1
|
Uyama T, Sasaki S, Sikder MM, Okada-Iwabu M, Ueda N. The PLAAT family as phospholipid-related enzymes. Prog Lipid Res 2025; 98:101331. [PMID: 40074088 DOI: 10.1016/j.plipres.2025.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
The phospholipase A and acyltransferase (PLAAT) family is a group of structurally related proteins that are conserved among vertebrates. In humans, the family comprises five members (PLAAT1-5), which share common domain structures, and functions as phospholipase A1/A2 and acyltransferase enzymes. Regarding acyltransferase activities, PLAATs produce N-acyl-phosphatidylethanolamines, which serve as the precursor of bioactive N-acylethanolamines (NAEs). Recent evidence strongly suggests that PLAAT proteins play a crucial role in maintaining homeostasis in various organelles, such as the endoplasmic reticulum, lysosomes, mitochondria, and peroxisomes. In this process, PLAAT proteins bind to organelles and degrade them in an enzyme activity-dependent manner. Their physiological significance was revealed by the inability of PLAAT-deficient animals to degrade organelles during the maturation of the eye lens, resulting in the development of cataracts. Furthermore, the deficiency of PLAAT1, 3, and 5 in mice caused resistance to high-fat diet-induced fatty liver, the lean phenotype represented by a marked decrease in adipose tissue mass, and the exacerbation of testicular inflammation due to decreased levels of anti-inflammatory NAEs, respectively. In addition, human PLAAT3 was identified as a causative gene for lipodystrophy. We herein provide an overview of the molecular and biological properties of PLAAT proteins.
Collapse
Affiliation(s)
- Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| | - Sumire Sasaki
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Mohammad Mamun Sikder
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Miki Okada-Iwabu
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| |
Collapse
|
2
|
Chen YN, Shih CY, Guo SL, Liu CY, Shen MH, Chang SC, Ku WC, Huang CC, Huang CJ. Potential prognostic and predictive value of UBE2N, IMPDH1, DYNC1LI1 and HRASLS2 in colorectal cancer stool specimens. Biomed Rep 2023; 18:22. [PMID: 36846616 PMCID: PMC9945078 DOI: 10.3892/br.2023.1604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/20/2022] [Indexed: 02/10/2023] Open
Abstract
Colorectal cancer (CRC) is the most common gastrointestinal malignancy worldwide. The poor specificity and sensitivity of the fecal occult blood test has prompted the development of CRC-related genetic markers for CRC screening and treatment. Gene expression profiles in stool specimens are effective, sensitive and clinically applicable. Herein, a novel advantage of using cells shed from the colon is presented for cost-effective CRC screening. Molecular panels were generated through a series of leave-one-out cross-validation and discriminant analyses. A logistic regression model following reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry was used to validate a specific panel for CRC prediction. The panel, consisting of ubiquitin-conjugating enzyme E2 N (UBE2N), inosine monophosphate dehydrogenase 1 (IMPDH1), dynein cytoplasmic 1 light intermediate chain 1 (DYNC1LI1) and phospholipase A and acyltransferase 2 (HRASLS2), accurately recognized patients with CRC and could thus be further investigated as a potential prognostic and predictive biomarker for CRC. UBE2N, IMPDH1 and DYNC1LI1 expression levels were upregulated and HRASLS2 expression was downregulated in CRC tissues. The predictive power of the panel was 96.6% [95% confidence interval (CI), 88.1-99.6%] sensitivity and 89.7% (95% CI, 72.6-97.8%) specificity at a predicted cut-off value at 0.540, suggesting that this four-gene panel testing of stool specimens can faithfully mirror the state of the colon. On the whole, the present study demonstrates that screening for CRC or cancer detection in stool specimens collected non-invasively does not require the inclusion of an excessive number of genes, and colonic defects can be identified via the detection of an aberrant protein in the mucosa or submucosa.
Collapse
Affiliation(s)
- Yu-Nung Chen
- Division of Colorectal Surgery, Department of Surgery, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Cheng-Yen Shih
- Division of Gastroenterology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei 22174, Taiwan, R.O.C
| | - Shu-Lin Guo
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Department of Anesthesiology, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C,Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei 11490, Taiwan, R.O.C
| | - Chih-Yi Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Division of Pathology, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan, R.O.C
| | - Ming-Hung Shen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Department of Surgery, Fu Jen Catholic University Hospital, New Taipei 24352, Taiwan, R.O.C.,PhD Program in Nutrition and Food Science, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Shih-Chang Chang
- Division of Colorectal Surgery, Department of Surgery, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan, R.O.C.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10090, Taiwan, R.O.C.,Correspondence to: Dr Chi-Cheng Huang, Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Taipei 11217, Taiwan, R.O.C.
| | - Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C.,Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Correspondence to: Dr Chi-Cheng Huang, Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Taipei 11217, Taiwan, R.O.C.
| |
Collapse
|
3
|
Sers C, Schäfer R. Silencing effects of mutant RAS signalling on transcriptomes. Adv Biol Regul 2023; 87:100936. [PMID: 36513579 DOI: 10.1016/j.jbior.2022.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Mutated genes of the RAS family encoding small GTP-binding proteins drive numerous cancers, including pancreatic, colon and lung tumors. Besides the numerous effects of mutant RAS gene expression on aberrant proliferation, transformed phenotypes, metabolism, and therapy resistance, the most striking consequences of chronic RAS activation are changes of the genetic program. By performing systematic gene expression studies in cellular models that allow comparisons of pre-neoplastic with RAS-transformed cells, we and others have estimated that 7 percent or more of all transcripts are altered in conjunction with the expression of the oncogene. In this context, the number of up-regulated transcripts approximates that of down-regulated transcripts. While up-regulated transcription factors such as MYC, FOSL1, and HMGA2 have been identified and characterized as RAS-responsive drivers of the altered transcriptome, the suppressed factors have been less well studied as potential regulators of the genetic program and transformed phenotype in the breadth of their occurrence. We therefore have collected information on downregulated RAS-responsive factors and discuss their potential role as tumor suppressors that are likely to antagonize active cancer drivers. To better understand the active mechanisms that entail anti-RAS function and those that lead to loss of tumor suppressor activity, we focus on the tumor suppressor HREV107 (alias PLAAT3 [Phospholipase A and acyltransferase 3], PLA2G16 [Phospholipase A2, group XVI] and HRASLS3 [HRAS-like suppressor 3]). Inactivating HREV107 mutations in tumors are extremely rare, hence epigenetic causes modulated by the RAS pathway are likely to lead to down-regulation and loss of function.
Collapse
Affiliation(s)
- Christine Sers
- Laboratory of Molecular Tumor Pathology and systems Biology, Institute of Pathology, Charité Universitätstmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany; German Cancer Consortium, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Reinhold Schäfer
- Comprehensive Cancer Center, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany; German Cancer Consortium, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res 2023; 89:101194. [PMID: 36150527 DOI: 10.1016/j.plipres.2022.101194] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023]
Abstract
N-acylethanolamines (NAEs), including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), N-arachidonoylethanolamine (AEA, anandamide), N-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB1 and CB2 receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| |
Collapse
|
5
|
Chatterjee S, Zhou J, Dasgupta R, Cramer-Blok A, Timmer M, van der Stelt M, Ubbink M. Protein Dynamics Influence the Enzymatic Activity of Phospholipase A/Acyltransferases 3 and 4. Biochemistry 2021; 60:1178-1190. [PMID: 33749246 PMCID: PMC8154263 DOI: 10.1021/acs.biochem.0c00974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/04/2021] [Indexed: 11/29/2022]
Abstract
Phospholipase A/acyltransferase 3 (PLAAT3) and PLAAT4 are enzymes involved in the synthesis of bioactive lipids. Despite sequential and structural similarities, the two enzymes differ in activity and specificity. The relation between the activity and dynamics of the N-terminal domains of PLAAT3 and PLAAT4 was studied. PLAAT3 has a much higher melting temperature and exhibits less nanosecond and millisecond dynamics in the active site, in particular in loop L2(B6), as shown by NMR spectroscopy and molecular dynamics calculations. Swapping the L2(B6) loops between the two PLAAT enzymes results in strongly increased phospholipase activity in PLAAT3 but no reduction in PLAAT4 activity, indicating that this loop contributes to the low activity of PLAAT3. The results show that, despite structural similarity, protein dynamics differ substantially between the PLAAT variants, which can help to explain the activity and specificity differences.
Collapse
Affiliation(s)
- Soumya
Deep Chatterjee
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Juan Zhou
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Rubin Dasgupta
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Anneloes Cramer-Blok
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Mario van der Stelt
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| |
Collapse
|
6
|
Zhou J, Mock ED, Al Ayed K, Di X, Kantae V, Burggraaff L, Stevens AF, Martella A, Mohr F, Jiang M, van der Wel T, Wendel TJ, Ofman TP, Tran Y, de Koster N, van Westen GJP, Hankemeier T, van der Stelt M. Structure-Activity Relationship Studies of α-Ketoamides as Inhibitors of the Phospholipase A and Acyltransferase Enzyme Family. J Med Chem 2020; 63:9340-9359. [PMID: 32787138 PMCID: PMC7498158 DOI: 10.1021/acs.jmedchem.0c00522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
The phospholipase A and acyltransferase
(PLAAT) family of cysteine
hydrolases consists of five members, which are involved in the Ca2+-independent production of N-acylphosphatidylethanolamines
(NAPEs). NAPEs are lipid precursors for bioactive N-acylethanolamines (NAEs) that are involved in various physiological
processes such as food intake, pain, inflammation, stress, and anxiety.
Recently, we identified α-ketoamides as the first pan-active
PLAAT inhibitor scaffold that reduced arachidonic acid levels in PLAAT3-overexpressing
U2OS cells and in HepG2 cells. Here, we report the structure–activity
relationships of the α-ketoamide series using activity-based
protein profiling. This led to the identification of LEI-301, a nanomolar potent inhibitor for the PLAAT family members. LEI-301 reduced the NAE levels, including anandamide, in cells
overexpressing PLAAT2 or PLAAT5. Collectively, LEI-301 may help to dissect the physiological role of the PLAATs.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Karol Al Ayed
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Xinyu Di
- Department of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Vasudev Kantae
- Department of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Lindsey Burggraaff
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Anna F Stevens
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Andrea Martella
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Florian Mohr
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Ming Jiang
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Tiemen J Wendel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Tim P Ofman
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Yvonne Tran
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Nicky de Koster
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Gerard J P van Westen
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Thomas Hankemeier
- Department of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| |
Collapse
|
7
|
Gu Y, Lin X, Kapoor A, Chow MJ, Jiang Y, Zhao K, Tang D. The Oncogenic Potential of the Centromeric Border Protein FAM84B of the 8q24.21 Gene Desert. Genes (Basel) 2020; 11:genes11030312. [PMID: 32183428 PMCID: PMC7140883 DOI: 10.3390/genes11030312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
FAM84B is a risk gene in breast and prostate cancers. Its upregulation is associated with poor prognosis of prostate cancer, breast cancer, and esophageal squamous cell carcinoma. FAM84B facilitates cancer cell proliferation and invasion in vitro, and xenograft growth in vivo. The FAM84B and Myc genes border a 1.2 Mb gene desert at 8q24.21. Co-amplification of both occurs in 20 cancer types. Mice deficient of a 430 Kb fragment within the 1.2 Mb gene desert have downregulated FAM84B and Myc expressions concurrent with reduced breast cancer growth. Intriguingly, Myc works in partnership with other oncogenes, including Ras. FAM84B shares similarities with the H-Ras-like suppressor (HRASLS) family over their typical LRAT (lecithin:retinal acyltransferase) domain. This domain contains a catalytic triad, H23, H35, and C113, which constitutes the phospholipase A1/2 and O-acyltransferase activities of HRASLS1-5. These enzymatic activities underlie their suppression of Ras. FAM84B conserves H23 and H35 but not C113 with both histidine residues residing within a highly conserved motif that FAM84B shares with HRASLS1-5. Deletion of this motif abolishes FAM84B oncogenic activities. These properties suggest a collaboration of FAM84B with Myc, consistent with the role of the gene desert in strengthening Myc functions. Here, we will discuss recent research on FAM84B-derived oncogenic potential.
Collapse
Affiliation(s)
- Yan Gu
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (Y.G.); (X.L.); (M.J.C.); (Y.J.); (K.Z.)
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada;
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Xiaozeng Lin
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (Y.G.); (X.L.); (M.J.C.); (Y.J.); (K.Z.)
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada;
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Anil Kapoor
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (Y.G.); (X.L.); (M.J.C.); (Y.J.); (K.Z.)
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada;
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Mathilda Jing Chow
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (Y.G.); (X.L.); (M.J.C.); (Y.J.); (K.Z.)
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada;
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Yanzhi Jiang
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (Y.G.); (X.L.); (M.J.C.); (Y.J.); (K.Z.)
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada;
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Kuncheng Zhao
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (Y.G.); (X.L.); (M.J.C.); (Y.J.); (K.Z.)
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada;
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Damu Tang
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (Y.G.); (X.L.); (M.J.C.); (Y.J.); (K.Z.)
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada;
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- Correspondence: ; Tel.: +(905)-522-1155 (ext. 35168)
| |
Collapse
|
8
|
Wang CH, Wang LK, Wu CC, Chen ML, Lee MC, Lin YY, Tsai FM. The Ribosomal Protein RPLP0 Mediates PLAAT4-induced Cell Cycle Arrest and Cell Apoptosis. Cell Biochem Biophys 2019; 77:253-260. [DOI: 10.1007/s12013-019-00876-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022]
|
9
|
Uyama T, Tsuboi K, Ueda N. An involvement of phospholipase A/acyltransferase family proteins in peroxisome regulation and plasmalogen metabolism. FEBS Lett 2017; 591:2745-2760. [PMID: 28796890 DOI: 10.1002/1873-3468.12787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 11/09/2022]
Abstract
The H-Ras-like suppressor (HRASLS) is a protein family consisting of five members in humans. Despite their discovery as tumor suppressors, we demonstrated that all these proteins are phospholipid-metabolizing enzymes, such as phospholipase (PL) A1 /A2 and acyltransferase. We thus proposed to rename HRASLS1-5 as PLA/acyltransferase (PLAAT)-1-5. Notably, PLAATs exhibit N-acyltransferase activity to biosynthesize N-acylated ethanolamine phospholipids, including N-acyl-plasmalogen, which serve as precursors of bioactive N-acylethanolamines. Furthermore, the overexpression of PLAAT-3 in animal cells causes disappearance of peroxisomes and a remarkable reduction in plasmalogen levels. This finding might be related to the inhibitory effect of PLAAT-3 on the chaperone activity of the peroxin PEX19. In this article, we will review our recent findings about PLAAT proteins, with special reference to their roles in peroxisome biogenesis and plasmalogen metabolism.
Collapse
Affiliation(s)
- Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, Japan
| | - Kazuhito Tsuboi
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Japan
| |
Collapse
|
10
|
Mammalian enzymes responsible for the biosynthesis of N-acylethanolamines. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1546-1561. [PMID: 28843504 DOI: 10.1016/j.bbalip.2017.08.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/31/2017] [Accepted: 08/19/2017] [Indexed: 12/15/2022]
Abstract
Bioactive N-acylethanolamines (NAEs) are ethanolamides of long-chain fatty acids, including palmitoylethanolamide, oleoylethanolamide and anandamide. In animal tissues, NAEs are biosynthesized from membrane phospholipids. The classical "transacylation-phosphodiesterase" pathway proceeds via N-acyl-phosphatidylethanolamine (NAPE), which involves the actions of two enzymes, NAPE-generating Ca2+-dependent N-acyltransferase (Ca-NAT) and NAPE-hydrolyzing phospholipase D (NAPE-PLD). Recent identification of Ca-NAT as Ɛ isoform of cytosolic phospholipase A2 enabled the further molecular biological approaches toward this enzyme. In addition, Ca2+-independent NAPE formation was shown to occur by N-acyltransferase activity of a group of proteins named phospholipase A/acyltransferases (PLAAT)-1-5. The analysis of NAPE-PLD-deficient mice confirmed that NAEs can be produced through multi-step pathways bypassing NAPE-PLD. The NAPE-PLD-independent pathways involved three members of the glycerophosphodiesterase (GDE) family (GDE1, GDE4 and GDE7) as well as α/β-hydrolase domain-containing protein (ABHD)4. In this review article, we will focus on recent progress made and latest insights in the enzymes involved in NAE synthesis and their further characterization.
Collapse
|
11
|
Li J, Wang J, Chen Y, Yang L, Chen S. A prognostic 4-gene expression signature for squamous cell lung carcinoma. J Cell Physiol 2017; 232:3702-3713. [PMID: 28160492 DOI: 10.1002/jcp.25846] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 11/08/2022]
Abstract
Squamous cell lung carcinoma (SQCLC), a common and fatal subtype of lung cancer, caused lots of mortalities and showed different outcomes in prognosis. This study was to screen key genes and to figure a prognostic signature to cluster the patients with SQCLC. RNA-Seq data from 550 patients with SQCLC were downloaded from The Cancer Genome Atlas (TCGA). Genetically changed genes were identified and analyzed in univariate survival analysis. Genes significantly influencing prognosis were selected with frequency higher than 100 in lasso regression. Meanwhile, area under the curve (AUC) values and hazard ratios (HR) for seed genes were obtained with R Language. Functional enrichment analysis was performed and clustering effectiveness of the selected common gene set was analyzed with Kaplan-Meier. Finally, the stability and validity of the optimal clustering model were verified. A total of 7,222 genetically changed genes were screened, including 1,045 ones with p < 0.05, 1,746, p < 0.1, and 2,758, p < 0.2. The common gene sets with more than 100 frequencies were 14-Genes, 10-Genes and 6-Genes. Genes with p < 0.05 participated in positive regulation of ERK1 and ERK2 cascade, angiogenesis, platelet degranulation, cell-matrix adhesion, extracellular matrix organization, macrophage activation, and so on. A four-gene clustering model in 14-Genes (DPPA, TTTY16, TRIM58, HKDC1, ZNF589, ALDH7A1, LINC01426, IL19, LOC101928358, TMEM92, HRASLS, JPH1, LOC100288778, GCGR) was verified as the optimal. The discovery of four-gene clustering model in 14-Genes can cluster the patient samples effectively. This model would help predict the outcomes of patients with SQCLC then improve the treatment strategies.
Collapse
Affiliation(s)
- Jun Li
- School of Clinical Medicine, Dali University, Dali Yunnan, China
| | - Jing Wang
- School of Basic Medical Sciences, Dali University, Dali Yunnan, China
| | - Yanbin Chen
- Affiliated Hospital of Dali University, Dali Yunnan, China
| | - Lijie Yang
- Affiliated Hospital of Dali University, Dali Yunnan, China
| | - Sheng Chen
- Affiliated Hospital of Dali University, Dali Yunnan, China
| |
Collapse
|
12
|
Lee YJ, Moon SU, Park MG, Jung WY, Park YK, Song SK, Ryu JG, Lee YS, Heo HJ, Gu HN, Cho SJ, Ali BA, Al-Khedhairy AA, Lee I, Kim S. Multiplex bioimaging of piRNA molecular pathway-regulated theragnostic effects in a single breast cancer cell using a piRNA molecular beacon. Biomaterials 2016; 101:143-55. [PMID: 27289065 DOI: 10.1016/j.biomaterials.2016.05.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 12/17/2022]
Abstract
Recently, PIWI-interacting small non-coding RNAs (piRNAs) have emerged as novel cancer biomarkers candidate because of their high expression level in various cancer types and role in the control of tumor suppressor genes. In this study, a novel breast cancer theragnostics probe based on a single system targeting the piRNA-36026 (piR-36026) molecular pathway was developed using a piR-36026 molecular beacon (MB). The piR-36026 MB successfully visualized endogenous piR-36026 biogenesis, which is highly expressed in MCF7 cells (a human breast cancer cell line), and simultaneously inhibited piR-36026-mediated cancer progression in vitro and in vivo. We discovered two tumor suppressor proteins, SERPINA1 and LRAT, that were directly regulated as endogenous piR-36026 target genes in MCF7 cells. Furthermore, multiplex bioimaging of a single MCF7 cell following treatment with piR-36026 MB clearly visualized the direct molecular interaction of piRNA-36026 with SERPINA1 or LRAT and subsequent molecular therapeutic responses including caspase-3 and PI in the nucleus.
Collapse
Affiliation(s)
- Youn Jung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 270-701, Republic of Korea
| | - Sung Ung Moon
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 270-701, Republic of Korea
| | - Min Geun Park
- Department of Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea
| | - Woon Yong Jung
- Department of Pathology, Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea
| | - Yong Keun Park
- Department of Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea
| | - Sung Kyu Song
- Department of Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea
| | - Je Gyu Ryu
- Department of Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea
| | - Yong Seung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 270-701, Republic of Korea
| | - Hye Jung Heo
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 270-701, Republic of Korea
| | - Ha Na Gu
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 270-701, Republic of Korea
| | - Su Jeong Cho
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 270-701, Republic of Korea
| | - Bahy A Ali
- Al-Jeraisy DNA Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Nucleic Acids Research, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technological Applications, Alexandria, Egypt
| | - Abdulaziz A Al-Khedhairy
- Al-Jeraisy DNA Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ilkyun Lee
- Department of Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea.
| | - Soonhag Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 270-701, Republic of Korea; Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea.
| |
Collapse
|
13
|
Mardian EB, Bradley RM, Duncan RE. The HRASLS (PLA/AT) subfamily of enzymes. J Biomed Sci 2015; 22:99. [PMID: 26503625 PMCID: PMC4624172 DOI: 10.1186/s12929-015-0210-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022] Open
Abstract
The H-RAS-like suppressor (HRASLS) subfamily consists of five enzymes (1–5) in humans and three (1, 3, and 5) in mice and rats that share sequence homology with lecithin:retinol acyltransferase (LRAT). All HRASLS family members possess in vitro phospholipid metabolizing abilities including phospholipase A1/2 (PLA1/2) activities and O-acyltransferase activities for the remodeling of glycerophospholipid acyl chains, as well as N-acyltransferase activities for the production of N-acylphosphatidylethanolamines. The in vivo biological activities of the HRASLS enzymes have not yet been fully investigated. Research to date indicates involvement of this subfamily in a wide array of biological processes and, as a consequence, these five enzymes have undergone extensive rediscovery and renaming within different fields of research. This review briefly describes the discovery of each of the HRASLS enzymes and their role in cancer, and discusses the biochemical function of each enzyme, as well as the biological role, if known. Gaps in current understanding are highlighted and suggestions for future research directions are discussed.
Collapse
Affiliation(s)
- Emily B Mardian
- Department of Kinesiology, University of Waterloo, BMH 2415, Waterloo, ON, N2L 3G1, Canada.
| | - Ryan M Bradley
- Department of Kinesiology, University of Waterloo, BMH 2415, Waterloo, ON, N2L 3G1, Canada.
| | - Robin E Duncan
- Department of Kinesiology, University of Waterloo, BMH 1110, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
14
|
Tsai FM, Chen ML, Wang LK, Lee MC. H-rev107 Regulates Cytochrome P450 Reductase Activity and Increases Lipid Accumulation. PLoS One 2015; 10:e0138586. [PMID: 26381418 PMCID: PMC4575093 DOI: 10.1371/journal.pone.0138586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 09/01/2015] [Indexed: 12/16/2022] Open
Abstract
H-rev107 is a member of the HREV107 type II tumor suppressor gene family and acts as a phospholipase to catalyze the release of fatty acids from glycerophospholipid. H-rev107 has been shown to play an important role in fat metabolism in adipocytes through the PGE2/cAMP pathway, but the detailed molecular mechanism underlying H-rev107-mediated lipid degradation has not been studied. In this study, the interaction between H-rev107 and cytochrome P450 reductase (POR), which is involved in hepatic lipid content regulation, was determined by yeast two-hybrid screen and confirmed by using in vitro pull down assays and immunofluorescent staining. The expression of POR in H-rev107-expressing cells enhanced the H-rev107-mediated release of arachidonic acid. However, H-rev107 inhibited POR activity and relieved POR-mediated decreased triglyceride content in HtTA and HeLa cervical cells. The inhibitory effect of H-rev107 will be abolished when POR-expressing cells transfected with PLA2-lacking pH-rev107 or treated with PLA2 inhibitor. Silencing of H-rev107 using siRNA resulted in increased glycerol production and reversion of free fatty acid-mediated growth suppression in Huh7 hepatic cells. In summary, our results revealed that H-rev107 is also involved in lipid accumulation in liver cells through the POR pathway via its PLA2 activity.
Collapse
Affiliation(s)
- Fu-Ming Tsai
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, Taiwan
- * E-mail:
| | - Mao-Liang Chen
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, Taiwan
| | - Lu-Kai Wang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Cheng Lee
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
15
|
Wei H, Wang L, Ren X, Yu W, Lin J, Jin C, Xia B. Structural and functional characterization of tumor suppressors TIG3 and H-REV107. FEBS Lett 2015; 589:1179-86. [PMID: 25871522 DOI: 10.1016/j.febslet.2015.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/16/2015] [Accepted: 04/01/2015] [Indexed: 11/30/2022]
Abstract
H-REV107-like family proteins TIG3 and H-REV107 are class II tumor suppressors. Here we report that the C-terminal domains (CTDs) of TIG3 and H-REV107 can induce HeLa cell death independently. The N-terminal domain (NTD) of TIG3 enhances the cell death inducing ability of CTD, while NTD of H-REV107 plays an inhibitory role. The solution structure of TIG3 NTD is very similar to that of H-REV107 in overall fold. However, the CTD binding regions on NTD are different between TIG3 and H-REV107, which may explain their functional difference. As a result, the flexible main loop of H-REV107, but not that of TIG3, is critical for its NTD to modulate its CTD in inducing cell death.
Collapse
Affiliation(s)
- Hejia Wei
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Lei Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaobai Ren
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenyu Yu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Jian Lin
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
16
|
Wang CH, Shyu RY, Wu CC, Tsai TC, Wang LK, Chen ML, Jiang SY, Tsai FM. Phospholipase A/Acyltransferase enzyme activity of H-rev107 inhibits the H-RAS signaling pathway. J Biomed Sci 2014; 21:36. [PMID: 24884338 PMCID: PMC4012743 DOI: 10.1186/1423-0127-21-36] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/24/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND H-rev107, also called HRASLS3 or PLA2G16, is a member of the HREV107 type II tumor suppressor gene family. Previous studies showed that H-rev107 exhibits phospholipase A/acyltransferase (PLA/AT) activity and downregulates H-RAS expression. However, the mode of action and the site of inhibition of H-RAS by H-rev107 are still unknown. RESULTS Our results indicate that H-rev107 was co-precipitated with H-RAS and downregulated the levels of activated RAS (RAS-GTP) and ELK1-mediated transactivation in epidermal growth factor-stimulated and H-RAS-cotransfected HtTA cervical cancer cells. Furthermore, an acyl-biotin exchange assay demonstrated that H-rev107 reduced H-RAS palmitoylation. H-rev107 has been shown to be a PLA/AT that is involved in phospholipid metabolism. Treating cells with the PLA/AT inhibitor arachidonyl trifluoromethyl ketone (AACOCF3) or methyl arachidonyl fluorophosphate (MAFP) alleviated H-rev107-induced downregulation of the levels of acylated H-RAS. AACOCF3 and MAFP also increased activated RAS and ELK1-mediated transactivation in H-rev107-expressing HtTA cells following their treatment with epidermal growth factor. In contrast, treating cells with the acyl-protein thioesterase inhibitor palmostatin B enhanced H-rev107-mediated downregulation of acylated H-RAS in H-rev107-expressing cells. Palmostatin B had no effect on H-rev107-induced suppression of RAS-GTP levels or ELK1-mediated transactivation. These results suggest that H-rev107 decreases H-RAS activity through its PLA/AT activity to modulate H-RAS acylation. CONCLUSIONS We made the novel observation that H-rev107 decrease in the steady state levels of H-RAS palmitoylation through the phospholipase A/acyltransferase activity. H-rev107 is likely to suppress activation of the RAS signaling pathway by reducing the levels of palmitoylated H-RAS, which decreases the levels of GTP-bound H-RAS and also the activation of downstream molecules. Our study further suggests that the PLA/AT activity of H-rev107 may play an important role in H-rev107-mediated RAS suppression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fu-Ming Tsai
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, Taiwan.
| |
Collapse
|
17
|
Rahman IAS, Tsuboi K, Uyama T, Ueda N. New players in the fatty acyl ethanolamide metabolism. Pharmacol Res 2014; 86:1-10. [PMID: 24747663 DOI: 10.1016/j.phrs.2014.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/13/2022]
Abstract
Fatty acyl ethanolamides represent a class of endogenous bioactive lipid molecules and are generally referred to as N-acylethanolamines (NAEs). NAEs include palmitoylethanolamide (anti-inflammatory and analgesic substance), oleoylethanolamide (anorexic substance), and anandamide (endocannabinoid). The endogenous levels of NAEs are mainly regulated by enzymes responsible for their biosynthesis and degradation. In mammalian tissues, the major biosynthetic pathway starts from glycerophospholipids and is composed of two enzyme reactions. The first step is N-acylation of ethanolamine phospholipids catalyzed by Ca(2+)-dependent N-acyltransferase and the second step is the release of NAEs from N-acylated ethanolamine phospholipids by N-acylphosphatidylethanolamine (NAPE)-hydrolyzing phospholipase D (NAPE-PLD). As for the degradation of NAEs, fatty acid amide hydrolase plays the central role. However, recent studies strongly suggest the involvement of other enzymes in the NAE metabolism. These enzymes include members of the HRAS-like suppressor family (also called phospholipase A/acyltransferase family), which were originally discovered as tumor suppressors but can function as Ca(2+)-independent NAPE-forming N-acyltransferases; multiple enzymes involved in the NAPE-PLD-independent multi-step pathways to generate NAE from NAPE, which came to light by the analysis of NAPE-PLD-deficient mice; and a lysosomal NAE-hydrolyzing acid amidase as a second NAE hydrolase. These newly recognized enzymes may become the targets for the development of new therapeutic drugs. Here, we focus on recent enzymological findings in this area.
Collapse
Affiliation(s)
- Iffat Ara Sonia Rahman
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Kazuhito Tsuboi
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| |
Collapse
|
18
|
Shyu RY, Wu CC, Wang CH, Tsai TC, Wang LK, Chen ML, Jiang SY, Tsai FM. H-rev107 regulates prostaglandin D2 synthase-mediated suppression of cellular invasion in testicular cancer cells. J Biomed Sci 2013; 20:30. [PMID: 23687991 PMCID: PMC3669107 DOI: 10.1186/1423-0127-20-30] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/15/2013] [Indexed: 01/08/2023] Open
Abstract
Background H-rev107 is a member of the HREV107 type II tumor suppressor gene family which includes H-REV107, RIG1, and HRASLS. H-REV107 has been shown to express at high levels in differentiated tissues of post-meiotic testicular germ cells. Prostaglandin D2 (PGD2) is conjectured to induce SRY-related high-mobility group box 9 (SOX9) expression and subsequent Sertoli cell differentiation. To date, the function of H-rev107 in differentiated testicular cells has not been well defined. Results In the study, we found that H-rev107 was co-localized with prostaglandin D2 synthase (PTGDS) and enhanced the activity of PTGDS, resulting in increase of PGD2 production in testis cells. Furthermore, when H-rev107 was expressed in human NT2/D1 testicular cancer cells, cell migration and invasion were inhibited. Also, silencing of PTGDS would reduce H-rev107-mediated increase in PGD2, cAMP, and SOX9. Silencing of PTGDS or SOX9 also alleviated H-rev107-mediated suppression of cell migration and invasion. Conclusions These results revealed that H-rev107, through PTGDS, suppressed cell migration and invasion. Our data suggest that the PGD2-cAMP-SOX9 signal pathway might play an important role in H-rev107-mediated cancer cell invasion in testes.
Collapse
Affiliation(s)
- Rong-Yaun Shyu
- Department of Internal Medicine, Buddhist Tzu Chi General Hospital Taipei Branch, New Taipei City, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ueda N, Tsuboi K, Uyama T. Metabolism of endocannabinoids and related N-acylethanolamines: canonical and alternative pathways. FEBS J 2013; 280:1874-94. [PMID: 23425575 DOI: 10.1111/febs.12152] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/14/2013] [Accepted: 01/23/2013] [Indexed: 12/31/2022]
Abstract
Endocannabinoids are endogenous ligands of the cannabinoid receptors CB1 and CB2. Two arachidonic acid derivatives, arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol, are considered to be physiologically important endocannabinoids. In the known metabolic pathway in mammals, anandamide and other bioactive N-acylethanolamines, such as palmitoylethanolamide and oleoylethanolamide, are biosynthesized from glycerophospholipids by a combination of Ca(2+)-dependent N-acyltransferase and N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D, and are degraded by fatty acid amide hydrolase. However, recent studies have shown the involvement of other enzymes and pathways, which include the members of the tumor suppressor HRASLS family (the phospholipase A/acyltransferase family) functioning as Ca(2+)-independent N-acyltransferases, N-acyl-phosphatidylethanolamine-hydrolyzing phospholipaseD-independent multistep pathways via N-acylated lysophospholipid, and N-acylethanolamine-hydrolyzing acid amidase, a lysosomal enzyme that preferentially hydrolyzes palmitoylethanolamide. Although their physiological significance is poorly understood, these new enzymes/pathways may serve as novel targets for the development of therapeutic drugs. For example, selective N-acylethanolamine-hydrolyzing acid amidase inhibitors are expected to be new anti-inflammatory and analgesic drugs. In this minireview, we focus on advances in the understanding of these enzymes/pathways. In addition, recent findings on 2-arachidonoylglycerol metabolism are described.
Collapse
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan.
| | | | | |
Collapse
|
20
|
Wu CC, Shyu RY, Wang CH, Tsai TC, Wang LK, Chen ML, Jiang SY, Tsai FM. Involvement of the prostaglandin D2 signal pathway in retinoid-inducible gene 1 (RIG1)-mediated suppression of cell invasion in testis cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2227-36. [PMID: 22960220 DOI: 10.1016/j.bbamcr.2012.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/06/2012] [Accepted: 08/21/2012] [Indexed: 12/12/2022]
Abstract
Retinoid-inducible gene 1 (RIG1), also called tazarotene-induced gene 3, belongs to the HREV107 gene family, which contains five members in humans. RIG1 is expressed in high levels in well-differentiated tissues, but its expression is decreased in cancer tissues and cancer cell lines. We found RIG1 to be highly expressed in testicular cells. When RIG1 was expressed in NT2/D1 testicular cancer cells, neither cell death nor cell viability was affected. However, RIG1 significantly inhibited cell migration and invasion in NT2/D1 cells. We found that prostaglandin D2 synthase (PTGDS) interacted with RIG1 using yeast two-hybrid screens. Further, we found PTGDS to be co-localized with RIG1 in NT2/D1 testis cells. In RIG1-expressing cells, elevated levels of prostaglandin D2 (PGD2), cAMP, and SRY-related high-mobility group box 9 (SOX9) were observed. This indicated that RIG1 can enhance PTGDS activity. Silencing of PTGDS expression significantly decreased RIG1-mediated cAMP and PGD2 production. Furthermore, silencing of PTGDS or SOX9 alleviated RIG1-mediated suppression of migration and invasion. These results suggest that RIG1 will suppress cell migration/invasion through the PGD2 signaling pathway. In conclusion, RIG1 can interact with PTGDS to enhance its function and to further suppress NT2/D1 cell migration and invasion. Our study suggests that RIG1-PGD2 signaling might play an important role in cancer cell suppression in the testis.
Collapse
Affiliation(s)
- Chang-Chieh Wu
- Department of Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Uyama T, Ikematsu N, Inoue M, Shinohara N, Jin XH, Tsuboi K, Tonai T, Tokumura A, Ueda N. Generation of N-acylphosphatidylethanolamine by members of the phospholipase A/acyltransferase (PLA/AT) family. J Biol Chem 2012; 287:31905-19. [PMID: 22825852 DOI: 10.1074/jbc.m112.368712] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bioactive N-acylethanolamines (NAEs), including N-palmitoylethanolamine, N-oleoylethanolamine, and N-arachidonoylethanolamine (anandamide), are formed from membrane glycerophospholipids in animal tissues. The pathway is initiated by N-acylation of phosphatidylethanolamine to form N-acylphosphatidylethanolamine (NAPE). Despite the physiological importance of this reaction, the enzyme responsible, N-acyltransferase, remains molecularly uncharacterized. We recently demonstrated that all five members of the HRAS-like suppressor tumor family are phospholipid-metabolizing enzymes with N-acyltransferase activity and are renamed HRASLS1-5 as phospholipase A/acyltransferase (PLA/AT)-1-5. However, it was poorly understood whether these proteins were involved in the formation of NAPE in living cells. In the present studies, we first show that COS-7 cells transiently expressing recombinant PLA/AT-1, -2, -4, or -5, and HEK293 cells stably expressing PLA/AT-2 generated significant amounts of [(14)C]NAPE and [(14)C]NAE when cells were metabolically labeled with [(14)C]ethanolamine. Second, as analyzed by liquid chromatography-tandem mass spectrometry, the stable expression of PLA/AT-2 in cells remarkably increased endogenous levels of NAPEs and NAEs with various N-acyl species. Third, when NAPE-hydrolyzing phospholipase D was additionally expressed in PLA/AT-2-expressing cells, accumulating NAPE was efficiently converted to NAE. We also found that PLA/AT-2 was partly responsible for NAPE formation in HeLa cells that endogenously express PLA/AT-2. These results suggest that PLA/AT family proteins may produce NAPEs serving as precursors of bioactive NAEs in vivo.
Collapse
Affiliation(s)
- Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Uyama T, Ichi I, Kono N, Inoue A, Tsuboi K, Jin XH, Araki N, Aoki J, Arai H, Ueda N. Regulation of peroxisomal lipid metabolism by catalytic activity of tumor suppressor H-rev107. J Biol Chem 2011; 287:2706-18. [PMID: 22134920 DOI: 10.1074/jbc.m111.267575] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
H-rev107 is a mammalian protein belonging to the HRAS-like suppressor family. Although the protein was originally found as a tumor suppressor, currently it is receiving considerable attention as a regulator of adipocyte lipolysis. We recently revealed that purified recombinant H-rev107 has phospholipase A(1/2) activity, releasing free fatty acids from glycerophospholipids with a preference for esterolysis at the sn-1 position. In the present study, we constitutively expressed H-rev107 in cloned HEK293 cells to examine its biological function in living cells. Initially, the cells accumulated free fatty acids. We also found a remarkable decrease in the levels of ether-type lipids, including plasmalogen and ether-type triglyceride, with a concomitant increase in fatty alcohols, substrates for the biosynthesis of ether-type lipids. Considering that peroxisomes are involved in the ether-type lipid biosynthesis, we next focused on peroxisomes and found that the peroxisomal markers 70-kDa peroxisomal membrane protein and catalase were abnormally distributed in the transfected cells. These biochemical and morphological abnormalities were not seen in HEK293 cells stably expressing a catalytically inactive mutant of H-rev107. When H-rev107 or its fusion protein with enhanced green fluorescence protein was transiently expressed in mammalian cells, both proteins were associated with peroxisomes in some of the observed cells. These results suggest that H-rev107 interferes with the biosynthesis of ether-type lipids and is responsible for the dysfunction of peroxisomes in H-rev107-expressing cells.
Collapse
Affiliation(s)
- Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Richard AF, Demignon J, Sakakibara I, Pujol J, Favier M, Strochlic L, Le Grand F, Sgarioto N, Guernec A, Schmitt A, Cagnard N, Huang R, Legay C, Guillet-Deniau I, Maire P. Genesis of muscle fiber-type diversity during mouse embryogenesis relies on Six1 and Six4 gene expression. Dev Biol 2011; 359:303-20. [DOI: 10.1016/j.ydbio.2011.08.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/22/2011] [Accepted: 08/15/2011] [Indexed: 01/28/2023]
|
24
|
Shinohara N, Uyama T, Jin XH, Tsuboi K, Tonai T, Houchi H, Ueda N. Enzymological analysis of the tumor suppressor A-C1 reveals a novel group of phospholipid-metabolizing enzymes. J Lipid Res 2011; 52:1927-35. [PMID: 21880860 DOI: 10.1194/jlr.m015081] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A-C1 protein is the product of a tumor suppressor gene negatively regulating the oncogene Ras and belongs to the HRASLS (HRAS-like suppressor) subfamily. We recently found that four members of this subfamily expressed in human tissues function as phospholipid-metabolizing enzymes. Here we examined a possible enzyme activity of A-C1. The homogenates of COS-7 cells overexpressing recombinant A-C1s from human, mouse, and rat showed a phospholipase A½ (PLA½) activity toward phosphatidylcholine (PC). This finding was confirmed with the purified A-C1. The activity was Ca²⁺ independent, and dithiothreitol and Nonidet P-40 were indispensable for full activity. Phosphatidylethanolamine (PE) was also a substrate and the phospholipase A₁ (PLA₁) activity was dominant over the PLA₂ activity. Furthermore, the protein exhibited acyltransferase activities transferring an acyl group of PCs to the amino group of PEs and the hydroxyl group of lyso PCs. As for tissue distribution in human, mouse, and rat, A-C1 mRNA was abundantly expressed in testis, skeletal muscle, brain, and heart. These results demonstrate that A-C1 is a novel phospholipid-metabolizing enzyme. Moreover, the fact that all five members of the HRASLS subfamily, including A-C1, show similar catalytic properties strongly suggests that these proteins constitute a new class of enzymes showing PLA½ and acyltransferase activities.
Collapse
Affiliation(s)
- Naoki Shinohara
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
G protein-coupled receptor kinase 5 mediates Tazarotene-induced gene 1-induced growth suppression of human colon cancer cells. BMC Cancer 2011; 11:175. [PMID: 21575264 PMCID: PMC3112162 DOI: 10.1186/1471-2407-11-175] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/17/2011] [Indexed: 01/08/2023] Open
Abstract
Background Tazarotene-induced gene 1 (TIG1) is a retinoid-inducible type II tumour suppressor gene. The B isoform of TIG1 (TIG1B) inhibits growth and invasion of cancer cells. Expression of TIG1B is frequently downregulated in various cancer tissues; however, the expression and activities of the TIG1A isoform are yet to be reported. Therefore, this study investigated the effects of the TIG1A and TIG1B isoforms on cell growth and gene expression profiles using colon cancer cells. Methods TIG1A and TIG1B stable clones derived from HCT116 and SW620 colon cancer cells were established using the GeneSwitch system; TIG1 isoform expression was induced by mifepristone treatment. Cell growth was assessed using the WST-1 cell proliferation and colony formation assays. RNA interference was used to examine the TIG1 mediating changes in cell growth. Gene expression profiles were determined using microarray and validated using real-time polymerase chain reaction, and Western blot analyses. Results Both TIG1 isoforms were expressed at high levels in normal prostate and colon tissues and were downregulated in colon cancer cell lines. Both TIG1 isoforms significantly inhibited the growth of transiently transfected HCT116 cells and stably expressing TIG1A and TIG1B HCT116 and SW620 cells. Expression of 129 and 55 genes was altered upon induction of TIG1A and TIG1B expression, respectively, in stably expressing HCT116 cells. Of the genes analysed, 23 and 6 genes were upregulated and downregulated, respectively, in both TIG1A and TIG1B expressing cells. Upregulation of the G-protein-coupled receptor kinase 5 (GRK5) was confirmed using real-time polymerase chain reaction and Western blot analyses in both TIG1 stable cell lines. Silencing of TIG1A or GRK5 expression significantly decreased TIG1A-mediated cell growth suppression. Conclusions Expression of both TIG1 isoforms was observed in normal prostate and colon tissues and was downregulated in colon cancer cell lines. Both TIG1 isoforms suppressed cell growth and stimulated GRK5 expression in HCT116 and SW620 cells. Knockdown of GRK5 expression alleviated TIG1A-induced growth suppression of HCT116 cells, suggesting that GRK5 mediates cell growth suppression by TIG1A. Thus, TIG1 may participate in the downregulation of G-protein coupled signaling by upregulating GRK5 expression.
Collapse
|
26
|
Ueda N, Tsuboi K, Uyama T. Enzymological studies on the biosynthesis of N-acylethanolamines. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:1274-85. [PMID: 20736084 DOI: 10.1016/j.bbalip.2010.08.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/10/2010] [Accepted: 08/17/2010] [Indexed: 11/28/2022]
Abstract
Ethanolamides of different long-chain fatty acids constitute a class of endogenous lipid molecules generally called N-acylethanolamines (NAEs). They contain N-arachidonoylethanolamine (anandamide), N-palmitoylethanolamine, and N-oleoylethanolamine, which receive considerable attention because of their actions as an endogenous cannabinoid receptor ligand (endocannabinoid), an anti-inflammatory substance, and an appetite-suppressing substance, respectively. Identification of their biosynthetic routes in animal tissues and molecular characterization of the enzymes involved are essential for better understanding of physiological importance of NAEs as well as development of enzyme inhibitors as possible therapeutic drugs. In the classical "transacylation-phosphodiesterase pathway", NAEs are formed from glycerophospholipids via N-acylphosphatidylethanolamine (NAPE), an unusual derivative of phosphatidylethanolamine with a third acyl chain attached to the amino group, by sequential catalyses by Ca(2+)-dependent N-acyltransferase and NAPE-hydrolyzing phospholipase D. However, recent studies reveal that NAE-generating pathways are more complex than presumed before. In this review article, we will focus on recent findings regarding mammalian enzymes that are involved or might be involved in the biosynthesis of NAEs.
Collapse
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| | | | | |
Collapse
|
27
|
Ueda N, Tsuboi K, Uyama T. N-acylethanolamine metabolism with special reference to N-acylethanolamine-hydrolyzing acid amidase (NAAA). Prog Lipid Res 2010; 49:299-315. [PMID: 20152858 DOI: 10.1016/j.plipres.2010.02.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
N-acylethanolamines (NAEs) constitute a class of bioactive lipid molecules present in animal and plant tissues. Among the NAEs, N-arachidonoylethanolamine (anandamide), N-palmitoylethanolamine, and N-oleoylethanolamine attract much attention due to cannabimimetic activity as an endocannabinoid, anti-inflammatory and analgesic activities, and anorexic activity, respectively. In mammalian tissues, NAEs are formed from glycerophospholipids through the phosphodiesterase-transacylation pathway consisting of Ca(2+)-dependent N-acyltransferase and N-acylphosphatidylethanolamine-hydrolyzing phospholipase D. Recent studies revealed the presence of alternative pathways and enzymes responsible for the NAE formation. As for the degradation of NAEs, fatty acid amide hydrolase (FAAH), which hydrolyzes NAEs to fatty acids and ethanolamine, plays a central role. However, a lysosomal enzyme referred to as NAE-hydrolyzing acid amidase (NAAA) also catalyzes the same reaction and may be a new target for the development of therapeutic drugs. In this article we discuss recent progress in the studies on the enzymes involved in the biosynthesis and degradation of NAEs with special reference to NAAA.
Collapse
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, Japan
| | | | | |
Collapse
|
28
|
Characterization of the human tumor suppressors TIG3 and HRASLS2 as phospholipid-metabolizing enzymes. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1114-24. [DOI: 10.1016/j.bbalip.2009.07.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/30/2009] [Accepted: 07/06/2009] [Indexed: 12/15/2022]
|