1
|
Phungula A, Waddad AY, Fernandez Leyes MD, Di Gianvincenzo P, Espuche B, Zuffi S, Moya SE, Albericio F, de la Torre BG. Self-assembly of NrTP6 cell-penetrating lipo-peptide with variable number of lipid chains: Impact of phosphate ions on lipid association. J Colloid Interface Sci 2024; 654:124-133. [PMID: 37837849 DOI: 10.1016/j.jcis.2023.09.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/16/2023]
Abstract
HYPOTHESIS Lipopeptides synthesized from the Nucleolar Targeting Peptide (NrTP6) with one, two or four dodecanoic fatty acid (FA) chains, display large head to tail volumes, which together with the number of lipid chains per molecule, impacts their self-assembly behavior. In phosphate buffer (PB), peptide to peptide interactions are triggered by the presence of phosphate ions that act as ionic crosslinkers, affecting the organization of the lipid assemblies. EXPERIMENTAL The NrTP6 lipopeptides were synthesized by the solid phase peptide synthesis technique. The critical micellar concentration (CMC) of the lipopeptides was determined in water and PB by pyrene fluorescence. The size and morphology of lipopeptide assemblies were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Circular dichroism (CD) was used to study the secondary structures of the lipopeptide assemblies. RESULTS For NrTP6 lipopeptides with two and four lipid chains, CMCs in water are larger than in PB. TEM images of the lipopeptide assemblies show different morphologies including fibers, rods, and spheres depending on the number of lipid chains, concentration and whether they are assembled in water or PB. CD spectroscopy shows that the peptide conformation, either random or beta, correlates with the morphology of the assemblies.
Collapse
Affiliation(s)
- Amanda Phungula
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa; Soft Matter Nanotechnology Laboratory, CIC biomaGUNE, San-Sebastian 20010, Spain
| | - Ayman Y Waddad
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Marcos Daniel Fernandez Leyes
- Soft Matter Nanotechnology Laboratory, CIC biomaGUNE, San-Sebastian 20010, Spain; Instituto de Fisica del Sur (IFISUR-CONICET), Av. Alem 1253, Bahia Blanca 8000, Argentina
| | | | - Bruno Espuche
- Soft Matter Nanotechnology Laboratory, CIC biomaGUNE, San-Sebastian 20010, Spain; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Guipúzcoa, Spain
| | - Sofia Zuffi
- Soft Matter Nanotechnology Laboratory, CIC biomaGUNE, San-Sebastian 20010, Spain
| | - Sergio Enrique Moya
- Soft Matter Nanotechnology Laboratory, CIC biomaGUNE, San-Sebastian 20010, Spain.
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa; CIBER-BBN and Department of Organic Chemistry, University of Barcelona, Barcelona 08001, Spain
| | - Beatriz G de la Torre
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa; KRISP, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa.
| |
Collapse
|
2
|
Alharbi N, Skwarczynski M, Toth I. The influence of component structural arrangement on peptide vaccine immunogenicity. Biotechnol Adv 2022; 60:108029. [PMID: 36028180 DOI: 10.1016/j.biotechadv.2022.108029] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
Abstract
Peptide-based subunit vaccines utilise minimal immunogenic components (i.e. peptides) to generate highly specific immune responses, without triggering adverse reactions. However, strong adjuvants and/or effective delivery systems must be incorporated into such vaccines, as peptide antigens cannot induce substantial immune responses on their own. Unfortunately, many adjuvants are too weak or too toxic to be used in combination with peptide antigens. These shortcomings have been addressed by the conjugation of peptide antigens with lipidic/ hydrophobic adjuvanting moieties. The conjugates have shown promising safety profiles and improved immunogenicity without the help of traditional adjuvants and have been efficient in inducing desired immune responses following various routes of administration, including subcutaneous, oral and intranasal. However, not only conjugation per se, but also component arrangement influences vaccine efficacy. This review highlights the importance of influence of the vaccine chemical structure modification on the immune responses generated. It discusses a variety of factors that affect the immunogenicity of peptide conjugates, including: i) self-adjuvanting moiety length and number; ii) the orientation of epitopes and self-adjuvanting moieties in the conjugate; iii) the presence of spacers between conjugated components; iv) multiepitopic arrangement; and v) the effect of chirality on vaccine efficacy.
Collapse
Affiliation(s)
- Nedaa Alharbi
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; University of Jeddah, College of Science and Arts, Department of Chemistry, Jeddah, Saudi Arabia
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
3
|
Belyavtsev AN, Shastina NS, Kupriyanov VV, Nikolaeva LI, Melnikova MV, Kolesanova EF, Shimchishina MY, Kapustin IV. Effect of Lipid Components on Immunogenicity of Synthetic Fragment of Hepatitis C Virus NS4A Antigen. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Kaur A, Piplani S, Kaushik D, Fung J, Sakala IG, Honda-Okubo Y, Mehta SK, Petrovsky N, Salunke DB. Stereoisomeric Pam2CS Based TLR2 Agonists: Synthesis, Structural Modelling and Activity as Vaccine Adjuvants. RSC Med Chem 2022; 13:622-637. [PMID: 35694694 PMCID: PMC9132229 DOI: 10.1039/d1md00372k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
Lipopeptides including diacylated Pam2CSK4 as well as triacylated Pam3CSK4 act as ligands of Toll-like receptor (TLR)-2, a promising target for the development of vaccine adjuvants. The highly investigated Pam2CSK4 and...
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Chemistry and Centre for Advanced Studies, Panjab University Chandigarh India
| | - Sakshi Piplani
- Vaxine Pty Ltd Warradale Australia
- College of Medicine and Public Health, Flinders University Adelaide Australia
| | - Deepender Kaushik
- Department of Chemistry and Centre for Advanced Studies, Panjab University Chandigarh India
| | - Johnson Fung
- Vaxine Pty Ltd Warradale Australia
- College of Medicine and Public Health, Flinders University Adelaide Australia
| | - Isaac G Sakala
- Vaxine Pty Ltd Warradale Australia
- College of Medicine and Public Health, Flinders University Adelaide Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd Warradale Australia
- College of Medicine and Public Health, Flinders University Adelaide Australia
| | - Surinder K Mehta
- Department of Chemistry and Centre for Advanced Studies, Panjab University Chandigarh India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd Warradale Australia
- College of Medicine and Public Health, Flinders University Adelaide Australia
| | - Deepak B Salunke
- Department of Chemistry and Centre for Advanced Studies, Panjab University Chandigarh India
- National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University Chandigarh India
| |
Collapse
|
5
|
Belyavtsev AN, Melnikova MV, Shevchenko NG, Sapronov GV, Vahrenev RG, Shastina NS, Kolesanova EF, Nikolaeva LI. Synthesis and Analysis of Properties of an Immunogenic Fragment from NS4A Polypeptide of Hepatitis C Virus. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021030031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract—
The work is aimed at the synthesis and analysis from NS4A of hepatitis C virus (HCV) antigen peptide fragment that contains a conserved B-cell and T-helper epitopes. The 24-mer peptide VIVGRIILSGRPAVIPDREVLYRK-NH2, which contains the main immunogenic site 24–46 of HCV NS4A antigen (corresponding to the 1681–1703 amino acid residues of the HCV polypeptide), subtype 1b, has been prepared via solid-phase synthesis according to the Fmoc-protocol. Particles with diameters of 73 ± 10 nm (30%) and 236 ± 5 nm (70%) have been detected in the water solution of the highly purified peptide (0.5 mg/mL) by dynamic light scattering. The polydispersity index of 0.377 ± 0.012 implies the existence of heterogeneity because of the aggregation of the peptide molecules. The ζ-potential of the peptide aggregates has been determined as 7.0 ± 0.5 mV by means of electrophoretic light scattering. These data confirm the possibility for the development of a nanoscale liposome form of the peptide preparation. Immunoreactivity of the synthesized highly purified peptide has been studied with the use of blood sera of patients with chronic hepatitis C. Antipeptide immunoglobulins G have been detected in 41.7% of serum samples. Thus, this peptide has been shown to reproduce at least one B-epitope, to which antibodies are raised during natural HCV infection. The synthesized 24-mer peptide is a promising candidate for further research and for use as a potential immunogen for the design of a nanoscale therapeutic immunogenic liposomal peptide composition with synthetic lipids as an adjuvant.
Collapse
|
6
|
van den Ende TC, Heuts JMM, Gential GPP, Visser M, van de Graaff MJ, Ho NI, Jiskoot W, Valentijn ARPM, Meeuwenoord NJ, Overkleeft HS, Codée JDC, van der Burg SH, Verdegaal EME, van der Marel GA, Ossendorp F, Filippov DV. Simplified Monopalmitoyl Toll-like Receptor 2 Ligand Mini-UPam for Self-Adjuvanting Neoantigen-Based Synthetic Cancer Vaccines. Chembiochem 2020; 22:1215-1222. [PMID: 33180981 PMCID: PMC8049070 DOI: 10.1002/cbic.202000687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/04/2020] [Indexed: 12/14/2022]
Abstract
Synthetic vaccines, based on antigenic peptides that comprise MHC-I and MHC-II T-cell epitopes expressed by tumors, show great promise for the immunotherapy of cancer. For optimal immunogenicity, the synthetic peptides (SPs) should be adjuvanted with suitable immunostimulatory additives. Previously, we have shown that improved immunogenicity in vivo is obtained with vaccine modalities in which an SP is covalently connected to an adjuvanting moiety, typically a ligand to Toll-like receptor 2 (TLR2). SPs were covalently attached to UPam, which is a derivative of the classic TLR2 ligand Pam3 CysSK4 . A disadvantage of the triply palmitoylated UPam is its high lipophilicity, which precludes universal adoption of this adjuvant for covalent modification of various antigenic peptides as it renders the synthetic vaccine insoluble in several cases. Here, we report a novel conjugatable TLR2 ligand, mini-UPam, which contains only one palmitoyl chain, rather than three, and therefore has less impact on the solubility and other physicochemical properties of a synthetic peptide. In this study, we used SPs that contain the clinically relevant neoepitopes identified in a melanoma patient who completely recovered after T-cell therapy. Homogeneous mini-UPam-SP conjugates have been prepared in good yields by stepwise solid-phase synthesis that employed a mini-UPam building block pre-prepared in solution and the standard set of Fmoc-amino acids. The immunogenicity of the novel mini-UPam-SP conjugates was demonstrated by using the cancer patient's T-cells.
Collapse
Affiliation(s)
- Thomas C van den Ende
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jeroen M M Heuts
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Geoffroy P P Gential
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marten Visser
- Department of Medical Oncology and Oncode Institute, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Michel J van de Graaff
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Nataschja I Ho
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - A Rob P M Valentijn
- Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Nico J Meeuwenoord
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology and Oncode Institute, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Els M E Verdegaal
- Department of Medical Oncology and Oncode Institute, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
7
|
Kaur A, Kaushik D, Piplani S, Mehta SK, Petrovsky N, Salunke DB. TLR2 Agonistic Small Molecules: Detailed Structure-Activity Relationship, Applications, and Future Prospects. J Med Chem 2020; 64:233-278. [PMID: 33346636 DOI: 10.1021/acs.jmedchem.0c01627] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are the pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) in microbial species. Among the various TLRs, TLR2 has a special place due to its ability to sense the widest repertoire of PAMPs owing to its heterodimerization with either TLR1 or TLR6, broadening its ligand diversity against pathogens. Various scaffolds are reported to activate TLR2, which include naturally occurring lipoproteins, synthetic lipopeptides, and small heterocyclic molecules. We described a detailed SAR in TLR2 agonistic scaffolds and also covered the design and chemistry for the conjugation of TLR2 agonists to antigens, carbohydrates, polymers, and fluorophores. The approaches involved in delivery of TLR2 agonists such as lipidation of antigen, conjugation to polymers, phosphonic acids, and other linkers to achieve surface adsorption, liposomal formulation, and encapsulating nanoparticles are elaborated. The crystal structure analysis and computational modeling are also included with the structural features that facilitate TLR2 activation.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Deepender Kaushik
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Sakshi Piplani
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Australia 5046.,College of Medicine and Public Health, Flinders University, Bedford Park, Australia, 5042
| | - Surinder K Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Australia 5046.,College of Medicine and Public Health, Flinders University, Bedford Park, Australia, 5042
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.,National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh 160014, India
| |
Collapse
|
8
|
Naciute M, Niemi V, Kemp RA, Hook S. Lipid-encapsulated oral therapeutic peptide vaccines reduce tumour growth in an orthotopic mouse model of colorectal cancer. Eur J Pharm Biopharm 2020; 152:183-192. [PMID: 32380167 DOI: 10.1016/j.ejpb.2020.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
The aim of this study was to develop an oral vaccine that could be used to treat colorectal cancer. Oral vaccines are technically challenging to develop due to the harsh gastric environment but have numerous benefits including high patient acceptability and the potential to stimulate local mucosal immune responses. Therapeutic vaccines are being investigated as options to treat cancer and the generation of local mucosal immunity may be of benefit in the treatment of gastrointestinal cancers. Novel oral vaccines consisting of a long tumour peptide and the TLR2 (Toll-like receptor 2) ligand Pam2Cys, formulated in either liposomes or W/O/W double emulsions, were developed. Oral dosing with the emulsion vaccine increased the numbers of activated T cells, B cells and CD11c+F4/80+CD11b+ cells compared to mice that received control vaccines. In an orthotopic mouse model of colorectal cancer these immunological changes were associated with a seven-fold reduction in tumour size.
Collapse
Affiliation(s)
- Milda Naciute
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand
| | - Virginia Niemi
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Roslyn A Kemp
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
9
|
Zhou Y, Banday AH, Hruby VJ, Cai M. Development of N-Acetylated Dipalmitoyl- S-Glyceryl Cysteine Analogs as Efficient TLR2/TLR6 Agonists. Molecules 2019; 24:molecules24193512. [PMID: 31569697 PMCID: PMC6803979 DOI: 10.3390/molecules24193512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 12/30/2022] Open
Abstract
Cancer vaccine is a promising immunotherapeutic approach to train the immune system with vaccines to recognize and eliminate tumors. Adjuvants are compounds that are necessary in cancer vaccines to mimic an infection process and amplify immune responses. The Toll-like receptor 2 and 6 (TLR2/TLR6) agonist dipalmitoyl-S-glyceryl cysteine (Pam2Cys) was demonstrated as an ideal candidate for synthetic vaccine adjuvants. However, the synthesis of Pam2Cys requires expensive N-protected cysteine as a key reactant, which greatly limits its application as a synthetic vaccine adjuvant in large-scaled studies. Here, we report the development of N-acetylated Pam2Cys analogs as TLR2/TLR6 agonists. Instead of N-protected cysteine, the synthesis utilizes N-acetylcysteine to bring down the synthetic costs. The N-acetylated Pam2Cys analogs were demonstrated to activate TLR2/TLR6 in vitro. Moreover, molecular docking studies were performed to provide insights into the molecular mechanism of how N-acetylated Pam2Cys analogs bind to TLR2/TLR6. Together, these results suggest N-acetylated Pam2Cys analogs as inexpensive and promising synthetic vaccine adjuvants to accelerate the development of cancer vaccines in the future.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA.
| | - Abid H Banday
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA.
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA.
| | - Minying Cai
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
10
|
Azuar A, Jin W, Mukaida S, Hussein WM, Toth I, Skwarczynski M. Recent Advances in the Development of Peptide Vaccines and Their Delivery Systems Against Group A Streptococcus. Vaccines (Basel) 2019; 7:E58. [PMID: 31266253 PMCID: PMC6789462 DOI: 10.3390/vaccines7030058] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Group A Streptococcus (GAS) infection can cause a variety of diseases in humans, ranging from common sore throats and skin infections, to more invasive diseases and life-threatening post-infectious diseases, such as rheumatic fever and rheumatic heart disease. Although research has been ongoing since 1923, vaccines against GAS are still not available to the public. Traditional approaches taken to develop vaccines for GAS failed due to poor efficacy and safety. Fortunately, headway has been made and modern subunit vaccines that administer minimal bacterial components provide an opportunity to finally overcome previous hurdles in GAS vaccine development. This review details the major antigens and strategies used for GAS vaccine development. The combination of antigen selection, peptide epitope modification and delivery systems have resulted in the discovery of promising peptide vaccines against GAS; these are currently in preclinical and clinical studies.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Wanli Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Saori Mukaida
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, Woolloongabba, The University of Queensland, QLD 4072, Australia
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
11
|
Xue RY, Guo MF, Guo L, Liu C, Li S, Luo J, Nie L, Ji L, Ma CJ, Chen DQ, Sun S, Jin Z, Zou QM, Li HB. Synthetic Lipopeptide Enhances Protective Immunity Against Helicobacter pylori Infection. Front Immunol 2019; 10:1372. [PMID: 31258538 PMCID: PMC6587705 DOI: 10.3389/fimmu.2019.01372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Over fifty percent of the people around the world is infected with Helicobacter pylori (H. pylori), which is the main cause of gastric diseases such as chronic gastritis and stomach cancer. H. pylori adhesin A (HpaA), which is a surface-located lipoprotein, is essential for bacterial colonization in the gastric mucosa. HpaA had been proposed to be a promising vaccine candidate against H. pylori infection. However, the effect of non-lipidated recombinant HpaA (rHpaA) to stimulate immune response was not very ideal, and the protective effect against H. pylori infection was also limited. Here, we hypothesized that low immunogenicity of rHpaA may attribute to lacking the immunostimulatory properties endowed by the lipid moiety. In this study, two novel lipopeptides, LP1 and LP2, which mimic the terminal structure of the native HpaA (nHpaA), were synthesized and TLR2 activation activity was confirmed in vitro. To investigate whether two novel lipopeptides could improve the protective effect of rHpaA against the infection of H. pylori, groups of mice were immunized either intramuscularly or intranasally with rHpaA together with LP1 or LP2. Compared with rHpaA alone, the bacterial colonization of the mice immunized with rHpaA plus LP2 via intranasal route was significantly decreased and the expression levels of serum IgG2a, IFN-γ, and IL-17 cytokines in spleen lymphocyte culture supernatant increased obviously, indicating that the enhanced protection of LP2 may be associated with elevated specific Th1 and Th17 responses. In conclusion, LP2 has been shown to improve the protective effect of rHpaA against H. pylori infection, which may be closely related to its ability in activating TLR2 by mimicking the terminal structure of nHpaA.
Collapse
Affiliation(s)
- Ruo-Yi Xue
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Mu-Fei Guo
- Chongqing Nankai Secondary School, Chongqing, China
| | - Ling Guo
- Chongqing Technical Center for Drug Evaluation and Certification, Chongqing, China
| | - Chang Liu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Sun Li
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jiao Luo
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Li Nie
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Lu Ji
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Cong-Jia Ma
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Da-Qun Chen
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Si Sun
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Zhe Jin
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quan-Ming Zou
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hai-Bo Li
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
12
|
Li Q, Guo Z. Recent Advances in Toll Like Receptor-Targeting Glycoconjugate Vaccines. Molecules 2018; 23:molecules23071583. [PMID: 29966261 PMCID: PMC6100623 DOI: 10.3390/molecules23071583] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 02/04/2023] Open
Abstract
Many malignant cell surface carbohydrates resulting from abnormal glycosylation patterns of certain diseases can serve as antigens for the development of vaccines against these diseases. However, carbohydrate antigens are usually poorly immunogenic by themselves, thus they need to be covalently coupled with immunologically active carrier molecules to be functional. The most well established and commonly used carriers are proteins. In recent years, the use of toll-like receptor (TLR) ligands to formulate glycoconjugate vaccines has gained significant attention because TLR ligands can serve not only as carrier molecules but also as built-in adjuvants to form fully synthetic and self-adjuvanting conjugate vaccines, which have several advantages over carbohydrate-protein conjugates and formulated mixtures with external adjuvants. This article reviews recent progresses in the development of conjugate vaccines based on TLR ligands. Two major classes of TLR ligands, lipopeptides and lipid A derivatives will be covered with more focus on monophosohoryl lipid A (MPLA) and related analogs, which are TLR4 ligands demonstrated to be able to provoke T cell-dependent, adaptive immune responses. Corresponding conjugate vaccines have shown promising application potentials to multiple diseases including cancer.
Collapse
Affiliation(s)
- Qingjiang Li
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| |
Collapse
|
13
|
Minz S, Pandey RS. Lipid A adjuvanted Chylomicron Mimicking Solid Fat Nanoemulsions for Immunization Against Hepatitis B. AAPS PharmSciTech 2018; 19:1168-1181. [PMID: 29243216 DOI: 10.1208/s12249-017-0932-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/27/2017] [Indexed: 11/30/2022] Open
Abstract
Traditional parenteral recombinant hepatitis B virus (HBV) vaccines have effectively reduced the disease burden despite being able to induce seroprotective antibody titers in 5-10% vaccinated individuals (non-responders). Moreover, an estimated 340 million chronic HBV cases are in need of treatment. Development of safe, stable, and more effective hepatitis B vaccine formulation would address these challenges. Recombinant hepatitis B surface antigen (rHBsAg) entrapped solid fat nanoemulsions (SFNs) containing monophosphoryl lipid A (MPLA) that was prepared and optimized by quality by design (QbD) using response surface methodology (RSM), i.e., central composite design (CCD). Its immune potential was evaluated with preset immunization protocol in a murine model. Dose escalation study revealed that formulation containing 1 μg of rHBsAg entrapped SFNs with MPLA-induced significant higher humoral, and cellular response compared to the marketed vaccine (Genvac B) administered intramuscularly. SFNs with nanometric morphology and structural similarity with chylomicrons assist in improved uptake and processing to lymphatics. Moreover, the presence of an immunogenic component in its structure further augments delivery of rHBsAg to immune cells with induction of danger signals. This multi-adjuvant based approach explores new prospect for the dose sparing. Improved cellular immune response induced by this vaccine formulation suggests that it could be tested as an immunotherapeutic vaccine as well.
Collapse
|
14
|
M. Hussein W, M. Choi P, Zhang C, Sierecki E, Johnston W, Jia Z, J. Monteiro M, Skwarczynski M, Gambin Y, Toth I. Investigating the affinity of poly tert-butyl acrylate toward Toll-Like Receptor 2. AIMS ALLERGY AND IMMUNOLOGY 2018. [DOI: 10.3934/allergy.2018.3.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Cevallos VM, Díaz V, Sirois CM. Particulate matter air pollution from the city of Quito, Ecuador, activates inflammatory signaling pathways in vitro. Innate Immun 2017; 23:392-400. [PMID: 28409539 DOI: 10.1177/1753425917699864] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Automobile traffic, industrial processes and natural phenomena cause notable air pollution, including gaseous and particulate contaminants, in urban centers. Exposure to particulate matter (PM) air pollution affects human health, and has been linked to respiratory, cardiovascular and neurological diseases. The mechanisms underlying inflammation in these diverse diseases, and to what extent health effects are different for PM obtained from different sources or locations, are still unclear. This study investigated the in vitro toxicity of ambient course (PM10) and fine (PM2.5) particulate matter collected at seven sites in the urban and periurban zones of Quito, Ecuador. Material from all sites was capable of activating TLR2 and TLR4 signaling pathways, with differences in the activation related to particle size. Additionally, airborne particulate matter from Quito is an effective activator of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Victoria M Cevallos
- 1 Center for Translational Research, Universidad de Las Américas, Quito, Ecuador
| | - Valeria Díaz
- 2 Secretariat of the Environment, Municipality of the Quito Metropolitan District, Quito, Ecuador.,3 School of Medicine, College of Health Sciences, Universidad de Las Américas, Quito, Ecuador
| | - Cherilyn M Sirois
- 1 Center for Translational Research, Universidad de Las Américas, Quito, Ecuador.,3 School of Medicine, College of Health Sciences, Universidad de Las Américas, Quito, Ecuador.,4 Center for Biomedical Research, Eugenio Espejo College of Health Sciences, Universidad Tecnológica Equinoccial, Quito, Ecuador
| |
Collapse
|
16
|
Hussein WM, Mukaida S, Azmi F, Bartlett S, Olivier C, Batzloff MR, Good MF, Skwarczynski M, Toth I. Comparison of Fluorinated and Nonfluorinated Lipids in Self-Adjuvanting Delivery Systems for Peptide-Based Vaccines. ACS Med Chem Lett 2017; 8:227-232. [PMID: 28197317 DOI: 10.1021/acsmedchemlett.6b00453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/24/2017] [Indexed: 01/13/2023] Open
Abstract
Safe immunostimulants (adjuvants) are essential for the development of highly potent peptide-based vaccines. This study examined for the first time whether fluorinated lipids could stimulate humoral immunity in vivo when conjugated to peptide antigen. The impact of fluorination on humoral immunity was tested using a library of peptide-based vaccine candidates against the group A streptococcus (GAS). The fluorinated constructs stimulated similar mouse IgG titers to those elicited by complete Freund's adjuvant (CFA) and were higher than those produced in mice that received the nonfluorinated constructs.
Collapse
Affiliation(s)
- Waleed M. Hussein
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Saori Mukaida
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fazren Azmi
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Faculty
of Pharmacy, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Stacey Bartlett
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Celine Olivier
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael R. Batzloff
- Institute
for Glycomics, Griffith University, Gold Coast, QLD 4215, Australia
| | - Michael F. Good
- Institute
for Glycomics, Griffith University, Gold Coast, QLD 4215, Australia
| | - Mariusz Skwarczynski
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Istvan Toth
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute
for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- School
of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
17
|
da Silva RAG, Churchward CP, Karlyshev AV, Eleftheriadou O, Snabaitis AK, Longman MR, Ryan A, Griffin R. The role of apolipoprotein N-acyl transferase, Lnt, in the lipidation of factor H binding protein of Neisseria meningitidis strain MC58 and its potential as a drug target. Br J Pharmacol 2016; 174:2247-2260. [PMID: 27784136 DOI: 10.1111/bph.13660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/06/2016] [Accepted: 10/13/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The level of cell surface expression of the meningococcal vaccine antigen, Factor H binding protein (FHbp) varies between and within strains and this limits the breadth of strains that can be targeted by FHbp-based vaccines. The molecular pathway controlling expression of FHbp at the cell surface, including its lipidation, sorting to the outer membrane and export, and the potential regulation of this pathway have not been investigated until now. This knowledge will aid our evaluation of FHbp vaccines. EXPERIMENTAL APPROACH A meningococcal transposon library was screened by whole cell immuno-dot blotting using an anti-FHbp antibody to identify a mutant with reduced binding and the disrupted gene was determined. KEY RESULTS In a mutant with markedly reduced binding, the transposon was located in the lnt gene which encodes apolipoprotein N-acyl transferase, Lnt, responsible for the addition of the third fatty acid to apolipoproteins prior to their sorting to the outer membrane. We provide data indicating that in the Lnt mutant, FHbp is diacylated and its expression within the cell is reduced 10 fold, partly due to inhibition of transcription. Furthermore the Lnt mutant showed 64 fold and 16 fold increase in susceptibility to rifampicin and ciprofloxacin respectively. CONCLUSION AND IMPLICATIONS We speculate that the inefficient sorting of diacylated FHbp in the meningococcus results in its accumulation in the periplasm inducing an envelope stress response to down-regulate its expression. We propose Lnt as a potential novel drug target for combination therapy with antibiotics. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
Affiliation(s)
- R A G da Silva
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| | - C P Churchward
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| | - A V Karlyshev
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| | - O Eleftheriadou
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| | - A K Snabaitis
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| | - M R Longman
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| | - A Ryan
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| | - R Griffin
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| |
Collapse
|
18
|
Sahu KK, Pandey RS. Immunological evaluation of colonic delivered Hepatitis B surface antigen loaded TLR-4 agonist modified solid fat nanoparticles. Int Immunopharmacol 2016; 39:343-352. [PMID: 27526270 DOI: 10.1016/j.intimp.2016.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 12/29/2022]
Abstract
Hepatitis B is one of the leading liver diseases and remains a major global health problem. Currently available vaccines provide protection but often results in weaker/minimal mucosal immunity. Thus the present study is devoted to the development and in-vivo exploration of the colonically delivered biomimetic nanoparticles which capably enhance humoral as well as cellular immune response. In present work, Hepatitis B surface antigen (HBsAg) entrapped nanoparticles containing Monophosphoryl lipid A (MPLA) (HB+L-NP) were prepared by solvent evaporation method and characterized for particle size (~210nm), shape, zeta potential (-24mV±0.68), entrapment efficiency (58.45±1.68%), in-vitro release and antigen integrity. Dose escalation study was done to confirm prophylactic immune response following defined doses of prepared nanoparticulate formulations with or without MPLA. Intramuscular administered alum based marketed HBsAg (Genevac B) was used as standard (10μg) and were able to induce significant systemic (IgG) but remarkably low mucosal immune (IgA) response. Notably, HB+L-NP (0.5ml-10μg) induced strong systemic and robust mucosal immunity (510 and 470 mIU/ml respectively, p<0.001) from which mucosal was more significant due to the involvement of Common Mucosal Immune System (CMIS). Likewise, significant cellular immune response was elicited by HB+L-NP through T-cell activation (mixed Th1 and Th2) as confirmed by significantly increased cytokines level (IL-2 and Interferon-γ) in spleen homogenates. This study supports that delivery of HBsAg to the colon may open new vista in designing oral vaccines later being one of most accepted route for potential vaccines in future.
Collapse
Affiliation(s)
- Kantrol Kumar Sahu
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G. 495001, India
| | - Ravi Shankar Pandey
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G. 495001, India.
| |
Collapse
|
19
|
Abstract
This Feature Article discusses several classes of lipopeptide with important biomedical applications as antimicrobial and antifungal agents, in immune therapies and in personal care applications among others. Two main classes of lipopeptide are considered: (i) bacterially-expressed lipopeptides with a cyclic peptide headgroup and (ii) linear lipopeptides (with one or more lipid chains) based on bio-derived and bio-inspired amino acid sequences with current clinical applications. The applications are briefly summarized, and the biophysical characterization of the molecules is reviewed, with a particular focus on self-assembly. For several of these types of biomolecule, the formation of micelles above a critical micelle concentration has been observed while others form bilayer structures, depending on conditions of pH and temperature. As yet, there are few studies on the possible relationship between self-assembly into structures such as micelles and bioactivity of this class of molecule although this is likely to attract further attention.
Collapse
Affiliation(s)
- Ian W Hamley
- Dept of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK.
| |
Collapse
|
20
|
Hussein WM, Liu TY, Maruthayanar P, Mukaida S, Moyle PM, Wells JW, Toth I, Skwarczynski M. Double conjugation strategy to incorporate lipid adjuvants into multiantigenic vaccines. Chem Sci 2016; 7:2308-2321. [PMID: 29910921 PMCID: PMC5977935 DOI: 10.1039/c5sc03859f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/28/2015] [Indexed: 11/30/2022] Open
Abstract
Conjugation of multiple peptides by their N-termini is a promising technique to produce branched multiantigenic vaccines.
Conjugation of multiple peptides by their N-termini is a promising technique to produce branched multiantigenic vaccines. We established a double conjugation strategy that combines a mercapto-acryloyl Michael addition and a copper-catalysed alkyne-azide 1,3-dipolar cycloaddition (CuAAC) reaction to synthesise self-adjuvanting branched multiantigenic vaccine candidates. These vaccine candidates aim to treat cervical cancer and include two HPV-16 derived epitopes and a novel self-adjuvanting moiety. This is the first report of mercapto-acryloyl conjugation applied to the hetero conjugation of two unprotected peptides by their N-termini followed by a CuAAC reaction to conjugate a novel synthetic lipoalkyne self-adjuvanting moiety. In vivo experiments showed that the most promising vaccine candidate completely eradicated tumours in 46% of the mice (6 out of 13 mice).
Collapse
Affiliation(s)
- Waleed M Hussein
- School of Chemistry and Molecular Biosciences , The University of Queensland , Brisbane , QLD 4072 , Australia . ;
| | - Tzu-Yu Liu
- School of Chemistry and Molecular Biosciences , The University of Queensland , Brisbane , QLD 4072 , Australia . ;
| | - Pirashanthini Maruthayanar
- The University of Queensland Diamantina Institute , The University of Queensland , Translational Research Institute , Brisbane , Australia
| | - Saori Mukaida
- School of Chemistry and Molecular Biosciences , The University of Queensland , Brisbane , QLD 4072 , Australia . ;
| | - Peter M Moyle
- School of Pharmacy , The University of Queensland , Brisbane , QLD 4102 , Australia
| | - James W Wells
- The University of Queensland Diamantina Institute , The University of Queensland , Translational Research Institute , Brisbane , Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences , The University of Queensland , Brisbane , QLD 4072 , Australia . ; .,School of Pharmacy , The University of Queensland , Brisbane , QLD 4102 , Australia.,Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences , The University of Queensland , Brisbane , QLD 4072 , Australia . ;
| |
Collapse
|
21
|
Hamley IW, Kirkham S, Dehsorkhi A, Castelletto V, Reza M, Ruokolainen J. Toll-like receptor agonist lipopeptides self-assemble into distinct nanostructures. Chem Commun (Camb) 2015; 50:15948-51. [PMID: 25382300 DOI: 10.1039/c4cc07511k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembled structure of toll-like receptor agonist lipopeptides containing the CSK4 peptide sequence is examined in aqueous solution. A remarkable dependence of morphology on the number of attached hexadecyl lipid chains is demonstrated, with spherical micelle structures for mono- and di-lipidated structures observed, but flexible wormlike micelles for the homologue containing three lipid chains. The distinct modes of assembly may have an important influence on the bioactivity of this class of lipopeptide.
Collapse
Affiliation(s)
- Ian W Hamley
- Dept of Chemistry, University of Reading, Whiteknights Reading, RG6 6AD, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Zeng W, Tan ACL, Horrocks K, Jackson DC. A lipidated form of the extracellular domain of influenza M2 protein as a self-adjuvanting vaccine candidate. Vaccine 2015; 33:3526-32. [PMID: 26049002 DOI: 10.1016/j.vaccine.2015.05.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 12/15/2022]
Abstract
The highly conserved extracellular domain of Matrix protein 2 (M2e) of influenza A virus has been previously investigated as a potential target for an universal influenza vaccine. In this study we prepared four lipopeptide influenza vaccine candidates in which the TLR2 agonist S-[2,3-bis(palmitoyloxy)propyl] cysteine, (Pam2Cys) was attached to either the N- or C-terminus of the M2e consensus sequence SLLTEVETPIRNEWGCRCNDSSDP and its analogue sequence with the two cysteine residues replaced with serine residues. The results of animal study show that each of these lipopeptides induced strong M2e-specific antibody responses in the absence of extraneous T helper cell epitope(s) which are normally incorporated in the previous studies or addition of extraneous adjuvant and that these antibodies are protective against lethal challenge with influenza virus. Comparison of different routes of inoculation demonstrated that intranasal administration of M2e lipopeptide induced higher titers of IgA and IgG2b antibodies in the bronchoalveolar lavage than did subcutaneous vaccination and was better at mitigating the severity of viral challenge. Finally, we show that anti-M2e antibody specificities absent from the antibody repertoire elicited by a commercially available influenza vaccine and by virus infection can be introduced by immunization with M2e-lipopeptide and boosted by viral challenge. Immunization with this lipidated form of the M2e epitope therefore offers a means of using a widely conserved epitope to generate protective antibodies which are not otherwise induced.
Collapse
Affiliation(s)
- Weiguang Zeng
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne 3010, Victoria, Australia.
| | - Amabel C L Tan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne 3010, Victoria, Australia
| | - Kylie Horrocks
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne 3010, Victoria, Australia
| | - David C Jackson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne 3010, Victoria, Australia
| |
Collapse
|
23
|
Lees S, Golub SB, Last K, Zeng W, Jackson DC, Sutton P, Fosang AJ. Bioactivity in an Aggrecan 32-mer Fragment Is Mediated via Toll-like Receptor 2. Arthritis Rheumatol 2015; 67:1240-9. [DOI: 10.1002/art.39063] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/03/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Sophie Lees
- University of Melbourne, Murdoch Childrens Research Institute, and Royal Children's Hospital; Parkville Victoria Australia
| | - Suzanne B. Golub
- University of Melbourne, Murdoch Childrens Research Institute, and Royal Children's Hospital; Parkville Victoria Australia
| | - Karena Last
- University of Melbourne, Murdoch Childrens Research Institute, and Royal Children's Hospital; Parkville Victoria Australia
| | - Weiguang Zeng
- University of Melbourne; Parkville Victoria Australia
| | | | - Philip Sutton
- University of Melbourne, Murdoch Childrens Research Institute, and Royal Children's Hospital; Parkville Victoria Australia
| | - Amanda J. Fosang
- University of Melbourne, Murdoch Childrens Research Institute, and Royal Children's Hospital; Parkville Victoria Australia
| |
Collapse
|
24
|
Gowthaman U, Mushtaq K, Tan AC, Rai PK, Jackson DC, Agrewala JN. Challenges and solutions for a rational vaccine design for TB-endemic regions. Crit Rev Microbiol 2015; 41:389-98. [PMID: 24495096 DOI: 10.3109/1040841x.2013.859125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vaccines have been successful for global eradication or control of dreaded diseases such as smallpox, diphtheria, tetanus, yellow fever, whooping cough, polio, and measles. Unfortunately, this success has not been achieved for controlling tuberculosis (TB) worldwide. Bacillus Calmette Guérin (BCG) is the only available vaccine against TB. Paradoxically, BCG has deciphered success in the Western world but has failed in TB-endemic areas. In this article, we highlight and discuss the aspects of immunity responsible for controlling Mycobacterium tuberculosis infection and factors responsible for the failure of BCG in TB-endemic countries. In addition, we also suggest strategies that contribute toward the development of successful vaccine in protecting populations where BCG has failed.
Collapse
|
25
|
Hussein WM, Liu TY, Skwarczynski M, Toth I. Toll-like receptor agonists: a patent review (2011 - 2013). Expert Opin Ther Pat 2014; 24:453-70. [PMID: 24456079 DOI: 10.1517/13543776.2014.880691] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Toll-like receptors (TLRs) are a crucial part of the innate immunity and present the first line of defense against pathogens. In humans, there are ten TLRs, with TLR3, 7, 8 and 9 located in intracellular vesicles and the remaining expressed on the cell surface. These transmembrane protein receptors recognize a wide range of pathogen components. A large number of TLR agonists, either derived from pathogen components or modified synthetic molecules, were developed and investigated for their ability to stimulate an immune response. AREAS COVERED This review includes an updated summary (2011 - 2013) of TLR agonists that have been published in patent applications and/or progressed to clinical studies, with an emphasis on their chemical structure, immune response, prophylactic and therapeutic outcomes. EXPERT OPINION A number of factors have contributed to the design and development of TLR agonists such as solving the crystal structures of TLR bound to their ligands, improvements in our understanding of the signaling pathway activated after TLR stimulation and the identification of the native ligands of all human TLRs. Some of the TLR agonists have been approved for human use by the FDA while others have reached clinical studies in Phases I, II and III. Generally, immunotherapy based on TLR agonists is very promising for the prevention and/or treatment of several disorders including cancer, allergy and microbial infections. However, many TLR agonists were withdrawn from further studies as they either lacked efficacy or caused serious side effects.
Collapse
Affiliation(s)
- Waleed M Hussein
- The University of Queensland, School of Chemistry and Molecular Biosciences , St. Lucia, Brisbane, Qld 4072 , Australia
| | | | | | | |
Collapse
|
26
|
Zaman M, Good MF, Toth I. Nanovaccines and their mode of action. Methods 2013; 60:226-31. [DOI: 10.1016/j.ymeth.2013.04.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/21/2022] Open
|
27
|
Ahmad Fuaad AAH, Jia Z, Zaman M, Hartas J, Ziora ZM, Lin IC, Moyle PM, Batzloff MR, Good MF, Monteiro MJ, Skwarczynski M, Toth I. Polymer-peptide hybrids as a highly immunogenic single-dose nanovaccine. Nanomedicine (Lond) 2013; 9:35-43. [PMID: 23611619 DOI: 10.2217/nnm.13.7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIM To explore four-arm star poly(t-butyl)acrylate (P(t)BA)-peptide and linear P(t)BA-peptide conjugates as a vaccine-delivery system against Group A Streptococcus. MATERIALS & METHODS P(t)BA nanoparticles bearing J14 peptide epitopes were prepared via alkyne-azide 1,3-dipolar cycloaddition 'click' reaction. The conjugated products were self-assembled into small or large nanoparticles. These nanoparticle vaccine candidates were evaluated in vivo and J14-specific antibody titers were assessed. RESULTS & DISCUSSION Mice vaccinated with the nanoparticles were able to produce J14-specific IgG antibodies without the use of an external adjuvant after a single immunization. We have demonstrated for the first time that the immune responses against self-assembled P(t)BA nanoparticles are stronger for the smaller sized (~20 nm) nanoparticles compared with the larger (~500 nm) P(t)BA nanoparticles. CONCLUSION PtBA analogs have the potential to be developed as potent carrier systems for single-dose synthetic vaccines.
Collapse
Affiliation(s)
- Abdullah A H Ahmad Fuaad
- The University of Queensland (St Lucia), School of Chemistry & Molecular Biosciences, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
The design and proof of concept for a CD8(+) T cell-based vaccine inducing cross-subtype protection against influenza A virus. Immunol Cell Biol 2012; 91:96-104. [PMID: 23146941 DOI: 10.1038/icb.2012.54] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, we examined the reactivity of human peripheral blood mononuclear cells to a panel of influenza A virus (IAV) CD8(+) T-cell epitopes that are recognised by the major human leukocyte antigen (HLA) groups represented in the human population. We examined the level of recognition in a sample of the human population and the potential coverage that could be achieved if these were incorporated into a T-cell epitope-based vaccine. We then designed a candidate influenza vaccine that incorporated three of the examined HLA-A2-restricted influenza epitopes into Pam2Cys-based lipopeptides. These lipopeptides do not require the addition of an adjuvant and can be delivered directly to the respiratory mucosa enabling the generation of local memory cell populations that are crucial for clearance of influenza. Intranasal administration of a mixture of three lipopeptides to HLA-A2 transgenic HHD mice elicited multiple CD8(+) T-cell specificities in the spleen and lung that closely mimicked the response generated following natural infection with influenza. These CD8(+) T cells were associated with viral reduction following H3N1 influenza virus challenge for as long as 3 months after lipopeptide administration. In addition, lipopeptides containing IAV-targeting epitopes conferred substantial benefit against death following infection with a virulent H1N1 strain. Because CD8(+) T cell epitopes are often derived from highly conserved regions of influenza viruses, such vaccines need not be reformulated annually and unlike current antibody-inducing vaccines could provide cross-protective immunity against newly emerging pandemic viruses.
Collapse
|
29
|
Tan ACL, Mifsud EJ, Zeng W, Edenborough K, McVernon J, Brown LE, Jackson DC. Intranasal administration of the TLR2 agonist Pam2Cys provides rapid protection against influenza in mice. Mol Pharm 2012; 9:2710-8. [PMID: 22823162 DOI: 10.1021/mp300257x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The protective role played by the innate immune system during early stages of infection suggests that compounds which stimulate innate responses could be used as antimicrobial or antiviral agents. In this study, we demonstrate that the Toll-like receptor-2 agonist Pam2Cys, when administered intranasally, triggers a cascade of inflammatory and innate immune signals, acting as an immunostimulant by attracting neutrophils and macrophages and inducing secretion of IL-2, IL-6, IL-10, IFN-γ, MCP-1 and TNF-α. These changes provide increased resistance against influenza A virus challenge and also reduce the potential for transmission of infection. Pam2Cys treatment also reduced weight loss and lethality associated with virulent influenza virus infection in a Toll-like receptor-2-dependent manner. Treatment did not affect the animals' ability to generate an adaptive immune response, measured by the induction of functional influenza A virus-specific CD8(+) T cells following exposure to virus. Because this compound demonstrates efficacy against distinct strains of influenza, it could be a candidate for development as an agent against influenza and possibly other respiratory pathogens.
Collapse
Affiliation(s)
- Amabel C L Tan
- Department of Microbiology & Immunology, The University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The vast majority of human pathogens colonize and invade at the mucosal surfaces. Preventing infection at these sites via mucosally active vaccines is a promising and rational approach for vaccine development. However, it is only recently that the stimulation of local immunity at the mucosal surfaces has become a primary objective in addition to inducing systemic immunity. This review describes vaccine formulations designed for mucosal delivery to the nasal-associated lymphoid tissue, via intranasal administration. The association of antigens with mucosal adjuvants and delivery systems is emphasised.
Collapse
Affiliation(s)
- Mehfuz Zaman
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St. Lucia, 4072 QLD Australia
| | - Saranya Chandrudu
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St. Lucia, 4072 QLD Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St. Lucia, 4072 QLD Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD Australia
| |
Collapse
|
31
|
A totally synthetic lipopeptide-based self-adjuvanting vaccine induces neutralizing antibodies against heat-stable enterotoxin from enterotoxigenic Escherichia coli. Vaccine 2012; 30:4800-6. [DOI: 10.1016/j.vaccine.2012.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/27/2012] [Accepted: 05/11/2012] [Indexed: 11/20/2022]
|
32
|
Overview and outlook of Toll-like receptor ligand–antigen conjugate vaccines. Ther Deliv 2012; 3:749-60. [DOI: 10.4155/tde.12.52] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
33
|
Toxoplasma gondii HLA-B*0702-restricted GRA7(20-28) peptide with adjuvants and a universal helper T cell epitope elicits CD8(+) T cells producing interferon-γ and reduces parasite burden in HLA-B*0702 mice. Hum Immunol 2011; 73:1-10. [PMID: 22027386 DOI: 10.1016/j.humimm.2011.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 09/10/2011] [Accepted: 10/03/2011] [Indexed: 11/21/2022]
Abstract
The ability of CD8(+) T cells to act as cytolytic effectors and produce interferon-γ (IFN-γ) was demonstrated to mediate resistance to Toxoplasma gondii in murine models because of the recognition of peptides restricted by murine major histocompatibility complex (MHC) class I molecules. However, no T gondii-specific HLA-B07-restricted peptides were proven protective against T gondii. Recently, 2 T gondii-specific HLA-B*0702-restricted T cell epitopes, GRA7(20-28) (LPQFATAAT) and GRA3(27-35) (VPFVVFLVA), displayed high-affinity binding to HLA-B*0702 and elicited IFN-γ from peripheral blood mononuclear cells of seropositive HLA-B*07 persons. Herein, these peptides were evaluated to determine whether they could elicit IFN-γ in splenocytes of HLA-B*0702 transgenic mice when administered with adjuvants and protect against subsequent challenge. Peptide-specific IFN-γ-producing T cells were identified by enzyme-linked immunosorbent spot and proliferation assays utilizing splenic T lymphocytes from human lymphocyte antigen (HLA) transgenic mice. When HLA-B*0702 mice were immunized with one of the identified epitopes, GRA7(20-28) in conjunction with a universal CD4(+) T cell epitope (PADRE) and adjuvants (CD4(+) T cell adjuvant, GLA-SE, and TLR2 stimulatory Pam(2)Cys for CD8(+) T cells), this immunization induced CD8(+) T cells to produce IFN-γ and protected mice against high parasite burden when challenged with T gondii. This work demonstrates the feasibility of bioinformatics followed by an empiric approach based on HLA binding to test this biologic activity for identifying protective HLA-B*0702-restricted T gondii peptides and adjuvants that elicit protective immune responses in HLA-B*0702 mice.
Collapse
|
34
|
Teke GN, Lunga PK, Wabo HK, Kuiate JR, Vilarem G, Giacinti G, Kikuchi H, Oshima Y. Antimicrobial and antioxidant properties of methanol extract, fractions and compounds from the stem bark of Entada abyssinica Stend ex A. Satabie. Altern Ther Health Med 2011; 11:57. [PMID: 21771305 PMCID: PMC3157447 DOI: 10.1186/1472-6882-11-57] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/19/2011] [Indexed: 11/29/2022]
Abstract
Background The aim of this study was to evaluate the antimicrobial and antioxidant activities of the methanol extract, fractions and isolated compounds from Entada abyssinica stem bark, plant used traditionally against gastrointestinal infections. Methods The methanol extract of E. abyssinica stem bark was pre-dissolved in a mixture of methanol and water, and then partitioned between n-hexane, ethyl acetate and n-butanol. The ethyl acetate portion was fractionated by column chromatography and the structures of isolated compounds elucidated by analysis of spectroscopic data and comparison with literature data. Antimicrobial activity was assayed by broth microdilution techniques on bacteria and yeasts. The antioxidant activity was determined by DPPH radical scavenging method. Results Four known compounds [(5S,6R,8aR)-5-(carboxymethyl)-3,4,4a,5,6,7,8,8a-octahydro-5,6,8a-trimethylnaphthalenecarboxylic acid (1), methyl 3,4,5-trihydroxybenzoate (2), benzene-1,2,3-triol (3) and 2,3-dihydroxypropyltriacontanoate (4)] were isolated. Compared to the methanol extract, fractionation increased the antibacterial activities of the n-hexane and ethyl acetate fractions, while the antifungal activities increased in ethyl acetate, n-butanol and aqueous residue fractions. The isolated compounds were generally more active on bacteria (9.7 to 156.2 μg/ml) than yeasts (78.1 to 312.5 μg/ml). Apart from compound 1, the three others displayed DPPH· scavenging activity (RSa), with RSa50 values of 1.45 and 1.60 μg/ml. Conclusion The results obtained from this study support the ethnomedicinal use of E. abyssinica in the treatment of gastrointestinal infections and the isolated compounds could be useful in the standardisation of antimicrobial phytomedicine from this plant.
Collapse
|
35
|
Zeng W, Eriksson EM, Lew A, Jackson DC. Lipidation of intact proteins produces highly immunogenic vaccine candidates. Mol Immunol 2011; 48:490-6. [DOI: 10.1016/j.molimm.2010.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/07/2010] [Accepted: 10/10/2010] [Indexed: 11/29/2022]
|