cytology and Biology, Pleven, 5800, Bulgaria
| |
Collapse
|
14
|
Struck C, Rüsch S, Strehlow B. Control Strategies of Clubroot Disease Caused by Plasmodiophora brassicae. Microorganisms 2022; 10:620. [PMID: 35336194 PMCID: PMC8949847 DOI: 10.3390/microorganisms10030620] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
The clubroot disease caused by the soil-borne pathogen Plasmodiophora brassicae is one of the most important diseases of cruciferous crops worldwide. As with many plant pathogens, the spread is closely related to the cultivation of suitable host plants. In addition, temperature and water availability are crucial determinants for the occurrence and reproduction of clubroot disease. Current global changes are contributing to the widespread incidence of clubroot disease. On the one hand, global trade and high prices are leading to an increase in the cultivation of the host plant rapeseed worldwide. On the other hand, climate change is improving the living conditions of the pathogen P. brassicae in temperate climates and leading to its increased occurrence. Well-known ways to control efficiently this disease include arable farming strategies: growing host plants in wide crop rotations, liming the contaminated soils, and using resistant host plants. Since chemical control of the clubroot disease is not possible or not ecologically compatible, more and more alternative control options are being investigated. In this review, we address the challenges for its control, with a focus on biological control options.
Collapse
Affiliation(s)
- Christine Struck
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Satower Str. 48, 18059 Rostock, Germany;
| | - Stefanie Rüsch
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Satower Str. 48, 18059 Rostock, Germany;
| | - Becke Strehlow
- Faculty of Agriculture and Food Sciences, University of Applied Sciences Neubrandenburg, Brodaer Str. 2, 17033 Neubrandenburg, Germany;
| |
Collapse
|
15
|
Autophagy-Related Gene PlATG6a Is Involved in Mycelial Growth, Asexual Reproduction and Tolerance to Salt and Oxidative Stresses in Peronophythora litchii. Int J Mol Sci 2022; 23:ijms23031839. [PMID: 35163762 PMCID: PMC8836449 DOI: 10.3390/ijms23031839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
Autophagy is ubiquitously present in eukaryotes. During this process, intracellular proteins and some waste organelles are transported into lysosomes or vacuoles for degradation, which can be reused by the cell to guarantee normal cellular metabolism. However, the function of autophagy-related (ATG) proteins in oomycetes is rarely known. In this study, we identified an autophagy-related gene, PlATG6a, encoding a 514-amino-acid protein in Peronophythora litchii, which is the most destructive pathogen of litchi. The transcriptional level of PlATG6a was relatively higher in mycelium, sporangia, zoospores and cysts. We generated PlATG6a knockout mutants using CRISPR/Cas9 technology. The P. litchii Δplatg6a mutants were significantly impaired in autophagy and vegetative growth. We further found that the Δplatg6a mutants displayed decreased branches of sporangiophore, leading to impaired sporangium production. PlATG6a is also involved in resistance to oxidative and salt stresses, but not in sexual reproduction. The transcription of peroxidase-encoding genes was down-regulated in Δplatg6a mutants, which is likely responsible for hypersensitivity to oxidative stress. Compared with the wild-type strain, the Δplatg6a mutants showed reduced virulence when inoculated on the litchi leaves using mycelia plugs. Overall, these results suggest a critical role for PlATG6a in autophagy, vegetative growth, sporangium production, sporangiophore development, zoospore release, pathogenesis and tolerance to salt and oxidative stresses in P. litchii.
Collapse
|
16
|
Dumack K, Siemensma F, Clauß S. Transfer of the thecate amoebae Lecythium spinosum and Pamphagus armatus to Rhizaspis (Thecofilosea, Cercozoa, Rhizaria). Eur J Protistol 2021; 83:125843. [PMID: 34920934 DOI: 10.1016/j.ejop.2021.125843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/17/2021] [Accepted: 09/21/2021] [Indexed: 11/03/2022]
Abstract
Thecofilosea is a class in Cercozoa (Rhizaria) comprising mainly freshwater-inhabiting algivores. Recently, numerous isolates of thecofilosean amoebae have been cultured and were characterized by an integrated morphological and molecular approach. The captivating spine-bearing taxa in Thecofilosea were not yet molecularly characterized due to being very rare. There are only two known spine-bearing species, Pamphagus armatus and Lecythium spinosum, which were synonymized by Penard in 1902. Due to a morphological difference of those taxa, we discuss here that we disagree with this taxonomical act. We further isolated single cells of Pamphagus armatus directly from their habitat and successfully sequenced their SSU rDNA, which we subjected to phylogenetic analyses. We show that Pamphagus armatus branches within the Rhizaspididae (Tectofilosida, Thecofilosea). Accordingly, we transfer Pamphagus armatus and the assumingly closely related species Lecythium spinosum to Rhizaspis.
Collapse
Affiliation(s)
- Kenneth Dumack
- University of Cologne, Terrestrial Ecology, Institute of Zoology, Zülpicher Str. 47b, 50674 Köln, Germany.
| | | | | |
Collapse
|
17
|
PhyloFisher: A phylogenomic package for resolving eukaryotic relationships. PLoS Biol 2021; 19:e3001365. [PMID: 34358228 PMCID: PMC8345874 DOI: 10.1371/journal.pbio.3001365] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 07/15/2021] [Indexed: 11/19/2022] Open
Abstract
Phylogenomic analyses of hundreds of protein-coding genes aimed at resolving phylogenetic relationships is now a common practice. However, no software currently exists that includes tools for dataset construction and subsequent analysis with diverse validation strategies to assess robustness. Furthermore, there are no publicly available high-quality curated databases designed to assess deep (>100 million years) relationships in the tree of eukaryotes. To address these issues, we developed an easy-to-use software package, PhyloFisher (https://github.com/TheBrownLab/PhyloFisher), written in Python 3. PhyloFisher includes a manually curated database of 240 protein-coding genes from 304 eukaryotic taxa covering known eukaryotic diversity, a novel tool for ortholog selection, and utilities that will perform diverse analyses required by state-of-the-art phylogenomic investigations. Through phylogenetic reconstructions of the tree of eukaryotes and of the Saccharomycetaceae clade of budding yeasts, we demonstrate the utility of the PhyloFisher workflow and the provided starting database to address phylogenetic questions across a large range of evolutionary time points for diverse groups of organisms. We also demonstrate that undetected paralogy can remain in phylogenomic "single-copy orthogroup" datasets constructed using widely accepted methods such as all vs. all BLAST searches followed by Markov Cluster Algorithm (MCL) clustering and application of automated tree pruning algorithms. Finally, we show how the PhyloFisher workflow helps detect inadvertent paralog inclusions, allowing the user to make more informed decisions regarding orthology assignments, leading to a more accurate final dataset.
Collapse
|
18
|
Correa-Galeote D, Roibás A, Mosquera-Corral A, Juárez-Jiménez B, González-López J, Rodelas B. Salinity is the major driver of the global eukaryotic community structure in fish-canning wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112623. [PMID: 33901822 DOI: 10.1016/j.jenvman.2021.112623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Fish-canning wastewater is characterized frequently by a high content of salt (NaCl), making its treatment particularly difficult; however, the knowledge of the effect of NaCl on eukaryotic communities is very limited. In the present study, the global diversity of eukaryotes in activated sludges (AS) from 4 different wastewater treatment plants (WWTPs) treating fish-canning effluents varying in salinity (0.47, 1.36, 1.72 and 12.76 g NaCl/L) was determined by sequencing partial 18S rRNA genes using Illumina MiSeq. A greater diversity than previously reported was observed in the AS community, which comprised 37 and 330 phylum-like and genera-like groups, respectively. In this sense, the more abundant genus-like groups (average relative abundance (RA) > 5%) were Adineta (6.80%), Lecane (16.80%), Dictyostelium (7.36%), Unclassified_Fungi7 (6.94%), Procryptobia (5.13) and Oocystis (5.07%). The eukaryotic communities shared a common core of 25 phylum-like clades (95% of total sequences); therefore, a narrow selection of the eukaryotic populations was found, despite the differences in the abiotic characteristics of fish-canning effluents and reactor operational conditions inflicted. The differences in NaCl concentration were the main factor that influenced the structure of the eukaryotic community, modulating the RAs of the different phylum-like clades of the common core. Higher levels of salt increased the RAs of Ascomycota, Chlorophyta, Choanoflagellata, Cryptophyta, Mollusca, Nematoda, Other Protists and Unclassified Fungi. Among the different eukaryotic genera here found, the RA of Oocystis (Chlorophyta) was intimately correlated to increasing NaCl concentrations and it is proposed as a bioindicator of the global eukaryotic community of fish-canning WWTPs.
Collapse
Affiliation(s)
- David Correa-Galeote
- Universidad de Granada. Facultad de Farmacia. Dpto. de Microbiología, Spain; Universidad de Granada. Instituto del Agua. Sección Microbiología y Tecnologías Ambientales, Spain.
| | - Alba Roibás
- Universidade de Santiago de Compostela. Escuela de Ingeniería. Dpto. de Ingeniería Química, Spain
| | - Anuska Mosquera-Corral
- Universidade de Santiago de Compostela. Escuela de Ingeniería. Dpto. de Ingeniería Química, Spain
| | - Belén Juárez-Jiménez
- Universidad de Granada. Facultad de Farmacia. Dpto. de Microbiología, Spain; Universidad de Granada. Instituto del Agua. Sección Microbiología y Tecnologías Ambientales, Spain
| | - Jesús González-López
- Universidad de Granada. Facultad de Farmacia. Dpto. de Microbiología, Spain; Universidad de Granada. Instituto del Agua. Sección Microbiología y Tecnologías Ambientales, Spain
| | - Belén Rodelas
- Universidad de Granada. Facultad de Farmacia. Dpto. de Microbiología, Spain; Universidad de Granada. Instituto del Agua. Sección Microbiología y Tecnologías Ambientales, Spain
| |
Collapse
|
19
|
Walden S, Jauss RT, Feng K, Fiore-Donno AM, Dumack K, Schaffer S, Wolf R, Schlegel M, Bonkowski M. On the phenology of protists: recurrent patterns reveal seasonal variation of protistan (Rhizaria: Cercozoa and Endomyxa) communities in tree canopies. FEMS Microbiol Ecol 2021; 97:fiab081. [PMID: 34117748 PMCID: PMC8213970 DOI: 10.1093/femsec/fiab081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/10/2021] [Indexed: 11/23/2022] Open
Abstract
Tree canopies are colonized by billions of highly specialized microorganisms that are well adapted to the highly variable microclimatic conditions, caused by diurnal fluctuations and seasonal changes. In this study, we investigated seasonality patterns of protists in the tree canopies of a temperate floodplain forest via high-throughput sequencing with group-specific primers for the phyla Cercozoa and Endomyxa. We observed consistent seasonality, and identified divergent spring and autumn taxa. Tree crowns were characterized by a dominance of bacterivores and omnivores, while eukaryvores gained a distinctly larger share in litter and soil communities on the ground. In the canopy seasonality was largest among communities detected on the foliar surface: In spring, higher variance within alpha diversity of foliar samples indicated greater heterogeneity during initial colonization. However, communities underwent compositional changes during the aging of leaves in autumn, highly reflecting recurring phenological changes during protistan colonization. Surprisingly, endomyxan root pathogens appeared to be exceptionally abundant across tree canopies during autumn, demonstrating a potential role of the canopy surface as a physical filter for air-dispersed propagules. Overall, about 80% of detected OTUs could not be assigned to known species-representing dozens of microeukaryotic taxa whose canopy inhabitants are waiting to be discovered.
Collapse
Affiliation(s)
- Susanne Walden
- Institute of Zoology, Terrestrial Ecology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Robin-Tobias Jauss
- Institute of Biology, Biodiversity and Evolution, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, 100085 Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, 100049 Beijing, China
| | - Anna Maria Fiore-Donno
- Institute of Zoology, Terrestrial Ecology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Kenneth Dumack
- Institute of Zoology, Terrestrial Ecology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Stefan Schaffer
- Institute of Biology, Molecular Evolution and Animal Systematics, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Ronny Wolf
- Institute of Biology, Molecular Evolution and Animal Systematics, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| | - Martin Schlegel
- Institute of Biology, Biodiversity and Evolution, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Michael Bonkowski
- Institute of Zoology, Terrestrial Ecology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| |
Collapse
|
20
|
Jauss RT, Nowack A, Walden S, Wolf R, Schaffer S, Schellbach B, Bonkowski M, Schlegel M. To the canopy and beyond: Air dispersal as a mechanism of ubiquitous protistan pathogen assembly in tree canopies. Eur J Protistol 2021; 80:125805. [PMID: 34090087 DOI: 10.1016/j.ejop.2021.125805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/19/2023]
Abstract
Cercozoa and Oomycota contain a huge biodiversity and important pathogens of forest trees and other vegetation. We analyzed air dispersal of these protistan phyla with an air sampler near-ground (~2 m) and in tree crowns (~25 m) of three tree species (oak, linden and ash) in a temperate floodplain forest in March (before leafing) and May (after leaf unfolding) 2019 with a cultivation-independent high-throughput metabarcoding approach. We found a high diversity of Cercozoa and Oomycota in air samples with 122 and 81 OTUs, respectively. Especially oomycetes showed a significant difference in community composition between both sampling dates. Differences in community composition between air samples in tree canopies and close to the ground were however negligible, and also tree species identity did not affect communities in air samples, indicating that the distribution of protistan propagules through the air was not spatially restricted in the forest ecosystem. OTUs of plant pathogens, whose host species did not occur in the forest, demonstrate dispersal of propagules from outside the forest biome. Overall, our results lead to a better understanding of the stochastic processes of air dispersal of protists and protistan pathogens, a prerequisite to understand the mechanisms of their community assembly in forest ecosystems.
Collapse
Affiliation(s)
- Robin-Tobias Jauss
- University of Leipzig, Institute of Biology, Biodiversity and Evolution, Talstraße 33, 04103 Leipzig, Germany.
| | - Anne Nowack
- University of Leipzig, Institute of Biology, Biodiversity and Evolution, Talstraße 33, 04103 Leipzig, Germany
| | - Susanne Walden
- University of Cologne, Institute of Zoology, Terrestrial Ecology, Zülpicher Straße 47b, 50674 Köln, Germany
| | - Ronny Wolf
- University of Leipzig, Institute of Biology, Molecular Evolution & Animal Systematics, Talstraße 33, 04103 Leipzig, Germany
| | - Stefan Schaffer
- University of Leipzig, Institute of Biology, Molecular Evolution & Animal Systematics, Talstraße 33, 04103 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Barbara Schellbach
- Max Planck Institute for Evolutionary Anthropology, Department of Evolutionary Genetics, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Michael Bonkowski
- University of Cologne, Institute of Zoology, Terrestrial Ecology, Zülpicher Straße 47b, 50674 Köln, Germany
| | - Martin Schlegel
- University of Leipzig, Institute of Biology, Biodiversity and Evolution, Talstraße 33, 04103 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
| |
Collapse
|
21
|
Tria FDK, Brueckner J, Skejo J, Xavier JC, Kapust N, Knopp M, Wimmer JLE, Nagies FSP, Zimorski V, Gould SB, Garg SG, Martin WF. Gene Duplications Trace Mitochondria to the Onset of Eukaryote Complexity. Genome Biol Evol 2021; 13:evab055. [PMID: 33739376 PMCID: PMC8175051 DOI: 10.1093/gbe/evab055] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
The last eukaryote common ancestor (LECA) possessed mitochondria and all key traits that make eukaryotic cells more complex than their prokaryotic ancestors, yet the timing of mitochondrial acquisition and the role of mitochondria in the origin of eukaryote complexity remain debated. Here, we report evidence from gene duplications in LECA indicating an early origin of mitochondria. Among 163,545 duplications in 24,571 gene trees spanning 150 sequenced eukaryotic genomes, we identify 713 gene duplication events that occurred in LECA. LECA's bacterial-derived genes include numerous mitochondrial functions and were duplicated significantly more often than archaeal-derived and eukaryote-specific genes. The surplus of bacterial-derived duplications in LECA most likely reflects the serial copying of genes from the mitochondrial endosymbiont to the archaeal host's chromosomes. Clustering, phylogenies and likelihood ratio tests for 22.4 million genes from 5,655 prokaryotic and 150 eukaryotic genomes reveal no evidence for lineage-specific gene acquisitions in eukaryotes, except from the plastid in the plant lineage. That finding, and the functions of bacterial genes duplicated in LECA, suggests that the bacterial genes in eukaryotes are acquisitions from the mitochondrion, followed by vertical gene evolution and differential loss across eukaryotic lineages, flanked by concomitant lateral gene transfer among prokaryotes. Overall, the data indicate that recurrent gene transfer via the copying of genes from a resident mitochondrial endosymbiont to archaeal host chromosomes preceded the onset of eukaryotic cellular complexity, favoring mitochondria-early over mitochondria-late hypotheses for eukaryote origin.
Collapse
Affiliation(s)
- Fernando D K Tria
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Julia Brueckner
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Josip Skejo
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
- Faculty of Science, University of Zagreb, Croatia
| | - Joana C Xavier
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Nils Kapust
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Michael Knopp
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Jessica L E Wimmer
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Falk S P Nagies
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Verena Zimorski
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - William F Martin
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
22
|
Shishkin Y, Drachko D, Zlatogursky VV. The smallest known heliozoans are the Erebor lineage (nom. clad. n.) inside Microheliella maris (Eukaryota, Diaphoretickes), with the amendation of M. maris diagnosis and description of Berkeleyaesol magnus gen. nov., comb. nov. (Eukaryota, incertae sedis). Int J Syst Evol Microbiol 2021; 71. [PMID: 33886450 DOI: 10.1099/ijsem.0.004776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new strain of planktonic heliozoans (ZI172) belonging to the genus Microheliella (the sister group of Cryptista in Diaphoretickes), closely related to the only one known strain of Microheliella maris (CCAP 1945/1), was studied with light microscopy and SSU rRNA gene sequencing. Morphometric data obtained from 127 cells and based on 254 measurements showed that this strain represents the smallest heliozoan (1.66-3.42 µm, av. 2.56 µm) in diameter known to date and one of the smallest free-living eukaryotes. We also did morphometry for strain CCAP 1945/1. Its cell body size is 3.20-6.47 µm (av. 4.15 µm; n=141; m=282). The secondary structures of hairpin 15 of the SSU rRNA molecules were reconstructed for ZI172 and CCAP 1945/1 and they were compared The possible biochemical explanation for the smaller size of the ZI172 strain, which is smaller than the CCAP 1945/1 strain, is discussed, including all published electron micrographs of CCAP 1945/1. The necessary taxonomic work is also carried out. The diagnosis of Microheliella maris is amended and the new infraspecific clade Erebor is described to include ZI172. The measurements and systematics of the enigmatic heliozoan 'Raphidiophrys' magna O'Donoghue 1922 (non 1921; the biggest known heliozoan) are also discussed and it is transferred to the new genus Berkeleyaesol.
Collapse
Affiliation(s)
- Yegor Shishkin
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya Embankment 7/9, 199034, Saint Petersburg, Russia
| | - Daria Drachko
- Laboratory of Cellular & Molecular Protistology, Zoological Institute of Russian Academy of Sciences, Universitetskaya Embankment 1, 199034, Saint Petersburg, Russia.,Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya Embankment 7/9, 199034, Saint Petersburg, Russia
| | - Vasily V Zlatogursky
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya Embankment 7/9, 199034, Saint Petersburg, Russia
| |
Collapse
|
23
|
A Morpho-molecular Perspective on the Diversity and Evolution of Spumellaria (Radiolaria). Protist 2021; 172:125806. [PMID: 34174720 DOI: 10.1016/j.protis.2021.125806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Spumellaria (Radiolaria, Rhizaria) are holoplanktonic amoeboid protists, ubiquitous and abundant in the global ocean. Their silicified skeleton preserves very well in sediments, displaying an excellent fossil record extremely valuable for paleo-environmental reconstruction studies, from where most of their extant diversity and ecology have been inferred. This study represents a comprehensive classification of Spumellaria based on the combination of ribosomal taxonomic marker genes (rDNA) and morphological characteristics. In contrast to established taxonomic knowledge, we demonstrate that symmetry of the skeleton takes more importance than internal structures at high classification ranks. Such reconsideration allows gathering different morphologies with concentric structure and spherical or radial symmetry believed to belong to other Radiolaria orders from the fossil record, as for some Entactinaria families. Our calibrated molecular clock dates the origin of Spumellaria in the middle Cambrian (ca. 515 Ma), among the first radiolarian representatives in the fossil record. This study allows a direct connection between living specimens and extinct morphologies from the Cambrian, bringing both a standpoint for future molecular environmental surveys and a better understanding for paleo-environmental reconstruction analysis.
Collapse
|
24
|
Pyrih J, Pánek T, Durante IM, Rašková V, Cimrhanzlová K, Kriegová E, Tsaousis AD, Eliáš M, Lukeš J. Vestiges of the Bacterial Signal Recognition Particle-Based Protein Targeting in Mitochondria. Mol Biol Evol 2021; 38:3170-3187. [PMID: 33837778 PMCID: PMC8321541 DOI: 10.1093/molbev/msab090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
The main bacterial pathway for inserting proteins into the plasma membrane relies on the signal recognition particle (SRP), composed of the Ffh protein and an associated RNA component, and the SRP-docking protein FtsY. Eukaryotes use an equivalent system of archaeal origin to deliver proteins into the endoplasmic reticulum, whereas a bacteria-derived SRP and FtsY function in the plastid. Here we report on the presence of homologs of the bacterial Ffh and FtsY proteins in various unrelated plastid-lacking unicellular eukaryotes, namely Heterolobosea, Alveida, Goniomonas, and Hemimastigophora. The monophyly of novel eukaryotic Ffh and FtsY groups, predicted mitochondrial localization experimentally confirmed for Naegleria gruberi, and a strong alphaproteobacterial affinity of the Ffh group, collectively suggest that they constitute parts of an ancestral mitochondrial signal peptide-based protein-targeting system inherited from the last eukaryotic common ancestor, but lost from the majority of extant eukaryotes. The ability of putative signal peptides, predicted in a subset of mitochondrial-encoded N. gruberi proteins, to target a reporter fluorescent protein into the endoplasmic reticulum of Trypanosoma brucei, likely through their interaction with the cytosolic SRP, provided further support for this notion. We also illustrate that known mitochondrial ribosome-interacting proteins implicated in membrane protein targeting in opisthokonts (Mba1, Mdm38, and Mrx15) are broadly conserved in eukaryotes and nonredundant with the mitochondrial SRP system. Finally, we identified a novel mitochondrial protein (MAP67) present in diverse eukaryotes and related to the signal peptide-binding domain of Ffh, which may well be a hitherto unrecognized component of the mitochondrial membrane protein-targeting machinery.
Collapse
Affiliation(s)
- Jan Pyrih
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ignacio Miguel Durante
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Vendula Rašková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Kristýna Cimrhanzlová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Kriegová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Anastasios D Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
25
|
The Mitogen-Activated Protein Kinase PlMAPK2 Is Involved in Zoosporogenesis and Pathogenicity of Peronophythoralitchii. Int J Mol Sci 2021; 22:ijms22073524. [PMID: 33805371 PMCID: PMC8036616 DOI: 10.3390/ijms22073524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
As an evolutionarily conserved pathway, mitogen-activated protein kinase (MAPK) cascades function as the key signal transducers that convey information by protein phosphorylation. Here we identified PlMAPK2 as one of 14 predicted MAPKs encoding genes in the plant pathogenic oomycete Peronophythora litchii. PlMAPK2 is conserved in P.litchii and Phytophthora species. We found that PlMAPK2 was up-regulated in sporangium, zoospore, cyst, cyst germination and early stage of infection. We generated PlMAPK2 knockout mutants using the CRISPR/Cas9 method. Compared with wild-type strain, the PlMAPK2 mutants showed no significant difference in vegetative growth, oospore production and sensitivity to various abiotic stresses. However, the sporangium release was severely impaired. We further found that the cleavage of the cytoplasm into uninucleate zoospores was disrupted in the PlMAPK2 mutants, and this developmental phenotype was accompanied by reduction in the transcription levels of PlMAD1 and PlMYB1 genes. Meanwhile, the PlMAPK2 mutants exhibited lower laccase activity and reduced virulence to lychee leaves. Overall, this study identified a MAPK that is critical for zoosporogenesis by regulating the sporangial cleavage and pathogenicity of P.litchii, likely by regulating laccase activity.
Collapse
|
26
|
Pyrih J, Žárský V, Fellows JD, Grosche C, Wloga D, Striepen B, Maier UG, Tachezy J. The iron-sulfur scaffold protein HCF101 unveils the complexity of organellar evolution in SAR, Haptista and Cryptista. BMC Ecol Evol 2021; 21:46. [PMID: 33740894 PMCID: PMC7980591 DOI: 10.1186/s12862-021-01777-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 11/22/2022] Open
Abstract
Background Nbp35-like proteins (Nbp35, Cfd1, HCF101, Ind1, and AbpC) are P-loop NTPases that serve as components of iron-sulfur cluster (FeS) assembly machineries. In eukaryotes, Ind1 is present in mitochondria, and its function is associated with the assembly of FeS clusters in subunits of respiratory Complex I, Nbp35 and Cfd1 are the components of the cytosolic FeS assembly (CIA) pathway, and HCF101 is involved in FeS assembly of photosystem I in plastids of plants (chHCF101). The AbpC protein operates in Bacteria and Archaea. To date, the cellular distribution of these proteins is considered to be highly conserved with only a few exceptions. Results We searched for the genes of all members of the Nbp35-like protein family and analyzed their targeting sequences. Nbp35 and Cfd1 were predicted to reside in the cytoplasm with some exceptions of Nbp35 localization to the mitochondria; Ind1was found in the mitochondria, and HCF101 was predicted to reside in plastids (chHCF101) of all photosynthetically active eukaryotes. Surprisingly, we found a second HCF101 paralog in all members of Cryptista, Haptista, and SAR that was predicted to predominantly target mitochondria (mHCF101), whereas Ind1 appeared to be absent in these organisms. We also identified a few exceptions, as apicomplexans possess mHCF101 predicted to localize in the cytosol and Nbp35 in the mitochondria. Our predictions were experimentally confirmed in selected representatives of Apicomplexa (Toxoplasma gondii), Stramenopila (Phaeodactylum tricornutum, Thalassiosira pseudonana), and Ciliophora (Tetrahymena thermophila) by tagging proteins with a transgenic reporter. Phylogenetic analysis suggested that chHCF101 and mHCF101 evolved from a common ancestral HCF101 independently of the Nbp35/Cfd1 and Ind1 proteins. Interestingly, phylogenetic analysis supports rather a lateral gene transfer of ancestral HCF101 from bacteria than its acquisition being associated with either α-proteobacterial or cyanobacterial endosymbionts. Conclusion Our searches for Nbp35-like proteins across eukaryotic lineages revealed that SAR, Haptista, and Cryptista possess mitochondrial HCF101. Because plastid localization of HCF101 was only known thus far, the discovery of its mitochondrial paralog explains confusion regarding the presence of HCF101 in organisms that possibly lost secondary plastids (e.g., ciliates, Cryptosporidium) or possess reduced nonphotosynthetic plastids (apicomplexans). Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01777-x.
Collapse
Affiliation(s)
- Jan Pyrih
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Justin D Fellows
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Christopher Grosche
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (Synmikro), Hans-Meerwein-Str. 6, 35032, Marburg, Germany
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Boris Striepen
- Department of Cellular Biology, University of Georgia, Athens, GA, USA.,Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, PA, 19104, USA
| | - Uwe G Maier
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (Synmikro), Hans-Meerwein-Str. 6, 35032, Marburg, Germany
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic.
| |
Collapse
|
27
|
Abstract
All living cells interact dynamically with a constantly changing world. Eukaryotes, in particular, evolved radically new ways to sense and react to their environment. These advances enabled new and more complex forms of cellular behaviour in eukaryotes, including directional movement, active feeding, mating, and responses to predation. But what are the key events and innovations during eukaryogenesis that made all of this possible? Here we describe the ancestral repertoire of eukaryotic excitability and discuss five major cellular innovations that enabled its evolutionary origin. The innovations include a vastly expanded repertoire of ion channels, the emergence of cilia and pseudopodia, endomembranes as intracellular capacitors, a flexible plasma membrane and the relocation of chemiosmotic ATP synthesis to mitochondria, which liberated the plasma membrane for more complex electrical signalling involved in sensing and reacting. We conjecture that together with an increase in cell size, these new forms of excitability greatly amplified the degrees of freedom associated with cellular responses, allowing eukaryotes to vastly outperform prokaryotes in terms of both speed and accuracy. This comprehensive new perspective on the evolution of excitability enriches our view of eukaryogenesis and emphasizes behaviour and sensing as major contributors to the success of eukaryotes. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Kirsty Y. Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
28
|
Reyes-Batlle M, Díaz FJ, Sifaoui I, Rodríguez-Expósito R, Rizo-Liendo A, Piñero JE, Lorenzo-Morales J. Free living amoebae isolation in irrigation waters and soils of an insular arid agroecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141833. [PMID: 33207478 DOI: 10.1016/j.scitotenv.2020.141833] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
The use of freshwater in agricultural systems represents a high percentage of total water consumption worldwide. Therefore, alternative sources of water for irrigation will need to be developed, particularly in arid and semi-arid areas, in order to meet the growing demand for food in the future. The use of recycled wastewater (RWW), brackish water (BW) or desalinated brackish water (DBW) are among the different non-conventional water resources proposed. However, it is necessary to evaluate the health risks for humans and animals associated with the microbiological load of these waters. Protozoa such as free-living amoebae (FLA) are considered an emerging group of opportunistic pathogens capable to cause several diseases in humans (e.g. cutaneous and ocular infections, lung, bone or adrenal gland conditions or fatal encephalitis). In the present study we evaluate FLA presence in three different irrigation water qualities (RWW, BW and DBW) and its survival in irrigated agricultural soils of an extremely arid insular ecosystem (Fuerteventura, Canary Islands, Spain). Samples were cultured on 2% Non-Nutrient Agar (NNA) plates covered with a thin layer of heat killed E. coli and checked daily for the presence of FLA. According to the prevalence of FLA, Vermamoeba vermiformis (53,8%), Acanthamoeba spp. (30,8%), Vahlkampfia avara (7,7%) and Naegleria australiensis (7,7%) were detected in the analysed water samples, while Acanthamoeba (83,3%), Cercozoa spp. (8,3%) and Vahlkampfia orchilla (8,3%) were isolated in irrigated soils. Only Acanthamoeba strains were isolated in no irrigated soils used as control, evidencing the capability of these protozoa to resist environmental harsh conditions. Additionally, all analysed water sources and the irrigated soils presented growth of several pathogenic bacteria. Therefore, the coexistence in water and soils of pathogenic bacteria and FLA, can mean an increased risk of infection in agroecosystems.
Collapse
Affiliation(s)
- María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Spain / Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología. Universidad De La Laguna, La Laguna, Tenerife, 38203 Islas Canarias, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Spain.
| | - Francisco J Díaz
- Department of Animal Biology, Soil Science and Geology, University of La Laguna, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Spain / Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología. Universidad De La Laguna, La Laguna, Tenerife, 38203 Islas Canarias, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Spain
| | - Rubén Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Spain / Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología. Universidad De La Laguna, La Laguna, Tenerife, 38203 Islas Canarias, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Spain
| | - Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Spain / Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología. Universidad De La Laguna, La Laguna, Tenerife, 38203 Islas Canarias, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Spain / Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología. Universidad De La Laguna, La Laguna, Tenerife, 38203 Islas Canarias, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Spain / Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología. Universidad De La Laguna, La Laguna, Tenerife, 38203 Islas Canarias, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Spain
| |
Collapse
|
29
|
Huang J, Chen J, Fang G, Pang L, Zhou S, Zhou Y, Pan Z, Zhang Q, Sheng Y, Lu Y, Liu Z, Zhang Y, Li G, Shi M, Chen X, Zhan S. Two novel venom proteins underlie divergent parasitic strategies between a generalist and a specialist parasite. Nat Commun 2021; 12:234. [PMID: 33431897 PMCID: PMC7801585 DOI: 10.1038/s41467-020-20332-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Parasitoids are ubiquitous in natural ecosystems. Parasitic strategies are highly diverse among parasitoid species, yet their underlying genetic bases are poorly understood. Here, we focus on the divergent adaptation of a specialist and a generalist drosophilid parasitoids. We find that a novel protein (Lar) enables active immune suppression by lysing the host lymph glands, eventually leading to successful parasitism by the generalist. Meanwhile, another novel protein (Warm) contributes to a passive strategy by attaching the laid eggs to the gut and other organs of the host, leading to incomplete encapsulation and helping the specialist escape the host immune response. We find that these diverse parasitic strategies both originated from lateral gene transfer, followed with duplication and specialization, and that they might contribute to the shift in host ranges between parasitoids. Our results increase our understanding of how novel gene functions originate and how they contribute to host adaptation.
Collapse
Affiliation(s)
- Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China. .,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China.
| | - Jiani Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lan Pang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Sicong Zhou
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Yuenan Zhou
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Zhongqiu Pan
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Qichao Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Yueqi Lu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Zhiguo Liu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Yixiang Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guiyun Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Shi
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Xuexin Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China. .,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China. .,State Key Lab of Rice Biology, Zhejiang University, 310058, Hangzhou, China.
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
30
|
Dumack K, Duckert C, Meinhardt R, Lara E, Bonkowski M. Description of Phaeobola aeris gen. nov., sp. nov (Rhizaria, Cercozoa, Euglyphida) Sheds Light on Euglyphida's Dark Matter. J Eukaryot Microbiol 2020; 68:e12835. [PMID: 33222324 DOI: 10.1111/jeu.12835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/06/2020] [Accepted: 10/26/2020] [Indexed: 11/30/2022]
Abstract
The majority of Euglyphida species are characterised by shells with imbricated silica scales. Environmental surveys indicate a large unexplored diversity and recent efforts hinted at a certain diversity of yet undescribed, inconspicuous, scale-lacking Euglyphida. Here we describe Phaeobola aeris gen. nov., sp. nov. that shows a variety of morphological characters typical for the Euglyphida but lacks silica scales-instead, this species bears an agglutinated test. Neither its morphology nor phylogenetic placement allows its assignment to any currently described family. We erected the yet monospecific genus Phaeobola gen. nov., which with yet available data remain Euglyphida incertae sedis.
Collapse
Affiliation(s)
- Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, Köln, 50674, Germany
| | - Clément Duckert
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, CH-2000, Switzerland
| | - Raphaela Meinhardt
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, Köln, 50674, Germany
| | - Enrique Lara
- Real Jardín Botánico, CSIC, Plaza de Murillo 2, Madrid, 28014, Spain
| | - Michael Bonkowski
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, Köln, 50674, Germany
| |
Collapse
|
31
|
Haplosporosomes, sporoplasmosomes and their putative taxonomic relationships in rhizarians and myxozoans. Parasitology 2020; 147:1614-1628. [PMID: 32943127 DOI: 10.1017/s0031182020001717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This paper reviews current knowledge of the structure, genesis, cytochemistry and putative functions of the haplosporosomes of haplosporidians (Urosporidium, Haplosporidium, Bonamia, Minchinia) and paramyxids (Paramyxa, Paramyxoides, Marteilia, Marteilioides, Paramarteilia), and the sporoplasmosomes of myxozoans (Myxozoa - Malacosporea, Myxosporea). In all 3 groups, these bodies occur in plasmodial trophic stages, disappear at the onset of sporogony, and reappear in the spore. Some haplosporidian haplosporosomes lack the internal membrane regarded as characteristic of these bodies and that phylum. Haplosporidian haplosporogenesis is through the Golgi (spherulosome in the spore), either to form haplosporosomes at the trans-Golgi network, or for the Golgi to produce formative bodies from which membranous vesicles bud, thus acquiring the external membrane. The former method also forms sporoplasmosomes in malacosporeans, while the latter is the common method of haplosporogenesis in paramyxids. Sporoplasmogenesis in myxosporeans is largely unknown. The haplosporosomes of Haplosporidium nelsoni and sporoplasmosomes of malacosporeans are similar in arraying themselves beneath the plasmodial plasma membrane with their internal membranes pointing to the exterior, possibly to secrete their contents to lyse host cells or repel haemocytes. It is concluded that these bodies are probably multifunctional within and between groups, their internal membranes separating different functional compartments, and their origin may be from common ancestors in the Neoproterozoic.
Collapse
|
32
|
Fiore-Donno AM, Richter-Heitmann T, Bonkowski M. Contrasting Responses of Protistan Plant Parasites and Phagotrophs to Ecosystems, Land Management and Soil Properties. Front Microbiol 2020; 11:1823. [PMID: 32849427 PMCID: PMC7422690 DOI: 10.3389/fmicb.2020.01823] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/10/2020] [Indexed: 11/13/2022] Open
Abstract
Functional traits are increasingly used in ecology to link the structure of microbial communities to ecosystem processes. We investigated two important protistan lineages, Cercozoa and Endomyxa (Rhizaria) in soil using Illumina sequencing and analyzed their diversity and functional traits along with their responses to environmental factors in grassland and forest across Germany. From 600 soil samples, we obtained 2,101 Operational Taxonomic Units representing ∼18 million Illumina reads (region V4, 18S rRNA gene). All major taxonomic and functional groups were present, dominated by small bacterivorous flagellates (Glissomonadida). Endomyxan plant parasites were absent from forests. In grassland, Cercozoa and Endomyxa were promoted by more intensive land use management. Grassland and forest strikingly differed in community composition. Relative abundances of bacterivores and eukaryvores were inversely influenced by environmental factors. These patterns provide new insights into the functional organization of soil biota and indications for a more sustainable land-use management.
Collapse
Affiliation(s)
- Anna Maria Fiore-Donno
- Terrestrial Ecology Group, Institute of Zoology, University of Cologne, Cologne, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Michael Bonkowski
- Terrestrial Ecology Group, Institute of Zoology, University of Cologne, Cologne, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| |
Collapse
|
33
|
Lara E, Dumack K, García-Martín JM, Kudryavtsev A, Kosakyan A. Amoeboid protist systematics: A report on the "Systematics of amoeboid protists" symposium at the VIIIth ECOP/ISOP meeting in Rome, 2019. Eur J Protistol 2020; 76:125727. [PMID: 32755801 DOI: 10.1016/j.ejop.2020.125727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/22/2020] [Accepted: 06/25/2020] [Indexed: 01/21/2023]
Abstract
Amoeboid protists are extremely abundant and diverse in natural systems where they often play outstanding ecological roles. They can be found in almost all major eukaryotic divisions, and genomic approaches are bringing major changes in our perception of their deep evolutionary relationships. At fine taxonomic levels, the generalization of barcoding is revealing a considerable and unsuspected specific diversity that can be appreciated with careful morphometric analyses based on light and electron microscopic observations. We provide examples on the difficulties and advances in amoeboid protists systematics in a selection of groups that were presented at the VIIIth ECOP/ISOP meeting in Rome, 2019. We conclude that, in all studied groups, important taxonomical rearrangements will certainly take place in the next few years, and systematics must be adapted to incorporate these changes. Notably, nomenclature should be flexible enough to integrate many new high level taxa, and a unified policy must be adopted to species description and to the establishment of types.
Collapse
Affiliation(s)
- Enrique Lara
- Real Jardín Botánico de Madrid, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain.
| | - Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | | | - Alexander Kudryavtsev
- Laboratory of Cellular and Molecular Protistology, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, 199034 Saint-Petersburg, Russia; Department of Invertebrate Zoology, Faculty of Biology, Saint-Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint-Petersburg, Russia
| | - Anush Kosakyan
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
34
|
Kumler WE, Jorge J, Kim PM, Iftekhar N, Koehl MAR. Does Formation of Multicellular Colonies by Choanoflagellates Affect Their Susceptibility to Capture by Passive Protozoan Predators? J Eukaryot Microbiol 2020; 67:555-565. [PMID: 32455487 DOI: 10.1111/jeu.12808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 04/17/2020] [Accepted: 05/14/2020] [Indexed: 01/20/2023]
Abstract
Microbial eukaryotes, critical links in aquatic food webs, are unicellular, but some, such as choanoflagellates, form multicellular colonies. Are there consequences to predator avoidance of being unicellular vs. forming larger colonies? Choanoflagellates share a common ancestor with animals and are used as model organisms to study the evolution of multicellularity. Escape in size from protozoan predators is suggested as a selective factor favoring evolution of multicellularity. Heterotrophic protozoans are categorized as suspension feeders, motile raptors, or passive predators that eat swimming prey which bump into them. We focused on passive predation and measured the mechanisms responsible for the susceptibility of unicellular vs. multicellular choanoflagellates, Salpingoeca helianthica, to capture by passive heliozoan predators, Actinosphaerium nucleofilum, which trap prey on axopodia radiating from the cell body. Microvideography showed that unicellular and colonial choanoflagellates entered the predator's capture zone at similar frequencies, but a greater proportion of colonies contacted axopodia. However, more colonies than single cells were lost during transport by axopodia to the cell body. Thus, feeding efficiency (proportion of prey entering the capture zone that were engulfed in phagosomes) was the same for unicellular and multicellular prey, suggesting that colony formation is not an effective defense against such passive predators.
Collapse
Affiliation(s)
- William E Kumler
- Department of Integrative Biology, University of California, Berkeley, California, 94720-3140.,School of Oceanography, University of Washington, Seattle, Washington, 98105
| | - Justin Jorge
- Department of Integrative Biology, University of California, Berkeley, California, 94720-3140.,Department of Biology, Duke University, Durham, North Carolina, 27708-0338
| | - Paul M Kim
- Department of Integrative Biology, University of California, Berkeley, California, 94720-3140
| | - Noama Iftekhar
- Department of Integrative Biology, University of California, Berkeley, California, 94720-3140
| | - M A R Koehl
- Department of Integrative Biology, University of California, Berkeley, California, 94720-3140
| |
Collapse
|
35
|
The Basic Leucine Zipper Transcription Factor PlBZP32 Associated with the Oxidative Stress Response Is Critical for Pathogenicity of the Lychee Downy Blight Oomycete Peronophythora litchii. mSphere 2020; 5:5/3/e00261-20. [PMID: 32493721 PMCID: PMC7273347 DOI: 10.1128/msphere.00261-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this study, we utilized the RNAi technique to investigate the functions of PlBZP32, which possesses a basic leucine zipper (bZIP)-PAS structure, and provided insights into the contributions of bZIP transcription factors to oxidative stress, the production of sporangia, the germination of cysts, and the pathogenicity of Peronophythora litchii. This study also revealed the role of PlBZP32 in regulating the enzymatic activities of extracellular peroxidases and laccases in the plant-pathogenic oomycete. Basic leucine zipper (bZIP) transcription factors are widespread in eukaryotes, including plants, animals, fungi, and oomycetes. However, the functions of bZIPs in oomycetes are rarely known. In this study, we identified a bZIP protein possessing a special bZIP-PAS structure in Peronophythora litchii, named PlBZP32. We found that PlBZP32 is upregulated in zoospores, in cysts, and during invasive hyphal growth. We studied the functions of PlBZP32 using the RNAi technique to suppress the expression of this gene. PlBZP32-silenced mutants were more sensitive to oxidative stress, showed a lower cyst germination rate, and produced more sporangia than the wild-type strain SHS3. The PlBZP32-silenced mutants were also less invasive on the host plant. Furthermore, we analyzed the activities of extracellular peroxidases and laccases and found that silencing PlBZP32 decreased the activities of P. litchii peroxidase and laccase. To our knowledge, this is the first report that the functions of a bZIP-PAS protein are associated with oxidative stress, asexual development, and pathogenicity in oomycetes. IMPORTANCE In this study, we utilized the RNAi technique to investigate the functions of PlBZP32, which possesses a basic leucine zipper (bZIP)-PAS structure, and provided insights into the contributions of bZIP transcription factors to oxidative stress, the production of sporangia, the germination of cysts, and the pathogenicity of Peronophythora litchii. This study also revealed the role of PlBZP32 in regulating the enzymatic activities of extracellular peroxidases and laccases in the plant-pathogenic oomycete.
Collapse
|
36
|
Shiratori T, Yabuki A, Ishida KI. Morphology, Ultrastructure, and Phylogeny of Two Novel Species of Ventrifissura (V. oblonga n. sp. and V. velata n. sp., Thecofilosea, Cercozoa). Protist 2020; 171:125731. [PMID: 32464531 DOI: 10.1016/j.protis.2020.125731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 02/05/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
Ventrifissura is a group of poorly studied heterotrophic biflagellates in the phylum Cercozoa. Despite a phylogenetic placement with only weak support and a lack of ultrastructural data, Ventrifissura was assigned to Thecofilosea. In the presented study, we established cultures of two novel species of Ventrifissura (V. oblonga n. sp. and V. velata n. sp.) isolated from coastal marine environments in Japan, and performed light and electron microscopy observations and molecular phylogenetic analysis. Transmission electron microscopy revealed that V. oblonga shares several ultrastructural characteristics with thecofilosean flagellates, including permanently condensed chromosomes, a extracellular theca, and slender extrusomes. Molecular phylogenetic analysis could not resolve the phylogenetic position, but the possibility that Ventrifissura clusters into Ventrifilosa was supported by approximately unbiased tests. Based on both morphological and phylogenetic findings, we concluded that Ventrifissura is a basal lineage of Thecofilosea.
Collapse
Affiliation(s)
- Takashi Shiratori
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan.
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
37
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020. [PMID: 31900730 DOI: 10.1007/s00709-019-01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
38
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020; 257:621-753. [PMID: 31900730 PMCID: PMC7203096 DOI: 10.1007/s00709-019-01442-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/19/2019] [Indexed: 05/02/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
39
|
Dumack K, Siemensma F. Shell Colour in Cercozoa; a Simple Trait to Distinguish Thecofilosea from Imbricatea? Protist 2020; 171:125718. [DOI: 10.1016/j.protis.2020.125718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 01/29/2023]
|
40
|
Siemensma F, Dumack K. SSU rDNA Phylogeny Indicates the Scale-lacking Trivalvulariida ord. nov. as a Sister Group to the Euglyphida (Cercozoa, Rhizaria). Protist 2020; 171:125701. [DOI: 10.1016/j.protis.2019.125701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/21/2023]
|
41
|
Dumack K, Fiore‐Donno AM, Bass D, Bonkowski M. Making sense of environmental sequencing data: Ecologically important functional traits of the protistan groups Cercozoa and Endomyxa (Rhizaria). Mol Ecol Resour 2019; 20:398-403. [DOI: 10.1111/1755-0998.13112] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Kenneth Dumack
- Institute of Zoology Terrestrial Ecology Cluster of Excellence on Plant Sciences (CEPLAS) University of Cologne Cologne Germany
| | - Anna Maria Fiore‐Donno
- Institute of Zoology Terrestrial Ecology Cluster of Excellence on Plant Sciences (CEPLAS) University of Cologne Cologne Germany
| | - David Bass
- Centre for Environment Fisheries and Aquaculture Science (Cefas) Weymouth UK
- Department of Life Sciences The Natural History Museum London UK
| | - Michael Bonkowski
- Institute of Zoology Terrestrial Ecology Cluster of Excellence on Plant Sciences (CEPLAS) University of Cologne Cologne Germany
| |
Collapse
|
42
|
The architecture of the Plasmodiophora brassicae nuclear and mitochondrial genomes. Sci Rep 2019; 9:15753. [PMID: 31673019 PMCID: PMC6823432 DOI: 10.1038/s41598-019-52274-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/15/2019] [Indexed: 11/09/2022] Open
Abstract
Plasmodiophora brassicae is a soil-borne pathogen that attacks roots of cruciferous plants causing clubroot disease. The pathogen belongs to the Plasmodiophorida order in Phytomyxea. Here we used long-read SMRT technology to clarify the P. brassicae e3 genomic constituents along with comparative and phylogenetic analyses. Twenty contigs representing the nuclear genome and one mitochondrial (mt) contig were generated, together comprising 25.1 Mbp. Thirteen of the 20 nuclear contigs represented chromosomes from telomere to telomere characterized by [TTTTAGGG] sequences. Seven active gene candidates encoding synaptonemal complex-associated and meiotic-related protein homologs were identified, a finding that argues for possible genetic recombination events. The circular mt genome is large (114,663 bp), gene dense and intron rich. It shares high synteny with the mt genome of Spongospora subterranea, except in a unique 12 kb region delimited by shifts in GC content and containing tandem minisatellite- and microsatellite repeats with partially palindromic sequences. De novo annotation identified 32 protein-coding genes, 28 structural RNA genes and 19 ORFs. ORFs predicted in the repeat-rich region showed similarities to diverse organisms suggesting possible evolutionary connections. The data generated here form a refined platform for the next step involving functional analysis, all to clarify the complex biology of P. brassicae.
Collapse
|
43
|
Burki F, Roger AJ, Brown MW, Simpson AGB. The New Tree of Eukaryotes. Trends Ecol Evol 2019; 35:43-55. [PMID: 31606140 DOI: 10.1016/j.tree.2019.08.008] [Citation(s) in RCA: 412] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023]
Abstract
For 15 years, the eukaryote Tree of Life (eToL) has been divided into five to eight major groupings, known as 'supergroups'. However, the tree has been profoundly rearranged during this time. The new eToL results from the widespread application of phylogenomics and numerous discoveries of major lineages of eukaryotes, mostly free-living heterotrophic protists. The evidence that supports the tree has transitioned from a synthesis of molecular phylogenetics and biological characters to purely molecular phylogenetics. Most current supergroups lack defining morphological or cell-biological characteristics, making the supergroup label even more arbitrary than before. Going forward, the combination of traditional culturing with maturing culture-free approaches and phylogenomics should accelerate the process of completing and resolving the eToL at its deepest levels.
Collapse
Affiliation(s)
- Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA; Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS, USA
| | - Alastair G B Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
44
|
Strassert JFH, Jamy M, Mylnikov AP, Tikhonenkov DV, Burki F. New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life. Mol Biol Evol 2019; 36:757-765. [PMID: 30668767 PMCID: PMC6844682 DOI: 10.1093/molbev/msz012] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The resolution of the broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these “orphan” groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments. Telonemia has been hypothesized to represent a deeply diverging eukaryotic phylum but no consensus exists as to where it is placed in the tree. Here, we established cultures and report the phylogenomic analyses of three new transcriptome data sets for divergent telonemid lineages. All our phylogenetic reconstructions, based on 248 genes and using site-heterogeneous mixture models, robustly resolve the evolutionary origin of Telonemia as sister to the Sar supergroup. This grouping remains well supported when as few as 60% of the genes are randomly subsampled, thus is not sensitive to the sets of genes used but requires a minimal alignment length to recover enough phylogenetic signal. Telonemia occupies a crucial position in the tree to examine the origin of Sar, one of the most lineage-rich eukaryote supergroups. We propose the moniker “TSAR” to accommodate this new mega-assemblage in the phylogeny of eukaryotes.
Collapse
Affiliation(s)
- Jürgen F H Strassert
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Mahwash Jamy
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Alexander P Mylnikov
- Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia
| | - Denis V Tikhonenkov
- Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia
| | - Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Corresponding author: E-mail:
| |
Collapse
|
45
|
Irwin NA, Tikhonenkov DV, Hehenberger E, Mylnikov AP, Burki F, Keeling PJ. Phylogenomics supports the monophyly of the Cercozoa. Mol Phylogenet Evol 2019; 130:416-423. [DOI: 10.1016/j.ympev.2018.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/06/2018] [Indexed: 01/09/2023]
|
46
|
Nick P. Ars comparandi: "molecular convergence" versus "functional homology". PROTOPLASMA 2018; 255:1263-1265. [PMID: 30120564 DOI: 10.1007/s00709-018-1301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Peter Nick
- Botanical Institute, Karlsruher Institut für Technologie, Karlsruhe, Germany.
| |
Collapse
|