1
|
Lin L, Huang L, Fan D, Hu B, Gao Y, Lian H, Zhao J, Zhang H, Chen W. Effects of the components in rice flour on thermal radical generation under microwave irradiation. Int J Biol Macromol 2016; 93:1226-1230. [PMID: 27664929 DOI: 10.1016/j.ijbiomac.2016.09.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/04/2016] [Accepted: 09/20/2016] [Indexed: 11/29/2022]
Abstract
The relationships between radical generation under microwave irradiation and the components of various types of rice flour were investigated. Electron paramagnetic resonance (EPR) spectroscopy was used to characterize the radicals found in rice flour samples. The EPR spectra revealed that several types of radical (carbon-centered, tyrosyl and semiquinone) were localized in the starch and protein fractions of the rice flour. The signal intensity of the free radicals was observed to increase exponentially with increasing microwave power and residence time. The rice bran samples exhibited the greatest free radical signal intensity, followed by the brown rice samples and the white rice samples. This finding was consistent for both the native and the microwaved samples. The ratio of rice starch to rice protein also played an important role in the generation of radicals.
Collapse
Affiliation(s)
- Lufen Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luelue Huang
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Daming Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Bo Hu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yishu Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Huizhang Lian
- Wuxi Huashun Minsheng Food Co. Ltd., Wuxi 214218, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Li H, Wan J, Ma Y, Wang Y. Reaction pathway and oxidation mechanisms of dibutyl phthalate by persulfate activated with zero-valent iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:889-897. [PMID: 27125682 DOI: 10.1016/j.scitotenv.2016.04.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
This study investigated reaction pathway and oxidation mechanisms of dibutyl phthalate (DBP) by persulfate (PS) activated with zero-valent iron (ZVI). The DBP degradation was studied at three pH values (acidic, neutral and basic) in the presence of different organic scavengers. Using a chemical probe method, both sulfate radical (SO4(-)) and hydroxyl radical (·OH) were found to be primary oxidants at pH3.0 and pH7.0, respectively while ·OH was the major specie to oxidize DBP at pH11.0. A similar result was found in an experiment of Electron Spin Resonance spin-trapping where in addition to OH, superoxide radical (O2(-)) was detected at pH11.0. The transformation of degradation products including dimethyl phthalate (DMP), diethyl phthalate (DEP), phthalic anhydride, and acetophenone exhibited diverse variation during the reaction processes. The phthalic anhydride concentration appeared to be maximum at all pHs. Another eleven intermediate products were also found at pH3.0 by GC-MS and HPLC analysis, and their degradation mechanisms and pathways were proposed. It was suggested that dealkylation, hydroxylation, decarboxylation and hydrogen extraction were the dominant degradation mechanisms of DBP at pH3.0.
Collapse
Affiliation(s)
- Huanxuan Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640, PR China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640, PR China; State Key Lab Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Yongwen Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640, PR China; State Key Lab Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640, PR China
| |
Collapse
|
3
|
Paviani V, Queiroz RF, Marques EF, Di Mascio P, Augusto O. Production of lysozyme and lysozyme-superoxide dismutase dimers bound by a ditryptophan cross-link in carbonate radical-treated lysozyme. Free Radic Biol Med 2015. [PMID: 26197052 DOI: 10.1016/j.freeradbiomed.2015.07.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite extensive investigation of the irreversible oxidations undergone by proteins in vitro and in vivo, the products formed from the oxidation of Trp residues remain incompletely understood. Recently, we characterized a ditryptophan cross-link produced by the recombination of hSOD1-tryptophanyl radicals generated from attack of the carbonate radical produced during the bicarbonate-dependent peroxidase activity of the enzyme. Here, we examine whether the ditryptophan cross-link is produced by the attack of the carbonate radical on proteins other than hSOD1. To this end, we treated hen egg white lysozyme with photolytically and enzymatically generated carbonate radical. The radical yields were estimated and the lysozyme modifications were analyzed by SDS-PAGE, western blot, enzymatic activity and MS/MS analysis. Lysozyme oxidation by both systems resulted in its inactivation and dimerization. Lysozyme treated with the photolytic system presented monomers oxidized to hydroxy-tryptophan at Trp(28) and Trp(123) and N-formylkynurenine at Trp(28), Trp(62) and Trp(123). Lysozyme treated with the enzymatic system rendered monomers oxidized to N-formylkynurenine at Trp(28). The dimers were characterized as lysozyme-Trp(28)-Trp(28)-lysozyme and lysozyme-Trp(28)-Trp(32)-hSOD1. The results further demonstrate that the carbonate radical is prone to causing biomolecule cross-linking and hence, may be a relevant player in pathological mechanisms. The possibility of exploring the formation of ditryptophan cross-links as a carbonate radical biomarker is discussed.
Collapse
Affiliation(s)
- Verônica Paviani
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo
| | - Raphael F Queiroz
- Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia
| | - Emerson F Marques
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo
| | - Ohara Augusto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo.
| |
Collapse
|
4
|
Iqbal A, Paviani V, Moretti AI, Laurindo FR, Augusto O. Oxidation, inactivation and aggregation of protein disulfide isomerase promoted by the bicarbonate-dependent peroxidase activity of human superoxide dismutase. Arch Biochem Biophys 2014; 557:72-81. [DOI: 10.1016/j.abb.2014.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 06/05/2014] [Accepted: 06/11/2014] [Indexed: 11/29/2022]
|
5
|
Abstract
Acute lung injury (ALI) and its more severe form of clinical manifestation, the acute respiratory distress syndrome is associated with significant dysfunction in air exchange due to inflammation of the lung parenchyma. Several factors contribute to the inflammatory process, including hypoxia (inadequate oxygen), hyperoxia (higher than normal partial pressure of oxygen), inflammatory mediators (such as cytokines), infections (viral and bacterial), and environmental conditions (such as cigarette smoke or noxious gases). However, studies over the past several decades suggest that oxidants formed in the various cells of the lung including endothelial, alveolar, and epithelial cells as well as lung macrophages and neutrophils in response to the factors mentioned above mediate the pathogenesis of ALI. Oxidants modify cellular proteins, lipids, carbohydrates, and DNA to cause their aberrant function. For example, oxidation of lipids changes membrane permeability. Interestingly, recent studies also suggest that spatially and temporally regulated production of oxidants plays an important role antimicrobial defense and immunomodulatory function (such as transcription factor activation). To counteract the oxidants an arsenal of antioxidants exists in the lung to maintain the redox status, but when overwhelmed tissue injury and exacerbation of inflammation occurs. We present below the current understanding of the pathogenesis of oxidant-mediated ALI.
Collapse
Affiliation(s)
- J Vidya Sarma
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
6
|
Leo G, Altucci C, Bourgoin-Voillard S, Gravagnuolo AM, Esposito R, Marino G, Costello CE, Velotta R, Birolo L. Ultraviolet laser-induced cross-linking in peptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1660-8. [PMID: 23754800 PMCID: PMC3882510 DOI: 10.1002/rcm.6610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 05/29/2023]
Abstract
RATIONALE The aim of this study was to demonstrate, and to characterize by high-resolution mass spectrometry that it is possible to preferentially induce covalent cross-links in peptides by using high-energy femtosecond ultraviolet (UV) laser pulses. The cross-link is readily formed only when aromatic amino acids are present in the peptide sequence. METHODS Three peptides, xenopsin, angiotensin I, and interleukin, individually or in combination, were exposed to high-energy femtosecond UV laser pulses, either alone or in the presence of spin trapping molecules, the reaction products being characterized by high resolution mass spectrometry. RESULTS High-resolution mass spectrometry and spin trapping strategies showed that cross-linking occurs readily, proceeds via a radical mechanism, and is the highly dominant reaction, proceeding without causing significant photo-damage in the investigated range of experimental parameters. CONCLUSIONS High-energy femtosecond UV laser pulses can be used to induce covalent cross-links between aromatic amino acids in peptides, overcoming photo-oxidation processes, that predominate as the mean laser pulse intensity approaches illumination conditions achievable with conventional UV light sources.
Collapse
Affiliation(s)
- Gabriella Leo
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”, Complesso Universitario di Monte S. Angelo, 80126-Napoli, Italy
| | - Carlo Altucci
- Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”, Complesso Universitario di Monte S. Angelo, 80126-Napoli, Italy
| | - Sandrine Bourgoin-Voillard
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Alfredo M. Gravagnuolo
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”, Complesso Universitario di Monte S. Angelo, 80126-Napoli, Italy
| | - Rosario Esposito
- Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”, Complesso Universitario di Monte S. Angelo, 80126-Napoli, Italy
| | - Gennaro Marino
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”, Complesso Universitario di Monte S. Angelo, 80126-Napoli, Italy
| | - Catherine E. Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Raffaele Velotta
- Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”, Complesso Universitario di Monte S. Angelo, 80126-Napoli, Italy
| | - Leila Birolo
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”, Complesso Universitario di Monte S. Angelo, 80126-Napoli, Italy
| |
Collapse
|
7
|
Vatansever F, de Melo WCMA, Avci P, Vecchio D, Sadasivam M, Gupta A, Chandran R, Karimi M, Parizotto NA, Yin R, Tegos GP, Hamblin MR. Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 2013; 37:955-89. [PMID: 23802986 DOI: 10.1111/1574-6976.12026] [Citation(s) in RCA: 578] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) can attack a diverse range of targets to exert antimicrobial activity, which accounts for their versatility in mediating host defense against a broad range of pathogens. Most ROS are formed by the partial reduction in molecular oxygen. Four major ROS are recognized comprising superoxide (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen ((1)O2), but they display very different kinetics and levels of activity. The effects of O2•- and H2O2 are less acute than those of •OH and (1)O2, because the former are much less reactive and can be detoxified by endogenous antioxidants (both enzymatic and nonenzymatic) that are induced by oxidative stress. In contrast, no enzyme can detoxify •OH or (1)O2, making them extremely toxic and acutely lethal. The present review will highlight the various methods of ROS formation and their mechanism of action. Antioxidant defenses against ROS in microbial cells and the use of ROS by antimicrobial host defense systems are covered. Antimicrobial approaches primarily utilizing ROS comprise both bactericidal antibiotics and nonpharmacological methods such as photodynamic therapy, titanium dioxide photocatalysis, cold plasma, and medicinal honey. A brief final section covers reactive nitrogen species and related therapeutics, such as acidified nitrite and nitric oxide-releasing nanoparticles.
Collapse
Affiliation(s)
- Fatma Vatansever
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Carballal S, Bartesaghi S, Radi R. Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite. Biochim Biophys Acta Gen Subj 2013; 1840:768-80. [PMID: 23872352 DOI: 10.1016/j.bbagen.2013.07.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/25/2013] [Accepted: 07/04/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND Peroxynitrite, the product of the reaction between superoxide radicals and nitric oxide, is an elusive oxidant with a short half-life and a low steady-state concentration in biological systems; it promotes nitroxidative damage. SCOPE OF REVIEW We will consider kinetic and mechanistic aspects that allow rationalizing the biological fate of peroxynitrite from data obtained by a combination of methods that include fast kinetic techniques, electron paramagnetic resonance and kinetic simulations. In addition, we provide a quantitative analysis of peroxynitrite production rates and conceivable steady-state levels in living systems. MAJOR CONCLUSIONS The preferential reactions of peroxynitrite in vivo include those with carbon dioxide, thiols and metalloproteins; its homolysis represents only <1% of its fate. To note, carbon dioxide accounts for a significant fraction of peroxynitrite consumption leading to the formation of strong one-electron oxidants, carbonate radicals and nitrogen dioxide. On the other hand, peroxynitrite is rapidly reduced by peroxiredoxins, which represent efficient thiol-based peroxynitrite detoxification systems. Glutathione, present at mM concentration in cells and frequently considered a direct scavenger of peroxynitrite, does not react sufficiently fast with it in vivo; glutathione mainly inhibits peroxynitrite-dependent processes by reactions with secondary radicals. The detection of protein 3-nitrotyrosine, a molecular footprint, can demonstrate peroxynitrite formation in vivo. Basal peroxynitrite formation rates in cells can be estimated in the order of 0.1 to 0.5μMs(-1) and its steady-state concentration at ~1nM. GENERAL SIGNIFICANCE The analysis provides a handle to predict the preferential fate and steady-state levels of peroxynitrite in living systems. This is useful to understand pathophysiological aspects and pharmacological prospects connected to peroxynitrite. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Sebastián Carballal
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | | |
Collapse
|
9
|
Gomez-Mejiba SE, Zhai Z, Della-Vedova MC, Muñoz MD, Chatterjee S, Towner RA, Hensley K, Floyd RA, Mason RP, Ramirez DC. Immuno-spin trapping from biochemistry to medicine: advances, challenges, and pitfalls. Focus on protein-centered radicals. Biochim Biophys Acta Gen Subj 2013; 1840:722-9. [PMID: 23644035 DOI: 10.1016/j.bbagen.2013.04.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/24/2013] [Accepted: 04/27/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Immuno-spin trapping (IST) is based on the reaction of a spin trap with a free radical to form a stable nitrone adduct, followed by the use of antibodies, rather than traditional electron paramagnetic resonance spectroscopy, to detect the nitrone adduct. IST has been successfully applied to mechanistic in vitro studies, and recently, macromolecule-centered radicals have been detected in models of drug-induced agranulocytosis, hepatotoxicity, cardiotoxicity, and ischemia/reperfusion, as well as in models of neurological, metabolic and immunological diseases. SCOPE OF THE REVIEW To critically evaluate advances, challenges, and pitfalls as well as the scientific opportunities of IST as applied to the study of protein-centered free radicals generated in stressed organelles, cells, tissues and animal models of disease and exposure. MAJOR CONCLUSIONS Because the spin trap has to be present at high enough concentrations in the microenvironment where the radical is formed, the possible effects of the spin trap on gene expression, metabolism and cell physiology have to be considered in the use of IST and in the interpretation of results. These factors have not yet been thoroughly dealt with in the literature. GENERAL SIGNIFICANCE The identification of radicalized proteins during cell/tissue response to stressors will help define their role in the complex cellular response to stressors and pathogenesis; however, the fidelity of spin trapping/immuno-detection and the effects of the spin trap on the biological system should be considered. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Sandra E Gomez-Mejiba
- Laboratory of Experimental Medicine and Therapeutics, Institute Multidisciplinary of Biological Investigations-San Luis (IMIBIO-SL), National Bureau of Science and Technology (CONICET) and National University of San Luis, San Luis, 5700 San Luis, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Domingues P, Fonseca C, Reis A, Domingues MRM. Identification of isomeric spin adducts of Leu-Tyr and Tyr-Leu free radicals using liquid chromatography-tandem mass spectrometry. Biomed Chromatogr 2011; 26:51-60. [DOI: 10.1002/bmc.1624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 01/22/2011] [Accepted: 01/24/2011] [Indexed: 01/08/2023]
Affiliation(s)
- Pedro Domingues
- Mass Spectrometry Centre; Department of Chemistry; University of Aveiro; 3810-193; Aveiro; Portugal
| | - Conceição Fonseca
- Mass Spectrometry Centre; Department of Chemistry; University of Aveiro; 3810-193; Aveiro; Portugal
| | - Ana Reis
- Mass Spectrometry Centre; Department of Chemistry; University of Aveiro; 3810-193; Aveiro; Portugal
| | - M. Rosário M. Domingues
- Mass Spectrometry Centre; Department of Chemistry; University of Aveiro; 3810-193; Aveiro; Portugal
| |
Collapse
|
11
|
Lardinois OM, Chatterjee S, Mason RP, Tomer KB, Deterding LJ. Biotinylated analogue of the spin-trap 5,5-dimethyl-1-pyrroline-N-oxide for the detection of low-abundance protein radicals by mass spectrometry. Anal Chem 2010; 82:9155-8. [PMID: 20957988 DOI: 10.1021/ac1023183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Protein radicals are implicated in oxidative stress and are associated with a wide range of diseases and disorders. In the present work, we describe the specific application of a newly synthesized nitrone spin trap, Bio-SS-DMPO, for the detection of these highly reactive species by mass spectrometry (MS). Bio-SS-DMPO is a biotinylated analogue of the spin-trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) that allows for specific capture of the protein(s)/peptide(s) labeled by the spin-trap on a (strept)avidin-bound solid matrix. The disulfide bond in the linker arm joining biotin to DMPO can be cleaved to release captured spin-adduct peptide from the solid matrix. This (strept)avidin-based affinity purification reduces the complexity of the samples prior to MS analyses, thereby facilitating the location of the sites of spin trap addition. In addition, the biotin moiety on the spin-trap can efficiently be probed with (strept)avidin-conjugated reporter. This offers an effective means to visualize the presence of DMPO-adducted proteins in intact cells.
Collapse
|
12
|
On the mechanisms of phenothiazine-induced mitochondrial permeability transition: Thiol oxidation, strict Ca2+ dependence, and cyt c release. Biochem Pharmacol 2010; 80:1284-95. [DOI: 10.1016/j.bcp.2010.06.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 06/29/2010] [Accepted: 06/30/2010] [Indexed: 01/14/2023]
|
13
|
Lardinois OM, Maltby DA, Medzihradszky KF, de Montellano PRO, Tomer KB, Mason RP, Deterding LJ. Spin scavenging analysis of myoglobin protein-centered radicals using stable nitroxide radicals: characterization of oxoammonium cation-induced modifications. Chem Res Toxicol 2009; 22:1034-49. [PMID: 19449826 DOI: 10.1021/tx9000094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Spin scavenging combined with chromatographic and mass spectrometric procedures can, in principle, be employed to detect and identify protein-based radicals within complex biological matrices. This approach is based on the well-known ability of stable synthetic nitroxide radicals to scavenge carbon-centered radicals, forming stable diamagnetic addition products. Hence, characterization of these addition products would allow for the identification of specific free radicals. In the present work, we have explored the use of the stable nitroxide radical 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL) in scavenging protein-based radicals generated in a horse heart metmyoglobin/hydrogen peroxide (metMb/H(2)O(2)) system. Inclusion of a substoichiometric amount of TEMPOL in the metMb/H(2)O(2) system resulted in a complete loss of peroxyl and tyrosyl radical signals and effectively inhibited the formation of oxidatively damaged heme species, as monitored by electron paramagnetic resonance and reversed-phase liquid chromatography. Scavenging of globin radicals by TEMPOL did not lead to the formation of stable diamagnetic addition adducts; in fact, reversed-phase liquid chromatographic studies and oxygen electrode measurements indicated that TEMPOL acts as a catalyst and is recycled in this system. The oxoammonium cation generated in the course of this reaction initiated secondary reactions resulting in the formation of a free carbonyl on the N-terminal Gly-residue of the protein. This oxidative deamination was confirmed through the combined use of reversed-phase liquid chromatographic purification, tandem MS experiments, and chemical analysis (e.g., by use of 2,4-dinitrophenyl hydrazine). The results reveal the pitfalls inherent in using stable nitroxide radicals such as TEMPOL to identify sites of radical formation on hemoproteins.
Collapse
Affiliation(s)
- Olivier M Lardinois
- Laboratories of Pharmacology and Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
de Santana H, Paesano A, da Costa ACS, di Mauro E, de Souza IG, Ivashita FF, de Souza CMD, Zaia CTBV, Zaia DAM. Cysteine, thiourea and thiocyanate interactions with clays: FT-IR, Mössbauer and EPR spectroscopy and X-ray diffractometry studies. Amino Acids 2009; 38:1089-99. [PMID: 19579002 DOI: 10.1007/s00726-009-0318-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 06/19/2009] [Indexed: 10/20/2022]
Abstract
The present study examined the adsorption of cysteine, thiourea and thiocyanate on bentonite and montmorillonite at two different pHs (3.00, 8.00). The conditions used here are closer to those of prebiotic earth. As shown by FT-IR, Mössbauer and EPR spectroscopy and X-ray diffractometry, the most important finding of this work is that cysteine and thiourea penetrate into the interlayer of the clays and reduce Fe(3+) to Fe(2+), and as consequence, cystine and c,c'-dithiodiformamidinium ion are formed. This mechanism resembles that which occurs with aconitase. This is a very important result for prebiotic chemistry; we should think about clays not just sink of molecules, but as primitive vessels of production of biomolecules. At pH 8.00, an increasing expansion was observed in the following order for both minerals: thiourea > thiocyanate > cysteine. At pH 3.00, the same order was not observed and thiourea had an opposite behavior, being the compound producing the lowest expansion. Mössbauer spectroscopy showed that at pH 8.00, the proportion of Fe(2+) ions in bentonite increased, doubling for thiourea, or more than doubling for cysteine, in both clays. However, at pH 3.00, cysteine and thiourea did not change significantly the relative amount of Fe(2+) and Fe(3+) ions, when compared to clays without adsorption. For thiocyanate, the amount of Fe(2+) produced was independent of the pH or clay used, probably because the interlayers of clays are very acidic and HSCN formed does not reduce Fe(3+) to Fe(2+). For the interaction of thiocyanate with the clays, it was not possible to identify any potential compound formed. For the samples of bentonite and montmorillonite at pH 8.00 with cysteine, EPR spectroscopy showed that intensity of the lines due to Fe(3+) decreased because the reaction of Fe(3+)/cysteine. Intensity of EPR lines did not change when the samples of bentonite at pH 3.00 with and without cysteine were compared. These results are in accordance with those obtained using Mössbauer and FT-IR spectroscopy.
Collapse
Affiliation(s)
- Henrique de Santana
- Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Vaz SM, Prado FM, Di Mascio P, Augusto O. Oxidation and nitration of ribonuclease and lysozyme by peroxynitrite and myeloperoxidase. Arch Biochem Biophys 2009; 484:127-33. [DOI: 10.1016/j.abb.2008.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 12/22/2008] [Accepted: 12/22/2008] [Indexed: 11/27/2022]
|
16
|
Lardinois OM, Detweiler CD, Tomer KB, Mason RP, Deterding LJ. Identifying the site of spin trapping in proteins by a combination of liquid chromatography, ELISA, and off-line tandem mass spectrometry. Free Radic Biol Med 2008; 44:893-906. [PMID: 18160050 PMCID: PMC2268891 DOI: 10.1016/j.freeradbiomed.2007.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/30/2007] [Accepted: 11/23/2007] [Indexed: 12/18/2022]
Abstract
An off-line mass spectrometry method that combines immuno-spin trapping and chromatographic procedures has been developed for selective detection of the nitrone spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) covalently attached to proteins, an attachment which occurs only subsequent to DMPO trapping of free radicals. In this technique, the protein-DMPO nitrone adducts are digested to peptides with proteolytic agents, peptides from the enzymatic digest are separated by HPLC, and enzyme-linked immunosorbent assays (ELISA) using polyclonal anti-DMPO nitrone antiserum are used to detect the eluted HPLC fractions that contain DMPO nitrone adducts. The fractions showing positive ELISA signals are then concentrated and characterized by tandem mass spectrometry (MS/MS). This method, which constitutes the first liquid chromatography-ELISA-mass spectrometry (LC-ELISA-MS)-based strategy for selective identification of DMPO-trapped protein residues in complex peptide mixtures, facilitates location and preparative fractionation of DMPO nitrone adducts for further structural characterization. The strategy is demonstrated for human hemoglobin, horse heart myoglobin, and sperm whale myoglobin, three globin proteins known to form DMPO-trappable protein radicals on treatment with H(2)O(2). The results demonstrate the power of the new experimental strategy to select DMPO-labeled peptides and identify sites of DMPO covalent attachments.
Collapse
Affiliation(s)
- Olivier M. Lardinois
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, PO Box 12233, MD F0-01, Research Triangle Park, NC 27709, USA
| | - Charles D. Detweiler
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, PO Box 12233, MD F0-01, Research Triangle Park, NC 27709, USA
| | - Kenneth B. Tomer
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, PO Box 12233, MD F0-01, Research Triangle Park, NC 27709, USA
| | - Ronald P. Mason
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, PO Box 12233, MD F0-01, Research Triangle Park, NC 27709, USA
| | - Leesa J. Deterding
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, PO Box 12233, MD F0-01, Research Triangle Park, NC 27709, USA
- †Author to whom correspondence should be addressed: Dr. Leesa J. Deterding, Institute of Environmental Health Sciences, PO Box 12233, MD F0-03, T.W. Alexander Drive, Research Triangle Park, NC 27709, TEL: (919) 541-3009, FAX: (919) 541-0220,
| |
Collapse
|
17
|
|