1
|
Kaleta K, Janik K, Rydz L, Wróbel M, Jurkowska H. Bridging the Gap in Cancer Research: Sulfur Metabolism of Leukemic Cells with a Focus on L-Cysteine Metabolism and Hydrogen Sulfide-Producing Enzymes. Biomolecules 2024; 14:746. [PMID: 39062461 PMCID: PMC11274876 DOI: 10.3390/biom14070746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Leukemias are cancers of the blood-forming system, representing a significant challenge in medical science. The development of leukemia cells involves substantial disturbances within the cellular machinery, offering hope in the search for effective selective treatments that could improve the 5-year survival rate. Consequently, the pathophysiological processes within leukemia cells are the focus of critical research. Enzymes such as cystathionine beta-synthase and sulfurtransferases like thiosulfate sulfurtransferase, 3-mercaptopyruvate sulfurtransferase, and cystathionine gamma-lyase play a vital role in cellular sulfur metabolism. These enzymes are essential to maintaining cellular homeostasis, providing robust antioxidant defenses, and supporting cell division. Numerous studies have demonstrated that cancerous processes can alter the expression and activity of these enzymes, uncovering potential vulnerabilities or molecular targets for cancer therapy. Recent laboratory research has indicated that certain leukemia cell lines may exhibit significant changes in the expression patterns of these enzymes. Analysis of the scientific literature and online datasets has confirmed variations in sulfur enzyme function in specific leukemic cell lines compared to normal leukocytes. This comprehensive review collects and analyzes available information on sulfur enzymes in normal and leukemic cell lines, providing valuable insights and identifying new research pathways in this field.
Collapse
Affiliation(s)
- Konrad Kaleta
- Students’ Scientific Group of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland;
| | - Klaudia Janik
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| | - Leszek Rydz
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| | - Maria Wróbel
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| | - Halina Jurkowska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| |
Collapse
|
2
|
Buonvino S, Arciero I, Martinelli E, Seliktar D, Melino S. Modelling the disease: H 2S-sensitivity and drug-resistance of triple negative breast cancer cells can be modulated by embedding in isotropic micro-environment. Mater Today Bio 2023; 23:100862. [PMID: 38046276 PMCID: PMC10689286 DOI: 10.1016/j.mtbio.2023.100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/26/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Three-dimensional (3D) cell culture systems provide more physiologically relevant information, representing more accurately the actual microenvironment where cells reside in tissues. However, the differences between the tissue culture plate (TCP) and 3D culture systems in terms of tumour cell growth, proliferation, migration, differentiation and response to the treatment have not been fully elucidated. Tumoroid microspheres containing the MDA-MB 231 breast cancer cell line were prepared using either tunable PEG-fibrinogen (PFs) or tunable PEG-silk fibroin (PSFs) hydrogels, respectively named MDAPFs and MDAPSFs. The cancer cells in the tumoroids showed changes both in globular morphology and at the protein expression level. A decrease of both Histone H3 acetylation and cyclin D1 expression in all 3D systems, compared to the 2D cell culture, was detected in parallel to changes of the matrix stiffness. The effects of a glutathionylated garlic extract (GSGa), a slow H2S-releasing donor, were investigated on both tumoroid systems. A pro-apoptotic effect of GSGa on tumour cell growth in 2D culture was observed as opposed to a pro-proliferative effect apparent in both MDAPFs and MDAPSFs. A dedicated ad hoc 3D cell migration chip was designed and optimized for studying tumour cell invasion in a gel-in-gel configuration. An anti-cell-invasion effect of the GSGa was observed in the 2D cell culture, whereas a pro-migratory effect in both MDAPFs and MDAPSFs was observed in the 3D cell migration chip assay. An increase of cyclin D1 expression after GSGa treatment was observed in agreement with an increase of the cell invasion index. Our results suggest that the "dimensionality" and the stiffness of the 3D cell culture milieu can change the response to both the gasotransmitter H2S and doxorubicin due to differences in both H2S diffusion and changes in protein expression. Moreover, we uncovered a direct relation between the cyclin D1 expression and the stiffness of the 3D cell culture milieu, suggesting the potential causal involvement of the cyclin D1 as a bio-marker for sensitivity of the tumour cells to their matrix stiffness. Therefore, our hydrogel-based tumoroids represent a valid tunable model for studying the physically induced transdifferentiation (PiT) of cancer cells and as a more reliable and predictive in vitro screening platform to investigate the effects of anti-tumour drugs.
Collapse
Affiliation(s)
- Silvia Buonvino
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Ilaria Arciero
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
- Interdisciplinary Center for Advanced Studies on Lab-on -Chip and Organ-on-Chip Applications, University of Rome Tor Vergata, Rome, Italy
| | - Dror Seliktar
- Department of Biomedical Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica, 00133, Rome, Italy
- NAST Centre, University of Rome ‘Tor Vergata’, Rome, Italy
| |
Collapse
|
3
|
Poonkuzhali K, Seenivasagan R, Prabhakaran J, Karthika A. Synthesis and characterization of chemical engineered PLGA nanosphere: Triggering mechanism of Catechol-O-methyltransferase inhibition on in vivo neurodegeneration. Bioorg Chem 2023; 139:106673. [PMID: 37354660 DOI: 10.1016/j.bioorg.2023.106673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
Chemically engineered PLGA nanospheres are one of the emerging technologies for treating neurodegenerative disorders by inhibiting Catechol-O-methyltransferase (COMT). PLGA-MATPM nanospheres were chemically synthesized using PLGA and MATPM (N-allyl-N-(3-(m-tolyloxy)propyl) methioninate). The tailored PLGA nanospheres induce dose-dependent COMT inhibition in competitive kinetic mode. The interactions between COMT and PLGA nanosphere are explained by spectroscopic and molecular dynamics analysis. PLGA-MATPM NPs suppressed the growth of neuroblastoma cells due to the neurodegenerative toxicity of MPTP induction, demonstrating its potency as a cure for neurological disorders. PLGA-MATPM NPs cross the blood-brain barrier more effectively than those in the blood. Furthermore, PLGA nanospheres showed the most neurodegenerative recovery against MPTP-induced C57BL/6 mice. Using magnetic resonance imaging (MRI), it was validated for quality images of cerebral blood flow (CBF).
Collapse
Affiliation(s)
- K Poonkuzhali
- Bioprocess and Microbial Laboratory, Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry - 605 014, India.
| | - R Seenivasagan
- Department of Biotechnology, Arulmigu Kalasalingam College of Arts and Science, Krishnankoil - 626126, Tamil Nadu, India
| | - J Prabhakaran
- Organic Synthesis Laboratory, Department of Chemistry, School of Physical, Chemical and Applied Sciences, Pondicherry University, Pondicherry - 605 014, India
| | - A Karthika
- Department of Microbiology, The Standard Fireworks Rajaratnam College for Women, Sivakasi - 626123, Tamil Nadu, India
| |
Collapse
|
4
|
Kaliyaperumal P, Renganathan S, Arumugam K, Aremu BR. Engineered graphene quantum dot nanocomposite triggers α-synuclein defibrillation: Therapeutics against Parkinson's disease. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102608. [PMID: 36228996 DOI: 10.1016/j.nano.2022.102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Emerging clinically required α-synuclein (α-syn) inhibitor which acts as a neuroprotective nanocomposite drug is in increased demand as a patient-safe central nervous system therapeutic. This inhibitor is intended to chemically engineer graphene quantum dot (GQD) with blue luminescence, and stands to be a potential cure for Parkinson's disease. It has been theorized that α-syn aggregation is a critical step in the development of Parkinson's. Hence narrow the target by α-syn inhibition, through chemically synthesize methyl N-allyl N-benzoylmethioninate (MABM) and functionally engineer the surface of GQD to target the brain delivery on C57BL/6 mice. Spectroscopic and simulation studies confirm defibrillation through the interaction between N-terminal amino acids and MABM-GQD nanoparticles, which makes nontoxic α-syn. Therefore, this drug's ability to cross the blood-brain barrier in vitro functionally prevents neuronal loss in neuroblastoma cells. Thus, in vivo cerebral blood flow analysis using magnetic resonance imaging illustrates, how this nanocomposite can possibly treat Parkinson's.
Collapse
Affiliation(s)
- Poonkuzhali Kaliyaperumal
- Bioprocess and Microbial Laboratory, Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry 605 014, India.
| | - Seenivasagan Renganathan
- Department of Biotechnology, Arulmigu Kalasalingam College of Arts and Science, Krishnankoil, Tamil Nadu, India
| | - Karthika Arumugam
- Department of Microbiology, The Standard Fireworks Rajaratnam College for Women Sivakasi, Tamil Nadu, India
| | - Bukola Rhoda Aremu
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada; Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Mail Bag X2046, 2735, South Africa
| |
Collapse
|
5
|
Kusza DA, Hunter R, Schäfer G, Smith M, Katz AA, Kaschula CH. Activity-Based Proteomic Identification of the S-Thiolation Targets of Ajoene in MDA-MB-231 Breast Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14679-14692. [PMID: 36351177 DOI: 10.1021/acs.jafc.2c04972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Garlic is a medicinal plant and spice that has been used for millennia for its health-promoting effects. These medicinal properties are associated with low molecular weight organosulfur compounds, produced following the crushing of garlic cloves. One of these compounds, ajoene, is proposed to act by S-thioallylating cysteine residues on target proteins whose identification in cancer cells holds great promise for understanding mechanistic aspects of ajoene's cancer cell cytotoxicity. To this end, an ajoene analogue (called biotin-ajoene, BA), containing a biotin affinity tag, was designed as an activity-based probe specific for the protein targets of ajoene in MDA-MB-231 breast cancer cells. BA was synthesized via a convergent "click" strategy and found to retain its cytotoxicity against MDA-MB-231 cells compared to ajoene. Widespread biotinylation of proteins was found to occur via disulfide bond formation in a dose-dependent manner, and the biotin-ajoene probe was found to share the same protein targets as its parent compound, ajoene. The biotinylated proteins were affinity-purified from the treated MDA-MB-231 cell lysate using streptavidin-coated magnetic beads followed by an on-bead reduction, alkylation, and digestion to liberate the peptide fragments, which were analyzed by liquid chromatography tandem mass chromatography. A total of 600 protein targets were identified, among which 91% overlapped with proteins with known protein cysteine modification (PCM) sites. The specific sites were enriched for those susceptible to S-glutathionylation (-SSG) (16%), S-sulfhydration (-SSH) (20%), S-sulfenylation (-SOH) (22%), and S-nitrosylation (-SNO) (31%). As target validation, both ajoene and a dansylated ajoene (DP) were found to S-thiolate the pure recombinant forms of glutathione S-transferase pi 1 (GSTP1) and protein disulfide isomerase (PDI), and the ajoene analogue DP was found to be a more potent inhibitor than 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). Pathway analysis elucidated that ajoene targets functional and signaling pathways that are implicated in cancer cell survival, specifically cellular processes, metabolism, and genetic information processing pathways. The results of this study provide mechanistic insights into the character of the anti-cancer activity of the natural dietary compound ajoene.
Collapse
Affiliation(s)
- Daniel A Kusza
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Roger Hunter
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology, Observatory, Cape Town 7925, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Muneerah Smith
- Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Arieh A Katz
- Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
- SA-MRC-UCT Gynaecological Cancer Research Centre, University of Cape Town, Cape Town 7925, South Africa
| | - Catherine H Kaschula
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland 7600, South Africa
| |
Collapse
|
6
|
Hagos M, Yaya EE, Chandravanshi BS, Redi-Abshiro M. Analysis of volatile compounds in flesh, peel and seed parts of pumpkin ( Cucurbita maxima) cultivated in Ethiopia using gas chromatography-mass spectrometry (GC-MS). INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2088787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mulu Hagos
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Estifanos Ele Yaya
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Bhagwan Singh Chandravanshi
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mesfin Redi-Abshiro
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Wang L, Zhang C, Yin W, Wei W, Wang Y, Sa W, Liang J. Single-molecule real-time sequencing of the full-length transcriptome of purple garlic (Allium sativum L. cv. Leduzipi) and identification of serine O-acetyltransferase family proteins involved in cysteine biosynthesis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2864-2873. [PMID: 34741310 DOI: 10.1002/jsfa.11627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Garlic (Allium sativum L.), whose bioactive components are mainly organosulfur compounds (OSCs), is a herbaceous perennial widely consumed as a green vegetable and a condiment. Yet, the metabolic enzymes involved in the biosynthesis of OSCs are not identified in garlic. RESULTS Here, a full-length transcriptome of purple garlic was generated via PacBio and Illumina sequencing, to characterize the garlic transcriptome and identify key proteins mediating the biosynthesis of OSCs. Overall, 22.56 Gb of clean data were generated, resulting in 454 698 circular consensus sequence (CCS) reads, of which 83.4% (379 206) were identified as being full-length non-chimeric reads - their further transcript clustering facilitated identification of 36 571 high-quality consensus reads. Once corrected, their genome-wide mapping revealed that 6140 reads were novel isoforms of known genes, and 2186 reads were novel isoforms from novel genes. We detected 1677 alternative splicing events, finding 2902 genes possessing either two or more poly(A) sites. Given the importance of serine O-acetyltransferase (SERAT) in cysteine biosynthesis, we investigated the five SERAT homologs in garlic. Phylogenetic analysis revealed a three-tier classification of SERAT proteins, each featuring a serine acetyltransferase domain (N-terminal) and one or two hexapeptide transferase motifs. Template-based modeling showed that garlic SERATs shared a common homo-trimeric structure with homologs from bacteria and other plants. The residues responsible for substrate recognition and catalysis were highly conserved, implying a similar reaction mechanism. In profiling the five SERAT genes' transcript levels, their expression pattern varied significantly among different tissues. CONCLUSION This study's findings deepen our knowledge of SERAT proteins, and provide timely genetic resources that could advance future exploration into garlic's genetic improvement and breeding. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xining, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, College of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Chao Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xining, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, College of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Wei Yin
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xining, China
| | - Wei Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xining, China
| | - Yonghong Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Wei Sa
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xining, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, College of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| |
Collapse
|
8
|
Sukaram T, Tansawat R, Apiparakoon T, Tiyarattanachai T, Marukatat S, Rerknimitr R, Chaiteerakij R. Exhaled volatile organic compounds for diagnosis of hepatocellular carcinoma. Sci Rep 2022; 12:5326. [PMID: 35351916 PMCID: PMC8964758 DOI: 10.1038/s41598-022-08678-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
Volatile organic compounds (VOCs) profile for diagnosis and monitoring therapeutic response of hepatocellular carcinoma (HCC) has not been well studied. We determined VOCs profile in exhaled breath of 97 HCC patients and 111 controls using gas chromatography–mass spectrometry and Support Vector Machine algorithm. The combination of acetone, 1,4-pentadiene, methylene chloride, benzene, phenol and allyl methyl sulfide provided the highest accuracy of 79.6%, with 76.5% sensitivity and 82.7% specificity in the training set; and 55.4% accuracy, 44.0% sensitivity, and 75.0% specificity in the test set. This combination was correlated with the HCC stages demonstrating by the increased distance from the classification boundary when the stage advanced. For early HCC detection, d-limonene provided a 62.8% sensitivity, 51.8% specificity and 54.9% accuracy. The levels of acetone, butane and dimethyl sulfide were significantly altered after treatment. Patients with complete response had a greater decreased acetone level than those with remaining tumor post-treatment (73.38 ± 56.76 vs. 17.11 ± 58.86 (× 106 AU, p = 0.006). Using a cutoff of 35.9 × 106 AU, the reduction in acetone level predicted treatment response with 77.3% sensitivity, 83.3% specificity, 79.4%, accuracy, and AUC of 0.784. This study demonstrates the feasibility of exhaled VOCs as a non-invasive tool for diagnosis, monitoring of HCC progression and treatment response.
Collapse
Affiliation(s)
- Thanikan Sukaram
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Rossarin Tansawat
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Terapap Apiparakoon
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | | | - Sanparith Marukatat
- Image Processing and Understanding Team, Artificial Intelligence Research Group, National Electronics and Computer Technology Center (NECTEC), Bangkok, Thailand
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.,Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Roongruedee Chaiteerakij
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand. .,Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
9
|
Vegetable phytochemicals: An update on extraction and analysis techniques. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Butera A, Melino G, Amelio I. Epigenetic "Drivers" of Cancer. J Mol Biol 2021; 433:167094. [PMID: 34119490 DOI: 10.1016/j.jmb.2021.167094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/21/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022]
Abstract
Genetics is at the basis of cancer initiation and evolution, but emerging evidence indicates that mutations are not sufficient to produce cancer, indicating a role for epigenetic contributions to the different stages of tumorigenesis. While the genetic tracks of cancer have been widely investigated, the epigenetic "drivers" remain a vague definition. Gene-environment interactions can produce gene-regulatory programs that dictate pathogenesis; this implies a reciprocal relationship where environmental factors contribute to genetic mechanisms of tumorigenesis (i.e. mutagenesis) and genetic factors influence the cellular response to extrinsic stress. In this review article, we attempt to summarise the most remarkable findings demonstrating a contribution of epigenetic factors as proper "drivers" of tumorigenesis. We also try to pose attention on the relevance of epigenetic mechanisms as downstream consequences of genes versus environment interaction.
Collapse
Affiliation(s)
- Alessio Butera
- TOR Centre of Excellence, University of Rome Tor Vergata, Italy
| | - Gerry Melino
- TOR Centre of Excellence, University of Rome Tor Vergata, Italy.
| | - Ivano Amelio
- TOR Centre of Excellence, University of Rome Tor Vergata, Italy; School of Life Sciences, University of Nottingham, UK.
| |
Collapse
|
11
|
Amelio I, Melino G, Levine AJ. Bispecific antibodies come to the aid of cancer immunotherapy. Mol Oncol 2021; 15:1759-1763. [PMID: 33942515 PMCID: PMC8253090 DOI: 10.1002/1878-0261.12977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Three collaborative studies published by the groups of Vogelstein, Gabelli, and Zhou report the development of specially designed bispecific antibodies that may help in overcoming the limitations of current immunotherapies. The bispecific antibodies have been designed to couple cells harboring HLA-presented tumor-specific antigens from Tp53 mutant or Ras mutant with CD4 and CD8 T cells, thus facilitating immune-mediated clearance of the cancer cells.
Collapse
Affiliation(s)
- Ivano Amelio
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy.,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Arnold J Levine
- Institute for Advanced Study, Simons Center for Systems Biology, Princeton, NJ, USA
| |
Collapse
|
12
|
Allicin, the Odor of Freshly Crushed Garlic: A Review of Recent Progress in Understanding Allicin's Effects on Cells. Molecules 2021; 26:molecules26061505. [PMID: 33801955 PMCID: PMC8001868 DOI: 10.3390/molecules26061505] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
The volatile organic sulfur compound allicin (diallyl thiosulfinate) is produced as a defense substance when garlic (Allium sativum) tissues are damaged, for example by the activities of pathogens or pests. Allicin gives crushed garlic its characteristic odor, is membrane permeable and readily taken up by exposed cells. It is a reactive thiol-trapping sulfur compound that S-thioallylates accessible cysteine residues in proteins and low molecular weight thiols including the cellular redox buffer glutathione (GSH) in eukaryotes and Gram-negative bacteria, as well as bacillithiol (BSH) in Gram-positive firmicutes. Allicin shows dose-dependent antimicrobial activity. At higher doses in eukaryotes allicin can induce apoptosis or necrosis, whereas lower, biocompatible amounts can modulate the activity of redox-sensitive proteins and affect cellular signaling. This review summarizes our current knowledge of how bacterial and eukaryotic cells are specifically affected by, and respond to, allicin.
Collapse
|
13
|
Miękus N, Marszałek K, Podlacha M, Iqbal A, Puchalski C, Świergiel AH. Health Benefits of Plant-Derived Sulfur Compounds, Glucosinolates, and Organosulfur Compounds. Molecules 2020; 25:molecules25173804. [PMID: 32825600 PMCID: PMC7503525 DOI: 10.3390/molecules25173804] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022] Open
Abstract
The broad spectrum of the mechanism of action of immune-boosting natural compounds as well as the complex nature of the food matrices make researching the health benefits of various food products a complicated task. Moreover, many routes are involved in the action of most natural compounds that lead to the inhibition of chronic inflammation, which results in a decrease in the ability to remove a pathogen asymptomatically and is connected to various pathological events, such as cancer. A number of cancers have been associated with inflammatory processes. The current review strives to answer the question of whether plant-derived sulfur compounds could be beneficial in cancer prevention and therapy. This review focuses on the two main sources of natural sulfur compounds: alliaceous and cruciferous vegetables. Through the presentation of scientific data which deal with the study of the chosen compounds in cancer (cell lines, animal models, and human studies), the discussion of food processing’s influence on immune-boosting food content is presented. Additionally, it is demonstrated that there is still a need to precisely demonstrate the bioavailability of sulfur-containing compounds from various types of functional food, since the inappropriate preparation of vegetables can significantly reduce the content of beneficial sulfur compounds. Additionally, there is an urgent need to carry out more epidemiological studies to reveal the benefits of several natural compounds in cancer prevention and therapy.
Collapse
Affiliation(s)
- Natalia Miękus
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland;
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, 36 Rakowiecka, 02-532 Warsaw, Poland
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, College of Natural Science, University of Rzeszow, Zelwerowicza 2D, 35-601 Rzeszow, Poland
- Correspondence: ; Tel.: +48-22606-36-03
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Aamir Iqbal
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Czesław Puchalski
- Department of Bioenergetics and Food Analysis, Faculty of Bogy and Agriculture, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland;
| | - Artur H. Świergiel
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, 36 Rakowiecka, 02-532 Warsaw, Poland
| |
Collapse
|
14
|
Rapid SERS Detection of Thiol-Containing Natural Products in Culturing Complex. Int J Anal Chem 2020; 2020:9271236. [PMID: 32802063 PMCID: PMC7416272 DOI: 10.1155/2020/9271236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 11/22/2022] Open
Abstract
Thiol-containing natural products possess a wide range of bioactivities. The burst of synthetic biology technology facilitates the discovery of new thiol-containing active ingredients. Herein, we report a sensitive, quick, and robust surface-enhanced Raman scattering technology for specific and multiplex detection of thiol-containing compounds without purification requirements and also indicating the thiols with different chemical environments. Using this platform, we successfully demonstrated the simultaneous detection of thiol-containing compounds from as low as 1 μM of analytes spiked in complex culture matrices.
Collapse
|
15
|
Lu Y, Zhang R, Zhang X, Zhang B, Yao Q. Curcumin may reverse 5-fluorouracil resistance on colonic cancer cells by regulating TET1-NKD-Wnt signal pathway to inhibit the EMT progress. Biomed Pharmacother 2020; 129:110381. [PMID: 32887024 DOI: 10.1016/j.biopha.2020.110381] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Colorectal cancer is a kind of gastrointestinal tumor with rising morbidity and mortality. 5-fluorouracil is one of the most effective chemotherapy drugs for the treatment of CRC. However, clinical data reported dramatic resistance on the treatment for CRC with 5-fluorouracil. Present study aims to explore the anti-resistant effect of curcumin and its mechanism. METHODS MTT assay was used to evaluate the proliferation of rHCT-116 cells. Flow cytometry was used to determine the apoptosis and cell cycle of rHCT-116 cells. Western Blot was performed to detect the expression level of TET1, NKD2, E-cadherin, Vimentin, β-catenin, TCF4 and Axin in transfected rHCT-116 cells. RESULTS 5-fluorouracil resistant HCT-116 cells were successfully established. Curcumin was found to be effective in the inhibition of proliferation, inducement of apoptosis and block of G0/G1 phase on 5-fluorouracil treated HCT-116 cells. The expression of TET1 and NKD2 was greatly inhibited by high dosage of curcumin. The WNT signal pathway and EMT progress were suppressed in rHCT-116 cells by high dosage of curcumin. The inhibitory effects of curcumin on WNT signal pathway and EMT progress were verified to be consistent with Pax-6, TET1 and NKD2. CONCLUSION Curcumin might exert anti-resistant effect of 5-FU on HCT-116 cells by regulating the TET1-NKD2-WNT signal pathway to inhibit the EMT progress.
Collapse
Affiliation(s)
- Yi Lu
- Department of Nutrition, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.
| | - Runzhe Zhang
- Second Clinical College of Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, Zhejiang Province
| | - Xinjie Zhang
- Second Clinical College of Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, Zhejiang Province
| | - Bo Zhang
- Department of Integrated Chinese and Western Medicine, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences; Key laboratory of Integrated Traditional Chinese and Western Medicine, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 Banshandong Road, Gongshu District, Hangzhou, Zhejiang Province
| | - Qinghua Yao
- Department of Integrated Chinese and Western Medicine, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences; Key laboratory of Integrated Traditional Chinese and Western Medicine, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 Banshandong Road, Gongshu District, Hangzhou, Zhejiang Province.
| |
Collapse
|
16
|
Lumlerdkij N, Boonrak R, Booranasubkajorn S, Akarasereenont P, Heinrich M. In vitro protective effects of plants frequently used traditionally in cancer prevention in Thai traditional medicine: An ethnopharmacological study. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112409. [PMID: 31751648 DOI: 10.1016/j.jep.2019.112409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thai traditional medicine (TTM) has been used widely in cancer management in Thailand. Although several Thai medicinal plants were screened for pharmacological activities related to cancer treatment, such evidence still suffers from the lack of linking with TTM knowledge. AIM OF THE STUDY To document knowledge and species used in cancer prevention in TTM and to preliminary investigate pharmacological activities related to the documented knowledge of twenty-six herbal drugs used in cancer/mareng prevention. METHODS Fieldwork gathering data on TTM concept and herbal medicines used in cancer prevention was performed with TTM practitioners across Thailand. Later, water and ethanol extracts from twenty-six herbal drugs mentioned as being used in cancer prevention were screened for their protective effect against tert-butyl hydroperoxide-induced cell death in HepG2 cells. Then active extracts were investigated for their effects on NQO1 activity, glutathione level, and safety in normal rat hepatocytes. RESULTS The fieldwork helped in the development of TTM cancer prevention strategy and possible experimental models to test the pharmacological activities of selected medicinal plants. Fifteen plant extracts showed significant protective effect by restoring the cell viability to 40-59.3%, which were comparable or better than the positive control EGCG. Among them, ethanol extracts from S. rugata and T. laurifolia showed the most promising chemopreventive properties by significantly increased NQO1 activity, restored GSH level from oxidative damage, as well as showed non-toxic effect in normal rat hepatocytes. CONCLUSION TTM knowledge in cancer prevention was documented and used in the planning of pharmacological experiment to study herbal medicines, especially in cancer, inflammation, and other chronic diseases. The proposed strategy should be applied to in vivo and clinical studies in order to further confirm the validity of such a strategy. Other traditional medical systems that use integrated approaches could also apply our strategy to develop evidence that supports a more rational uses in traditional medicine.
Collapse
Affiliation(s)
- Natchagorn Lumlerdkij
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand; Research Group Pharmacognosy and Phytotherapy, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Ranida Boonrak
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Suksalin Booranasubkajorn
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Pravit Akarasereenont
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand; Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Michael Heinrich
- Research Group Pharmacognosy and Phytotherapy, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
17
|
Establishment and characterization of silver-resistant Enterococcus faecalis. Folia Microbiol (Praha) 2020; 65:721-733. [DOI: 10.1007/s12223-020-00778-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/05/2020] [Indexed: 11/27/2022]
|
18
|
Gupta J, Sharma S, Sharma NR, Kabra D. Phytochemicals enriched in spices: a source of natural epigenetic therapy. Arch Pharm Res 2019; 43:171-186. [DOI: 10.1007/s12272-019-01203-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
|
19
|
Green synthesized selenium nanoparticle as carrier and potent delivering agent of s-allyl glutathione: Anticancer effect against hepatocarcinoma cell line (HepG2) through induction of cell cycle arrest and apoptosis. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Ossama M, Hathout RM, Attia DA, Mortada ND. Enhanced Allicin Cytotoxicity on HEPG-2 Cells Using Glycyrrhetinic Acid Surface-Decorated Gelatin Nanoparticles. ACS OMEGA 2019; 4:11293-11300. [PMID: 31460232 PMCID: PMC6648216 DOI: 10.1021/acsomega.9b01580] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 05/22/2023]
Abstract
The cytotoxic potential of allicin was evaluated on different cancer cell lines, particularly, hepatic (HepG-2), breast (MCF-7), lung (A-549), and prostatic (PC-3), where allicin scored an IC50 score of 19.26 μM on HepG-2. In order to increase the cell uptake, optimized allicin-loaded gelatin nanoparticles (GNPs) were prepared where the optimum formulation was surface-conjugated to glycyrrhetinic acid. GNPs were optimized using a D-optimal design. The optimum formulation had a particle size of 370.7 ± 6.78 nm and polydispersity index of 0.0363 ± 0.009 and 39.13 ± 2.38% of drug entrapment. The conjugation of the ligand, glycyrrhetinic acid with allicin-loaded GNPs, was confirmed utilizing 1H NMR. Drug release profiles in the presence/absence of collagenase were obtained. Finally, a cytotoxicity study on HepG-2 was performed for the unconjugated and conjugated allicin-loaded GNPs scoring IC50 of 10.95 and 5.046 μM, revealing two- and fourfold enhancements in allicin cytotoxicity, respectively. To our knowledge, the ligand-carrier pair, glycyrrhetinic acid-gelatin, was not explored before, and the developed system poses a successful liver cancer therapy.
Collapse
Affiliation(s)
- Muhammed Ossama
- Department
of Pharmaceutics and Industrial Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt
| | - Rania M. Hathout
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- E-mail: , . Phone: +2
(0) 100 5254919, +2 02 22912685. Fax: +2 02 24011507
| | - Dalia A. Attia
- Department
of Pharmaceutics and Industrial Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt
| | - Nahed D. Mortada
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
21
|
Design, synthesis and evaluation of novel (S)-tryptamine derivatives containing an allyl group and an aryl sulfonamide unit as anticancer agents. Bioorg Med Chem Lett 2019; 29:1133-1137. [DOI: 10.1016/j.bmcl.2019.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 11/20/2022]
|
22
|
|
23
|
Rescigno T, Tecce MF, Capasso A. Protective and Restorative Effects of Nutrients and Phytochemicals. Open Biochem J 2018; 12:46-64. [PMID: 29760813 PMCID: PMC5906970 DOI: 10.2174/1874091x01812010046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022] Open
Abstract
Intoroduction: Dietary intake fundamentally provides reintegration of energy and essential nutrients to human organisms. However, its qualitative and quantitative composition strongly affects individual’s health, possibly being either a preventive or a risk factor. It was shown that nutritional status resulting from long-term exposition to specific diet formulations can outstandingly reduce incidences of most common and most important diseases of the developed world, such as cardiovascular and neoplastic diseases. Diet formulations result from different food combinations which bring specific nutrient molecules. Numerous molecules, mostly but not exclusively from vegetal foods, have been characterized among nutritional components as being particularly responsible for diet capabilities to exert risk reduction. These “bioactive nutrients” are able to produce effects which go beyond basic reintegration tasks, i.e. energetic and/or structural, but are specifically pharmacologically active within pathophysiological pathways related to many diseases, being able to selectively affect processes such as cell proliferation, apoptosis, inflammation, differentiation, angiogenesis, DNA repair and carcinogens activation. Conclusion: The present review was aimed to know the molecular mechanisms and pathways of activity of bioactive molecules; which will firstly allow search for optimal food composition and intake, and then use them as possible therapeutical targets and/or diagnostics. Also, the present review discussed the therapeutic effect of both nutrients and phytochemicals.
Collapse
Affiliation(s)
- Tania Rescigno
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Mario F Tecce
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Anna Capasso
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| |
Collapse
|
24
|
Chen H, Liu RH. Potential Mechanisms of Action of Dietary Phytochemicals for Cancer Prevention by Targeting Cellular Signaling Transduction Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3260-3276. [PMID: 29498272 DOI: 10.1021/acs.jafc.7b04975] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cancer is a severe health problem that significantly undermines life span and quality. Dietary approach helps provide preventive, nontoxic, and economical strategies against cancer. Increased intake of fruits, vegetables, and whole grains are linked to reduced risk of cancer and other chronic diseases. The anticancer activities of plant-based foods are related to the actions of phytochemicals. One potential mechanism of action of anticancer phytochemicals is that they regulate cellular signal transduction pathways and hence affects cancer cell behaviors such as proliferation, apoptosis, and invasion. Recent publications have reported phytochemicals to have anticancer activities through targeting a wide variety of cell signaling pathways at different levels, such as transcriptional or post-transcriptional regulation, protein activation and intercellular messaging. In this review, we discuss major groups of phytochemicals and their regulation on cell signaling transduction against carcinogenesis via key participators, such as Nrf2, CYP450, MAPK, Akt, JAK/STAT, Wnt/β-catenin, p53, NF-κB, and cancer-related miRNAs.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Food Science , Cornell University , Ithaca , New York 14853-7201 , United States
- Institute of Edible Fungi , Shanghai Academy of Agriculture Science , Shanghai 201403 , China
| | - Rui Hai Liu
- Department of Food Science , Cornell University , Ithaca , New York 14853-7201 , United States
| |
Collapse
|
25
|
Synthesis and Biological Evaluation of S-Substituted Perhalo-2-nitrobuta-1,3-dienes as Novel Xanthine Oxidase, Tyrosinase, Elastase, and Neuraminidase Inhibitors. J CHEM-NY 2018. [DOI: 10.1155/2018/4386031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
S-substituted perhalo-2-nitrobuta-1,3-dienes 3a, b were synthesized by the reaction of polyhalo-2-nitrobuta-1,3-dienes 1a, b with allyl mercaptan. 1-(2,3-Dibromopropanethio)-4-bromo-1,3,4-trichloro-2-nitrobuta-1,3-diene 4 was obtained from the addition of bromine to S-substituted polyhalo-2-nitrobuta-1,3-diene 3b in carbon tetrachloride. Sulfoxides 5a, b, and 6 were obtained from the reaction of thiosubstituted polyhalonitrobutadienes 3a, b, and 4 with m-CPBA in CHCl3. The structures of the new compounds were determined by spectroscopic data (FTIR, 1H NMR, 13C NMR, MS). These compounds exhibited antixanthine oxidase, antityrosinase, antielastase, and antineuraminidase activities.
Collapse
|
26
|
Li C, Jiang K, Liu TY, Chen YC. Asymmetric [4+1] Cycloadditions of N
-Thioacylimines and Sulfur Ylides. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chao Li
- College of Pharmacy; Third Military Medical University; Shapingba Chongqing 400038 People's Republic of China
| | - Kun Jiang
- College of Pharmacy; Third Military Medical University; Shapingba Chongqing 400038 People's Republic of China
| | - Tian-Yu Liu
- College of Pharmacy; Third Military Medical University; Shapingba Chongqing 400038 People's Republic of China
| | - Ying-Chun Chen
- College of Pharmacy; Third Military Medical University; Shapingba Chongqing 400038 People's Republic of China
- Department of Medicinal Chemistry; West China School of Pharmacy; Sichuan University; Chengdu 610041 People's Republic of China
| |
Collapse
|
27
|
Imran M, Nadeem M, Saeed F, Imran A, Khan MR, Khan MA, Ahmed S, Rauf A. Immunomodulatory perspectives of potential biological spices with special reference to cancer and diabetes. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2016.1259293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Muhammad Imran
- Department of Diet and Nutritional Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan
| | - Farhan Saeed
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Asif Khan
- University of Agriculture Faisalabad, Sub-campus, Burewala/Vehari, Pakistan
| | - Sheraz Ahmed
- Department of Food Science and Technology, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Ambar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
28
|
Gruhlke MCH, Nicco C, Batteux F, Slusarenko AJ. The Effects of Allicin, a Reactive Sulfur Species from Garlic, on a Selection of Mammalian Cell Lines. Antioxidants (Basel) 2016; 6:antiox6010001. [PMID: 28035949 PMCID: PMC5384165 DOI: 10.3390/antiox6010001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/29/2016] [Accepted: 12/19/2016] [Indexed: 01/19/2023] Open
Abstract
Garlic (Allium sativum L.) has been used as a spice and medicinal plant since ancient times. Garlic produces the thiol-reactive defence substance, allicin, upon wounding. The effects of allicin on human lung epithelium carcinoma (A549), mouse fibroblast (3T3), human umbilical vein endothelial cell (HUVEC), human colon carcinoma (HT29) and human breast cancer (MCF7) cell lines were tested. To estimate toxic effects of allicin, we used a standard MTT-test (methylthiazoltetrazolium) for cell viability and ³H-thymidine incorporation for cell proliferation. The glutathione pool was measured using monobromobimane and the formation of reactive species was identified using 2',7'-dichlorofluoresceine-diacetate. The YO-PRO-1 iodide staining procedure was used to estimate apoptosis. Allicin reduced cell viability and cell proliferation in a concentration dependent manner. In the bimane test, it was observed that cells treated with allicin showed reduced fluorescence, suggesting glutathione oxidation. The cell lines tested differed in sensitivity to allicin in regard to viability, cell proliferation and glutathione oxidation. The 3T3 and MCF-7 cells showed a higher proportion of apoptosis compared to the other cell types. These data show that mammalian cell lines differ in their sensitivity and responses to allicin.
Collapse
Affiliation(s)
- Martin C H Gruhlke
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, Aachen 52074, Germany.
| | - Carole Nicco
- Laboratoire d'Immunologie biologique, Hôpital Cochin, Paris 75679, France.
| | - Frederic Batteux
- Laboratoire d'Immunologie biologique, Hôpital Cochin, Paris 75679, France.
| | - Alan J Slusarenko
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, Aachen 52074, Germany.
| |
Collapse
|
29
|
Oueslati Y, Abidi A, Sbihi HM, Rezgui F. A direct synthetic route to allyl sulfides from cyclic Morita–Baylis–Hillman alcohols. J Sulphur Chem 2016. [DOI: 10.1080/17415993.2016.1255742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yosra Oueslati
- Laboratoire de Chimie Organique Structurale et Macromoléculaire, Faculté des Sciences, Université de Tunis El Manar, Tunis, Tunisie
| | - Ahlem Abidi
- Laboratoire de Chimie Organique Structurale et Macromoléculaire, Faculté des Sciences, Université de Tunis El Manar, Tunis, Tunisie
| | - Hassen Mohamed Sbihi
- College of Science, Chemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Farhat Rezgui
- Laboratoire de Chimie Organique Structurale et Macromoléculaire, Faculté des Sciences, Université de Tunis El Manar, Tunis, Tunisie
| |
Collapse
|
30
|
Allah DR, Schwind L, Asali IA, Nasim J, Jacob C, Götz C, Montenarh M. A scent of therapy: Synthetic polysulfanes with improved physico-chemical properties induce apoptosis in human cancer cells. Int J Oncol 2015. [PMID: 26201476 DOI: 10.3892/ijo.2015.3093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diallyl sulfanes derived from edible plants are highly potent compounds which at sub-millimolar concentrations are able to induce the formation of reactive oxygen species (ROS) in a variety of different cells, where they often cause an altered redox status. The loss of cellular thiols and/or formation of ROS subsequently triggers a range of cellular responses, including the induction of apoptosis. A great disadvantage of natural diallyl mono- and polysulfanes, however, is their inherent insolubility in water and the extremely bad odour which limits their practical use in humans. Here, we present the synthesis and biological evaluation of two new, especially designed polysulfanes, namely the trisulfide 1-Allyl-3-(2-ethoxyethyl)trisulfide (ATSEE) and the tetrasulfide Allyl-4-benzyltetrasulfide (ATTSB), which are nearly odourless. Both compounds produce O2•- radicals in HCT116 cells and both induce an oxidative defence signalling. Cell viability is especially reduced by the tetrasulfane ATTSB, with an arrest of the cell cycle in the G2-phase. In contrast, the trisulfane ATSEE does not inhibit the cell cycle. In agreement with these findings, treatment of HCT116 cells with ATTSB ultimately results in apoptosis whereas only limited induction of apoptosis has been detected for cells treated with ATSEE. We further show that antioxidative defence mechanisms and death response signalling run in parallel and the dominant pathway decides the fate of the cell. Thus, our results not only illuminate the intricate mode of action of certain polysulfanes; they also demonstrate that the new odourless tri- and tetrasulfanes exhibit a similar activity compared to their natural counterparts, yet are easier to handle and also deprived of the offensive odour which so far has prevented most practical applications of such polysulfanes, at least in the context of medicine.
Collapse
Affiliation(s)
- Dany Rezk Allah
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Germany
| | - Lisa Schwind
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Germany
| | - Imad Abu Asali
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Germany
| | - Jawad Nasim
- Bioorganic Chemistry, Department of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany
| | - Claus Jacob
- Bioorganic Chemistry, Department of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Germany
| | - Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Germany
| |
Collapse
|
31
|
SAHA SHILPI, BHATTACHARJEE PUSHPAK, GUHA DEBLINA, KAJAL KIRTI, KHAN POULAMI, CHAKRABORTY SREEPARNA, MUKHERJEE SHRAVANTI, PAUL SHRUTARSHI, MANCHANDA RAJKUMAR, KHURANA ANIL, NAYAK DEBADATTA, CHAKRABARTY RATHIN, SA GAURISANKAR, DAS TANYA. Sulphur alters NFκB-p300 cross-talk in favour of p53–p300 to induce apoptosis in non-small cell lung carcinoma. Int J Oncol 2015; 47:573-82. [DOI: 10.3892/ijo.2015.3061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/25/2015] [Indexed: 11/06/2022] Open
|
32
|
Glutathione-garlic sulfur conjugates: slow hydrogen sulfide releasing agents for therapeutic applications. Molecules 2015; 20:1731-50. [PMID: 25608858 PMCID: PMC6272329 DOI: 10.3390/molecules20011731] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 12/31/2014] [Accepted: 01/13/2015] [Indexed: 11/16/2022] Open
Abstract
Natural organosulfur compounds (OSCs) from Allium sativum L. display antioxidant and chemo-sensitization properties, including the in vitro inhibition of tumor cell proliferation through the induction of apoptosis. Garlic water- and oil-soluble allyl sulfur compounds show distinct properties and the capability to inhibit the proliferation of tumor cells. In the present study, we optimized a new protocol for the extraction of water-soluble compounds from garlic at low temperatures and the production of glutathionyl-OSC conjugates during the extraction. Spontaneously, Cys/GSH-mixed-disulfide conjugates are produced by in vivo metabolism of OSCs and represent active molecules able to affect cellular metabolism. Water-soluble extracts, with (GSGaWS) or without (GaWS) glutathione conjugates, were here produced and tested for their ability to release hydrogen sulfide (H2S), also in the presence of reductants and of thiosulfate:cyanide sulfurtransferase (TST) enzyme. Thus, the TST catalysis of the H2S-release from garlic OSCs and their conjugates has been investigated by molecular in vitro experiments. The antiproliferative properties of these extracts on the human T-cell lymphoma cell line, HuT 78, were observed and related to histone hyperacetylation and downregulation of GAPDH expression. Altogether, the results presented here pave the way for the production of a GSGaWS as new, slowly-releasing hydrogen sulfide extract for potential therapeutic applications.
Collapse
|
33
|
Sa G, Das T, Saha S, Pushpak B, Guha D, Kajal K, Khan P, Chakraborty S, Mukherjee S, Paul S, Manchanda R, Khurana A, Nayak D, Chakrabarty R. Republished: Sulphur alters NFκB-p300 cross-talk in favour of p53-p300 to induce apoptosis in non-small cell lung carcinoma. INDIAN JOURNAL OF RESEARCH IN HOMOEOPATHY 2015. [DOI: 10.4103/0974-7168.172876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
34
|
Kwak SH, Cho YM, Noh GM, Om AS. Cancer Preventive Potential of Kimchi Lactic Acid Bacteria (Weissella cibaria, Lactobacillus plantarum). J Cancer Prev 2014; 19:253-8. [PMID: 25574459 PMCID: PMC4285955 DOI: 10.15430/jcp.2014.19.4.253] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/08/2014] [Accepted: 12/08/2014] [Indexed: 12/24/2022] Open
Abstract
The number of death due to cancer has been increasing in Korea. Chemotherapy is known to cause side effects because it damages not only cancerous cells but healthy cells. Recently, attention has focused on food-derived chemopreventive and anti-tumor agents or formulations with fewer side effects. Kimchi, most popular and widely consumed in Korea, contains high levels of lactic acid bacteria and has been shown to possess chemopreventive effects. This review focuses on Weissella cibaria and Lactobacillus plantarum, the representatives of kimchi lactic acid bacteria, in terms of their abilities to prevent cancer. Further studies are needed to understand the mechanisms by which lactic acid bacteria in kimchi prevent carcinogenic processes and improve immune functions.
Collapse
Affiliation(s)
- Shin-Hye Kwak
- Laboratory of Food Safety and Toxicology, Department of Food Science and Nutrition, College of Human Ecology, Hanyang University, Seoul, Korea
| | - Young-Mi Cho
- Laboratory of Food Safety and Toxicology, Department of Food Science and Nutrition, College of Human Ecology, Hanyang University, Seoul, Korea
| | - Geon-Min Noh
- Functional Food and Nutrition Division, Department of Agrofood Resources, National Academy of Agricultural Science, Wanju, Korea
| | - Ae-Son Om
- Laboratory of Food Safety and Toxicology, Department of Food Science and Nutrition, College of Human Ecology, Hanyang University, Seoul, Korea
| |
Collapse
|
35
|
Ramalho RT, Aydos RD, Schettert I, Assis PVD, Cassino PC. Sulfane sulfur deficiency in malignant cells, increasing the inhibiting action of acetone cyanohydrin in tumor growth. Acta Cir Bras 2013; 28:728-32. [DOI: 10.1590/s0102-86502013001000007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/12/2013] [Indexed: 11/22/2022] Open
|
36
|
Altonsy MO, Habib TN, Andrews SC. Diallyl Disulfide-Induced Apoptosis in a Breast-Cancer Cell Line (MCF-7) May Be Caused by Inhibition of Histone Deacetylation. Nutr Cancer 2012; 64:1251-60. [DOI: 10.1080/01635581.2012.721156] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Park HY, Kim ND, Kim GY, Hwang HJ, Kim BW, Kim WJ, Choi YH. Inhibitory effects of diallyl disulfide on the production of inflammatory mediators and cytokines in lipopolysaccharide-activated BV2 microglia. Toxicol Appl Pharmacol 2012; 262:177-84. [DOI: 10.1016/j.taap.2012.04.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/22/2012] [Accepted: 04/26/2012] [Indexed: 01/23/2023]
|
38
|
|
39
|
Nepravishta R, Sabelli R, Iorio E, Micheli L, Paci M, Melino S. Oxidative species and S-glutathionyl conjugates in the apoptosis induction by allyl thiosulfate. FEBS J 2011; 279:154-67. [DOI: 10.1111/j.1742-4658.2011.08407.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Wróbel M, Stipanuk MH, Nagahara N. Sulfur- and seleno-containing amino acids. Amino Acids 2011; 41:1-2. [PMID: 21547360 PMCID: PMC3092933 DOI: 10.1007/s00726-011-0930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Maria Wróbel
- Jagiellonian University Medical College, Kopernika 7 St, 31-034 Kraków, Poland
| | - Martha H. Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853 USA
| | - Noriuki Nagahara
- Department of Environmental Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|