1
|
Gan Q, Fan C. Orthogonal Translation for Site-Specific Installation of Post-translational Modifications. Chem Rev 2024; 124:2805-2838. [PMID: 38373737 PMCID: PMC11230630 DOI: 10.1021/acs.chemrev.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Post-translational modifications (PTMs) endow proteins with new properties to respond to environmental changes or growth needs. With the development of advanced proteomics techniques, hundreds of distinct types of PTMs have been observed in a wide range of proteins from bacteria, archaea, and eukarya. To identify the roles of these PTMs, scientists have applied various approaches. However, high dynamics, low stoichiometry, and crosstalk between PTMs make it almost impossible to obtain homogeneously modified proteins for characterization of the site-specific effect of individual PTM on target proteins. To solve this problem, the genetic code expansion (GCE) strategy has been introduced into the field of PTM studies. Instead of modifying proteins after translation, GCE incorporates modified amino acids into proteins during translation, thus generating site-specifically modified proteins at target positions. In this review, we summarize the development of GCE systems for orthogonal translation for site-specific installation of PTMs.
Collapse
Affiliation(s)
- Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
2
|
Yang G, Zhang Q, Dong C, Hou G, Li J, Jiang X, Xin Y. Nrf2 prevents diabetic cardiomyopathy via antioxidant effect and normalization of glucose and lipid metabolism in the heart. J Cell Physiol 2024; 239:e31149. [PMID: 38308838 DOI: 10.1002/jcp.31149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 02/05/2024]
Abstract
Metabolic disorders and oxidative stress are the main causes of diabetic cardiomyopathy. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) exerts a powerful antioxidant effect and prevents the progression of diabetic cardiomyopathy. However, the mechanism of its cardiac protection and direct action on cardiomyocytes are not well understood. Here, we investigated in a cardiomyocyte-restricted Nrf2 transgenic mice (Nrf2-TG) the direct effect of Nrf2 on cardiomyocytes in DCM and its mechanism. In this study, cardiomyocyte-restricted Nrf2 transgenic mice (Nrf2-TG) were used to directly observe whether cardiomyocyte-specific overexpression of Nrf2 can prevent diabetic cardiomyopathy and correct glucose and lipid metabolism disorders in the heart. Compared to wild-type mice, Nrf2-TG mice showed resistance to diabetic cardiomyopathy in a streptozotocin-induced type 1 diabetes mouse model. This was primarily manifested as improved echocardiography results as well as reduced myocardial fibrosis, cardiac inflammation, and oxidative stress. These results showed that Nrf2 can directly act on cardiomyocytes to exert a cardioprotective role. Mechanistically, the cardioprotective effects of Nrf2 depend on its antioxidation activity, partially through improving glucose and lipid metabolism by directly targeting lipid metabolic pathway of AMPK/Sirt1/PGC-1α activation via upstream genes of sestrin2 and LKB1, and indirectly enabling AKT/GSK-3β/HK-Ⅱ activity via AMPK mediated p70S6K inhibition.
Collapse
Affiliation(s)
- Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Qihe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Guowen Hou
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
NMR study of thiosulfate-assisted oxidation of L-cysteine. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Sidthilaw S, Sapbamrer R, Pothirat C, Wunnapuk K, Khacha-ananda S. Effects of exposure to glyphosate on oxidative stress, inflammation, and lung function in maize farmers, Northern Thailand. BMC Public Health 2022; 22:1343. [PMID: 35836163 PMCID: PMC9281059 DOI: 10.1186/s12889-022-13696-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Glyphosate is a herbicide which is commonly used in agricultural areas. However, previous studies on glyphosate exposure in farmers and their health are still scarce. METHODS A longitudinal pre-post study was performed among maize farmers. Information from questionnaires, urine and blood samples, and lung function were collected a day before and a day after glyphosate application in the morning. The urine samples were analyzed using liquid chromatography-tandem mass spectrometry to detect glyphosate levels. Serum samples were analyzed to detect malondialdehyde (MDA), glutathione (GHS), and C-reactive protein (CRP) levels using thiobarbituric acid, dithiobisnitrobenzoic acid, and nephelometry, respectively. Lung function performances were measured using a spirometer. RESULTS A total of 180 maize farmers met the study inclusion criteria. After glyphosate application, it was found that increased urinary glyphosate levels contributed to increased serum MDA (β = 0.024, 95% CI = 0.000, 0.0047) and decreased serum GHS (β = -0.022, 95% CI = -0.037, -0.007), FEV1 (β = -0.134, 95% CI = -0.168, -0.100), FEV1/FVC (β = -0.062, 95% CI = -0.082, -0.042) and PEF (β = -0.952, 95% CI = -1.169, -0.735). CONCLUSIONS Exposure to glyphosate during glyphosate application had significant effects on oxidative stress and lung function in maize farmers.
Collapse
Affiliation(s)
- Sutthinee Sidthilaw
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chaicharn Pothirat
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Klintean Wunnapuk
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Supakit Khacha-ananda
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
5
|
Zhu Z, Bian Y, Zhang X, Zeng R, Yang B. Examination of proline, hydroxyproline and pyroglutamic acid with different polar groups by terahertz spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120539. [PMID: 34742154 DOI: 10.1016/j.saa.2021.120539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/08/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Hydroxyproline (HYP) and pyroglutamic acid (PGA), as amino acid derivatives, are highly similar in structure to proline (Pro). However, their low-frequency vibrations show significant differences in the range of 0.25-2.6 THz. Therefore, this study investigated the reasons for the differences combined with terahertz time domain spectroscopy (THz-TDS) and density functional theory (DFT). The results show that HYP and PGA have stronger absorption of terahertz waves due to the existence of polar substituents. Furthermore, the absorption peaks of HYP and PGA are significant red shifted and blue shifted, respectively. We believe that this is caused by the change in the strength of intermolecular hydrogen bonds. Our findings demonstrate that dipole and hydrogen bond effects play a significant role in low-frequency vibrations.
Collapse
Affiliation(s)
- Zhenqi Zhu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yujing Bian
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xun Zhang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ruonan Zeng
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Bin Yang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
6
|
Chittrakul J, Sapbamrer R, Sirikul W. Insecticide Exposure and Risk of Asthmatic Symptoms: A Systematic Review and Meta-Analysis. TOXICS 2021; 9:toxics9090228. [PMID: 34564379 PMCID: PMC8473102 DOI: 10.3390/toxics9090228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 11/24/2022]
Abstract
The incidence of respiratory disease is increasing. In relation to this, in addition to infection, factors associated with working with chemical insecticides are a cause for concern. Some of the chemicals involved have been shown to affect the respiratory system, and consequentially workers are at increased risk of conditions such as asthma. However, medical opinion around this area is still controversial; therefore, the objective of this study is to investigate the association between exposure to insecticides and asthma by means of a systematic review of the relevant literature. Relevant literature was identified, and a systematic review was conducted to investigate the association between exposure to insecticides and asthma. A total of five studies (three cross sectional and two cohort) including 45,435 subjects were identified as relevant. The summary odds ratios related to the impact of exposure to specific insecticides on asthma were organophosphates 1.31 (95%CI = 1.17–1.48, I2 = 27%, p = 0.172), carbamates 1.44 (95%CI 1.08–1.92, I2 = 56.7%, p = 0.031) and organochlorines 1.31 (95%CI 1.19–1.64, I2 = 37.3%, p = 0.131). Farmers exposed to certain insecticides may have an increased risk of asthma and asthmatic symptoms, but further research on that issue is urgently needed.
Collapse
|
7
|
Joyner PM. Protein Adducts and Protein Oxidation as Molecular Mechanisms of Flavonoid Bioactivity. Molecules 2021; 26:molecules26165102. [PMID: 34443698 PMCID: PMC8401221 DOI: 10.3390/molecules26165102] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 02/05/2023] Open
Abstract
There are tens of thousands of scientific papers about flavonoids and their impacts on human health. However, despite the vast amount of energy that has been put toward studying these compounds, a unified molecular mechanism that explains their bioactivity remains elusive. One contributing factor to the absence of a general mechanistic explanation of their bioactivity is the complexity of flavonoid chemistry in aqueous solutions at neutral pH. Flavonoids have acidic protons, are redox active, and frequently auto-oxidize to produce an array of degradation products including electrophilic quinones. Flavonoids are also known to interact with specificity and high affinity with a variety of proteins, and there is evidence that some of these interactions may be covalent. This review summarizes the mechanisms of flavonoid oxidation in aqueous solutions at neutral pH and proposes the formation of protein-flavonoid adducts or flavonoid-induced protein oxidation as putative mechanisms of flavonoid bioactivity in cells. Nucleophilic residues in proteins may be able to form covalent bonds with flavonoid quinones; alternatively, specific amino acid residues such as cysteine, methionine, or tyrosine in proteins could be oxidized by flavonoids. In either case, these protein-flavonoid interactions would likely occur at specific binding sites and the formation of these types of products could effectively explain how flavonoids modify proteins in cells to induce downstream biochemical and cellular changes.
Collapse
Affiliation(s)
- P Matthew Joyner
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263, USA
| |
Collapse
|
8
|
Yang H, Lundbäck P, Ottosson L, Erlandsson-Harris H, Venereau E, Bianchi ME, Al-Abed Y, Andersson U, Tracey KJ. Redox modifications of cysteine residues regulate the cytokine activity of HMGB1. Mol Med 2021; 27:58. [PMID: 34098868 PMCID: PMC8185929 DOI: 10.1186/s10020-021-00307-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/28/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND High mobility group box 1 (HMGB1) is a nuclear protein with extracellular inflammatory cytokine activity. It is passively released during cell death and secreted by activated cells of many lineages. HMGB1 contains three conserved redox-sensitive cysteine residues: cysteines in position 23 and 45 (C23 and C45) can form an intramolecular disulfide bond, whereas C106 is unpaired and is essential for the interaction with Toll-Like Receptor (TLR) 4. However, a comprehensive characterization of the dynamic redox states of each cysteine residue and of their impacts on innate immune responses is lacking. METHODS Primary human macrophages or murine macrophage-like RAW 264.7 cells were activated in cell cultures by redox-modified or point-mutated (C45A) recombinant HMGB1 preparations or by lipopolysaccharide (E. coli.0111: B4). Cellular phosphorylated NF-κB p65 subunit and subsequent TNF-α release were quantified by commercial enzyme-linked immunosorbent assays. RESULTS Cell cultures with primary human macrophages and RAW 264.7 cells demonstrated that fully reduced HMGB1 with all three cysteines expressing thiol side chains failed to generate phosphorylated NF-КB p65 subunit or TNF-α. Mild oxidation forming a C23-C45 disulfide bond, while leaving C106 with a thiol group, was required for HMGB1 to induce phosphorylated NF-КB p65 subunit and TNF-α production. The importance of a C23-C45 disulfide bond was confirmed by mutation of C45 to C45A HMGB1, which abolished the ability for cytokine induction. Further oxidation of the disulfide isoform also inactivated HMGB1. CONCLUSIONS These results reveal critical post-translational redox mechanisms that control the proinflammatory activity of HMGB1 and its inactivation during inflammation.
Collapse
Affiliation(s)
- Huan Yang
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA.
| | - Peter Lundbäck
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Ottosson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Helena Erlandsson-Harris
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Marco E Bianchi
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Yousef Al-Abed
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | - Kevin J Tracey
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
9
|
Kehm R, Baldensperger T, Raupbach J, Höhn A. Protein oxidation - Formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biol 2021; 42:101901. [PMID: 33744200 PMCID: PMC8113053 DOI: 10.1016/j.redox.2021.101901] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
Generation of reactive oxygen species and related oxidants is an inevitable consequence of life. Proteins are major targets for oxidation reactions, because of their rapid reaction rates with oxidants and their high abundance in cells, extracellular tissues, and body fluids. Additionally, oxidative stress is able to degrade lipids and carbohydrates to highly reactive intermediates, which eventually attack proteins at various functional sites. Consequently, a wide variety of distinct posttranslational protein modifications is formed by protein oxidation, glycoxidation, and lipoxidation. Reversible modifications are relevant in physiological processes and constitute signaling mechanisms ("redox signaling"), while non-reversible modifications may contribute to pathological situations and several diseases. A rising number of publications provide evidence for their involvement in the onset and progression of diseases as well as aging processes. Certain protein oxidation products are chemically stable and formed in large quantity, which makes them promising candidates to become biomarkers of oxidative damage. Moreover, progress in the development of detection and quantification methods facilitates analysis time and effort and contributes to their future applicability in clinical routine. The present review outlines the most important classes and selected examples of oxidative protein modifications, elucidates the chemistry beyond their formation and discusses available methods for detection and analysis. Furthermore, the relevance and potential of protein modifications as biomarkers in the context of disease and aging is summarized.
Collapse
Affiliation(s)
- Richard Kehm
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Tim Baldensperger
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Jana Raupbach
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
10
|
Butreddy A, Janga KY, Ajjarapu S, Sarabu S, Dudhipala N. Instability of therapeutic proteins - An overview of stresses, stabilization mechanisms and analytical techniques involved in lyophilized proteins. Int J Biol Macromol 2020; 167:309-325. [PMID: 33275971 DOI: 10.1016/j.ijbiomac.2020.11.188] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 01/06/2023]
Abstract
Solid-state is the preferred choice for storage of protein therapeutics to improve stability and preserve the biological activity by decreasing the physical and chemical degradation associated with liquid protein formulations. Lyophilization or freeze-drying is an effective drying method to overcome the instability problems of proteins. However, the processing steps (freezing, primary drying and secondary drying) involved in the lyophilization process can expose the proteins to various stress and harsh conditions, leading to denaturation, aggregation often a loss in activity of protein therapeutics. Stabilizers such as sugars and surfactants are often added to protect the proteins against physical stress associated with lyophilization process and storage conditions. Another way to curtail the degradation of proteins due to process related stress is by modification of the lyophilization process. Slow freezing, high nucleation temperature, decreasing the extent of supercooling, and annealing can minimize the formation of the interface (ice-water) by producing large ice crystals with less surface area, thereby preserving the native structure and stability of the proteins. Hence, a thorough understanding of formulation composition, lyophilization process parameters and the choice of analytical methods to characterize and monitor the protein instability is crucial for development of stable therapeutic protein products. This review provides an overview of various stress conditions that proteins might encounter during lyophilization process, mechanisms to improve the stability and analytical techniques to tackle the proteins instability during both freeze-drying and storage.
Collapse
Affiliation(s)
- Arun Butreddy
- Formulation R&D, Biological E. Limited, IKP Knowledge Park, Shameerpet, Hyderabad, Telangana State 500078, India; Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana State 506009, India
| | - Karthik Yadav Janga
- Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana State 506009, India
| | - Srinivas Ajjarapu
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Sandeep Sarabu
- Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana State 506009, India
| | - Narendar Dudhipala
- Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana State 506009, India; Department of Pharmaceutics, Vaagdevi College of Pharmacy, Warangal, Telangana State 506 005, India..
| |
Collapse
|
11
|
Maniyadath B, Sandra US, Kolthur-Seetharam U. Metabolic choreography of gene expression: nutrient transactions with the epigenome. J Biosci 2020. [DOI: 10.1007/s12038-019-9987-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Dong N, Spencer DM, Quan Q, Le Blanc JCY, Feng J, Li M, Siu KWM, Chu IK. rPTMDetermine: A Fully Automated Methodology for Endogenous Tyrosine Nitration Validation, Site-Localization, and Beyond. Anal Chem 2020; 92:10768-10776. [DOI: 10.1021/acs.analchem.0c02148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Naiping Dong
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Daniel M. Spencer
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Quan Quan
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Jinwen Feng
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mengzhu Li
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - K. W. Michael Siu
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Ivan K. Chu
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
13
|
Reina S, Pittalà MGG, Guarino F, Messina A, De Pinto V, Foti S, Saletti R. Cysteine Oxidations in Mitochondrial Membrane Proteins: The Case of VDAC Isoforms in Mammals. Front Cell Dev Biol 2020; 8:397. [PMID: 32582695 PMCID: PMC7287182 DOI: 10.3389/fcell.2020.00397] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cysteine residues are reactive amino acids that can undergo several modifications driven by redox reagents. Mitochondria are the source of an abundant production of radical species, and it is surprising that such a large availability of highly reactive chemicals is compatible with viable and active organelles, needed for the cell functions. In this work, we review the results highlighting the modifications of cysteines in the most abundant proteins of the outer mitochondrial membrane (OMM), that is, the voltage-dependent anion selective channel (VDAC) isoforms. This interesting protein family carries several cysteines exposed to the oxidative intermembrane space (IMS). Through mass spectrometry (MS) analysis, cysteine posttranslational modifications (PTMs) were precisely determined, and it was discovered that such cysteines can be subject to several oxidization degrees, ranging from the disulfide bridge to the most oxidized, the sulfonic acid, one. The large spectra of VDAC cysteine oxidations, which is unique for OMM proteins, indicate that they have both a regulative function and a buffering capacity able to counteract excess of mitochondrial reactive oxygen species (ROS) load. The consequence of these peculiar cysteine PTMs is discussed.
Collapse
Affiliation(s)
- Simona Reina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Maria Gaetana Giovanna Pittalà
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Francesca Guarino
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Angela Messina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Vito De Pinto
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Foti
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Rosaria Saletti
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
14
|
Cheng H, Liang Q, Chen X, Zhang Y, Qiao F, Guo D. Hydrogen peroxide facilitates Arabidopsis seedling establishment by interacting with light signalling pathway in the dark. PLANT, CELL & ENVIRONMENT 2019; 42:1302-1317. [PMID: 30474863 DOI: 10.1111/pce.13482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Light is essential for the plant establishment. Arabidopsis seedlings germinated in the dark cannot grow leaf and only have closed cotyledons. However, exogenous application of H2 O2 can induce leaves (establishment) in the dark. Comparative transcriptomic analysis revealed that light-responsive genes were activated by H2 O2 treatment. These genes are functionally correlated with photosynthesis, photorespiration, and components of photosystem, such as antenna proteins and light-harvesting chlorophyll proteins. We further found that application of H2 O2 facilitates cell cycle by accelerating G2 -M checkpoint transition in shoot apical meristem. Phytochrome-mediated light signalling pathway was also involved in the H2 O2 -facilitated establishment process. The constitutive photomorphogenesis 1 and phytochrome interacting factor 3 proteins were shown to be down-regulated by H2 O2 treatment and accordingly removed their inhibitory effects on photomorphogenesis in the dark. The crosstalk between oxidation and light signal pathways explains the mechanism that H2 O2 regulates plant dark establishment. The endogenous photorespiratory H2 O2 production was mimicked by overexpression of glycolate oxidase genes and supplement of substrate glycolate. As expected, seedling establishment was also induced by the endogenously produced H2 O2 under dark condition. These findings also suggest that photorespiratory H2 O2 production is at least partially involved in postgermination establishment.
Collapse
Affiliation(s)
- Han Cheng
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou, Hainan, China
- School of Life Science and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Qun Liang
- School of Agricultural Science, Hainan University, Haikou, Hainan, China
| | - Xiang Chen
- School of Agricultural Science, Hainan University, Haikou, Hainan, China
| | - Yuanyuan Zhang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou, Hainan, China
| | - Fei Qiao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, Danzhou, Hainan, China
| | - Dianjing Guo
- School of Life Science and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| |
Collapse
|
15
|
Chacon SS, Reardon PN, Burgess CJ, Purvine S, Chu RK, Clauss TR, Walter E, Myrold DD, Washton N, Kleber M. Mineral Surfaces as Agents of Environmental Proteolysis: Mechanisms and Controls. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3018-3026. [PMID: 30767514 DOI: 10.1021/acs.est.8b05583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We investigated the extent to which contact with mineral surfaces affected the molecular integrity of a model protein, with an emphasis on identifying the mechanisms (hydrolysis, oxidation) and conditions leading to protein alteration. To this end, we studied the ability of four mineral surface archetypes (negatively charged, positively charged, neutral, redox-active) to abiotically fragment a well-characterized protein (GB1) as a function of pH and contact time. GB1 was exposed to the soil minerals montmorillonite, goethite, kaolinite, and birnessite at pH 5 and pH 7 for 1, 8, 24, and 168 h and the supernatant was screened for peptide fragments using Tandem Mass Spectrometry. To distinguish between products of oxidative and hydrolytic cleavage, we combined results from the SEQUEST algorithm, which identifies protein fragments that were cleaved hydrolytically, with the output of a deconvolution algorithm (DECON-Routine) designed to identify oxidation fragments. All four minerals were able to induce protein cleavage. Manganese oxide was effective at both hydrolytic and oxidative cleavage. The fact that phyllosilicates-which are not redox active-induced oxidative cleavage indicates that surfaces acted as catalysts and not as reactants. Our results extend previous observations of proteolytic capabilities in soil minerals to the groups of phyllosilicates and Fe-oxides. We identified structural regions of the protein with particularly high susceptibility to cleavage (loops and β strands) as well as regions that were entirely unaffected (α helix).
Collapse
Affiliation(s)
- Stephany S Chacon
- Department of Crop and Soil Science , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Patrick N Reardon
- Environmental Molecular Science Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
- Oregon State University Nuclear Magnetic Resonance Facility , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Christopher J Burgess
- Department of Crop and Soil Science , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Samuel Purvine
- Environmental Molecular Science Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Rosalie K Chu
- Environmental Molecular Science Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Therese R Clauss
- Environmental Molecular Science Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Eric Walter
- Environmental Molecular Science Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - David D Myrold
- Department of Crop and Soil Science , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Nancy Washton
- Environmental Molecular Science Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Markus Kleber
- Department of Crop and Soil Science , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
16
|
Optimization, evaluation and identification of flavonoids in Cirsium setosum (Willd.) MB by using response surface methodology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00033-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Genetic Code Expansion: A Powerful Tool for Understanding the Physiological Consequences of Oxidative Stress Protein Modifications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7607463. [PMID: 29849913 PMCID: PMC5937447 DOI: 10.1155/2018/7607463] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/19/2018] [Indexed: 12/17/2022]
Abstract
Posttranslational modifications resulting from oxidation of proteins (Ox-PTMs) are present intracellularly under conditions of oxidative stress as well as basal conditions. In the past, these modifications were thought to be generic protein damage, but it has become increasingly clear that Ox-PTMs can have specific physiological effects. It is an arduous task to distinguish between the two cases, as multiple Ox-PTMs occur simultaneously on the same protein, convoluting analysis. Genetic code expansion (GCE) has emerged as a powerful tool to overcome this challenge as it allows for the site-specific incorporation of an Ox-PTM into translated protein. The resulting homogeneously modified protein products can then be rigorously characterized for the effects of individual Ox-PTMs. We outline the strengths and weaknesses of GCE as they relate to the field of oxidative stress and Ox-PTMs. An overview of the Ox-PTMs that have been genetically encoded and applications of GCE to the study of Ox-PTMs, including antibody validation and therapeutic development, is described.
Collapse
|
18
|
Scuderi D, Bodo E, Chiavarino B, Fornarini S, Crestoni ME. Amino Acid Oxidation: A Combined Study of Cysteine Oxo Forms by IRMPD Spectroscopy and Simulations. Chemistry 2016; 22:17239-17250. [PMID: 27808437 DOI: 10.1002/chem.201603298] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Indexed: 01/02/2023]
Abstract
The redox activity of cysteine sulfur allows numerous post-translational protein modifications involved in the oxidative regulation of metabolism, in metal binding, and in signal transduction. A combined approach based on infrared multiple photon dissociation spectroscopy at the Centre Laser Infrarouge d'Orsay (CLIO) free electron laser facility, calculations of IR frequencies, and finite temperature ab initio molecular dynamics simulations has been employed to characterize the gas-phase structures of deprotonated cysteine sulfenic, sulfinic, and sulfonic acids, [cysSOx ]- (x=1, 2, 3, representing the number of S-bound oxygen atoms), which are key intermediates in the redox-switching chemistry of proteins. The ions show different structural motifs owing to preferential binding of the proton to either the carboxylate or sulfur-containing group. Due to the decreasing basicity of the sulfenic, sulfinic, and sulfonic terminals, the proton bound to SO- in [cysSO]- migrates to the carboxylate in [cysSO3 ]- , whereas it turns out to be shared in [cysSO2 ]- . Evidence is gathered that a mixture of close-lying low-energy conformers is sampled for each cysteine oxo form in a Paul ion trap at room temperature.
Collapse
Affiliation(s)
- Debora Scuderi
- Laboratoire de Chimie Physique d'Orsay, Faculté des Sciences, Université Paris Sud, UMR8000 CNRS, Bât 350, 91405, Orsay Cedex, France
| | - Enrico Bodo
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185, Roma, Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185, Roma, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185, Roma, Italy
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185, Roma, Italy
| |
Collapse
|
19
|
Chen HJC, Yang YF, Lai PY, Chen PF. Analysis of Chlorination, Nitration, and Nitrosylation of Tyrosine and Oxidation of Methionine and Cysteine in Hemoglobin from Type 2 Diabetes Mellitus Patients by Nanoflow Liquid Chromatography Tandem Mass Spectrometry. Anal Chem 2016; 88:9276-84. [PMID: 27541571 DOI: 10.1021/acs.analchem.6b02663] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The post-translational modification (PTM) of proteins by endogenous reactive chlorine, nitrogen, and oxygen species is implicated in certain pathological conditions, including diabetes mellitus. Evidence showed that the extents of modifications on a number of proteins are elevated in diabetic patients. Measuring modification on hemoglobin has been used to monitor the extent of exposure. This study develops an assay for simultaneous quantification of the extent of chlorination, nitration, and oxidation in human hemoglobin and to examine whether the level of any of these modifications is higher in poorly controlled type 2 diabetic mellitus patients. This mass spectrometry-based assay used the bottom-up proteomic strategy. Due to the low amount of endogenous modification, we first characterized the sites of chlorination at tyrosine in hypochlorous acid-treated hemoglobin by an accurate mass spectrometer. The extents of chlorination, nitration, and oxidation of a total of 12 sites and types of modifications in hemoglobin were measured by nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry under the selected reaction monitoring mode. Relative quantification of these PTMs in hemoglobin extracted from blood samples shows that the extents of chlorination at α-Tyr-24, nitration at α-Tyr-42, and oxidation at the three methionine residues are significantly higher in diabetic patients (n = 19) than in nondiabetic individuals (n = 18). After excluding the factor of smoking, chlorination at α-Tyr-24, nitration at α-Tyr-42, and oxidation at the three methionine residues are significantly higher in the nonsmoking diabetic patients (n = 12) than in normal nonsmoking subjects (n = 11). Multiple regression analysis performed on the combined effect of age, body-mass index (BMI), and HbA1c showed that the diabetes factor HbA1c contributes significantly to the extent of chlorination at α-Tyr-24 in nonsmokers. In addition, age contributes to oxidation at α-Met-32 significantly in all subjects and in nonsmokers. These results suggest the potential of using chlorination at α-Tyr-24-containing peptide to evaluate protein damage in nonsmoking type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Ya-Fen Yang
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Pang-Yen Lai
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Pin-Fan Chen
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation , Dalin, Chia-Yi 62247, Taiwan
| |
Collapse
|
20
|
Wages PA, Lavrich KS, Zhang Z, Cheng WY, Corteselli E, Gold A, Bromberg P, Simmons SO, Samet JM. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress. Chem Res Toxicol 2015; 28:2411-8. [PMID: 26605980 DOI: 10.1021/acs.chemrestox.5b00424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ) induce oxidative stress by redox cycling, which generates hydrogen peroxide (H2O2). Cysteinyl thiolate residues on regulatory proteins are subjected to oxidative modification by H2O2 in physiological contexts and are also toxicological targets of oxidant stress induced by environmental contaminants. We investigated whether exposure to environmentally relevant concentrations of 1,2-NQ can induce H2O2-dependent oxidation of cysteinyl thiols in regulatory proteins as a readout of oxidant stress in human airway epithelial cells. BEAS-2B cells were exposed to 0-1000 μM 1,2-NQ for 0-30 min, and levels of H2O2 were measured by ratiometric spectrofluorometry of HyPer. H2O2-dependent protein sulfenylation was measured using immunohistochemistry, immunoblotting, and isotopic mass spectrometry. Catalase overexpression was used to investigate the relationship between H2O2 generation and protein sulfenylation in cells exposed to 1,2-NQ. Multiple experimental approaches showed that exposure to 1,2-NQ at concentrations as low as 3 μM induces H2O2-dependent protein sulfenylation in BEAS-2B cells. Moreover, the time of onset and duration of 1,2-NQ-induced sulfenylation of the regulatory proteins GAPDH and PTP1B showed significant differences. Oxidative modification of regulatory cysteinyl thiols in human lung cells exposed to relevant concentrations of an ambient air contaminant represents a novel marker of oxidative environmental stress.
Collapse
Affiliation(s)
- Phillip A Wages
- Curriculum in Toxicology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7310, United States
| | - Katelyn S Lavrich
- Curriculum in Toxicology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7310, United States
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7400, United States
| | - Wan-Yun Cheng
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Elizabeth Corteselli
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7400, United States
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7400, United States
| | - Philip Bromberg
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7310, United States
| | - Steven O Simmons
- National Center for Computational Toxicology, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - James M Samet
- Curriculum in Toxicology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7310, United States.,Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Chapel Hill, North Carolina 27711, United States
| |
Collapse
|
21
|
Chicooree N, Unwin RD, Griffiths JR. The application of targeted mass spectrometry-based strategies to the detection and localization of post-translational modifications. MASS SPECTROMETRY REVIEWS 2015; 34:595-626. [PMID: 24737647 DOI: 10.1002/mas.21421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
This review describes some of the more interesting and imaginative ways in which mass spectrometry has been utilized to study a number of important post-translational modifications over the past two decades; from circa 1990 to 2013. A diverse range of modifications is covered, including citrullination, sulfation, hydroxylation and sumoylation. A summary of the biological role of each modification described, along with some brief mechanistic detail, is also included. Emphasis has been placed on strategies specifically aimed at detecting target modifications, as opposed to more serendipitous modification discovery approaches, which rely upon straightforward product ion scanning methods. The authors have intentionally excluded from this review both phosphorylation and glycosylation since these major modifications have been extensively reviewed elsewhere.
Collapse
Affiliation(s)
- Navin Chicooree
- CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
- School of Chemistry, University of Manchester, Brunswick Street, Manchester, M13 9SU, UK
| | - Richard D Unwin
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - John R Griffiths
- CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| |
Collapse
|
22
|
Kehrer JP, Klotz LO. Free radicals and related reactive species as mediators of tissue injury and disease: implications for Health. Crit Rev Toxicol 2015; 45:765-98. [DOI: 10.3109/10408444.2015.1074159] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Zhan X, Wang X, Desiderio DM. Mass spectrometry analysis of nitrotyrosine-containing proteins. MASS SPECTROMETRY REVIEWS 2015; 34:423-448. [PMID: 24318073 DOI: 10.1002/mas.21413] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
Oxidative stress plays important roles in a wide range of diseases such as cancer, inflammatory disease, neurodegenerative disorders, etc. Tyrosine nitration in a protein is a chemically stable oxidative modification, and a marker of oxidative injuries. Mass spectrometry (MS) is a key technique to identify nitrotyrosine-containing proteins and nitrotyrosine sites in endogenous and synthetic nitroproteins and nitropeptides. However, in vivo nitrotyrosine-containing proteins occur with extreme low-abundance to severely challenge the use of MS to identify in vivo nitroproteins and nitrotyrosine sites. A preferential enrichment of nitroproteins and/or nitropeptides is necessary before MS analysis. Current enrichment methods include immuno-affinity techniques, chemical derivation of the nitro group plus target isolations, followed with tandem mass spectrometry analysis. This article reviews the MS techniques and pertinent before-MS enrichment techniques for the identification of nitrotyrosine-containing proteins. This article reviews future trends in the field of nitroproteomics, including quantitative nitroproteomics, systems biological networks of nitroproteins, and structural biology study of tyrosine nitration to completely clarify the biological functions of tyrosine nitration.
Collapse
Affiliation(s)
- Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- The State Key Laboratory of Medical Genetics, Central South University, 88 Xiangya Road, Changsha, Hunan, 410008, P.R. China
| | - Xiaowei Wang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
| | - Dominic M Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 847 Monroe Avenue, Memphis, Tennessee, 38163
| |
Collapse
|
24
|
Bults P, van de Merbel NC, Bischoff R. Quantification of biopharmaceuticals and biomarkers in complex biological matrices: a comparison of liquid chromatography coupled to tandem mass spectrometry and ligand binding assays. Expert Rev Proteomics 2015; 12:355-74. [DOI: 10.1586/14789450.2015.1050384] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Artemenko K, Mi J, Bergquist J. Mass-spectrometry-based characterization of oxidations in proteins. Free Radic Res 2015; 49:477-93. [DOI: 10.3109/10715762.2015.1023795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Verrastro I, Pasha S, Jensen KT, Pitt AR, Spickett CM. Mass spectrometry-based methods for identifying oxidized proteins in disease: advances and challenges. Biomolecules 2015; 5:378-411. [PMID: 25874603 PMCID: PMC4496678 DOI: 10.3390/biom5020378] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 01/02/2023] Open
Abstract
Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs) of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential as biomarkers for inflammatory diseases. Although many assays for generic protein oxidation and breakdown products of protein oxidation are available, only advanced tandem mass spectrometry approaches have the power to localize specific oxPTMs in identified proteins. While much work has been carried out using untargeted or discovery mass spectrometry approaches, identification of oxPTMs in disease has benefitted from the development of sophisticated targeted or semi-targeted scanning routines, combined with chemical labeling and enrichment approaches. Nevertheless, many potential pitfalls exist which can result in incorrect identifications. This review explains the limitations, advantages and challenges of all of these approaches to detecting oxidatively modified proteins, and provides an update on recent literature in which they have been used to detect and quantify protein oxidation in disease.
Collapse
Affiliation(s)
- Ivan Verrastro
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Sabah Pasha
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Karina Tveen Jensen
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
27
|
Houée-Lévin C, Bobrowski K, Horakova L, Karademir B, Schöneich C, Davies MJ, Spickett CM. Exploring oxidative modifications of tyrosine: An update on mechanisms of formation, advances in analysis and biological consequences. Free Radic Res 2015; 49:347-73. [DOI: 10.3109/10715762.2015.1007968] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Plasmodium vivax trophozoite-stage proteomes. J Proteomics 2014; 115:157-76. [PMID: 25545414 DOI: 10.1016/j.jprot.2014.12.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/17/2014] [Accepted: 12/21/2014] [Indexed: 02/06/2023]
Abstract
UNLABELLED Plasmodium vivax is the causative infectious agent of 80-300 million annual cases of malaria. Many aspects of this parasite's biology remain unknown. To further elucidate the interaction of P. vivax with its Saimiri boliviensis host, we obtained detailed proteomes of infected red blood cells, representing the trophozoite-enriched stage of development. Data from two of three biological replicate proteomes, emphasized here, were analyzed using five search engines, which enhanced identifications and resulted in the most comprehensive P. vivax proteomes to date, with 1375 P. vivax and 3209 S. boliviensis identified proteins. Ribosome subunit proteins were noted for both P. vivax and S. boliviensis, consistent with P. vivax's known reticulocyte host-cell specificity. A majority of the host and pathogen proteins identified belong to specific functional categories, and several parasite gene families, while 33% of the P. vivax proteins have no reported function. Hemoglobin was significantly oxidized in both proteomes, and additional protein oxidation and nitration was detected in one of the two proteomes. Detailed analyses of these post-translational modifications are presented. The proteins identified here significantly expand the known P. vivax proteome and complexity of available host protein functionality underlying the host-parasite interactive biology, and reveal unsuspected oxidative modifications that may impact protein function. BIOLOGICAL SIGNIFICANCE Plasmodium vivax malaria is a serious neglected disease, causing an estimated 80 to 300 million cases annually in 95 countries. Infection can result in significant morbidity and possible death. P. vivax, unlike the much better-studied Plasmodium falciparum species, cannot be grown in long-term culture, has a dormant form in the liver called the hypnozoite stage, has a reticulocyte host-cell preference in the blood, and creates caveolae vesicle complexes at the surface of the infected reticulocyte membranes. Studies of stage-specific P. vivax expressed proteomes have been limited in scope and focused mainly on pathogen proteins, thus limiting understanding of the biology of this pathogen and its host interactions. Here three P. vivax proteomes are reported from biological replicates based on purified trophozoite-infected reticulocytes from different Saimiri boliviensis infections (the main non-human primate experimental model for P. vivax biology and pathogenesis). An in-depth analysis of two of the proteomes using 2D LC/MS/MS and multiple search engines identified 1375 pathogen proteins and 3209 host proteins. Numerous functional categories of both host and pathogen proteins were identified, including several known P. vivax protein family members (e.g., PHIST, eTRAMP and VIR), and 33% of protein identifications were classified as hypothetical. Ribosome subunit proteins were noted for both P. vivax and S. boliviensis, consistent with this parasite species' known reticulocyte host-cell specificity. In two biological replicates analyzed for post-translational modifications, hemoglobin was extensively oxidized, and various other proteins were also oxidized or nitrated in one of the two replicates. The cause of such protein modification remains to be determined but could include oxidized heme and oxygen radicals released from the infected red blood cell's parasite-induced acidic digestive vacuoles. In any case, the data suggests the presence of distinct infection-specific conditions whereby both the pathogen and host infected red blood cell proteins may be subject to significant oxidative stress.
Collapse
|
29
|
Sadowska-Bartosz I, Ott C, Grune T, Bartosz G. Posttranslational protein modifications by reactive nitrogen and chlorine species and strategies for their prevention and elimination. Free Radic Res 2014; 48:1267-84. [PMID: 25119970 DOI: 10.3109/10715762.2014.953494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins are subject to various posttranslational modifications, some of them being undesired from the point of view of metabolic efficiency. Prevention of such modifications is expected to provide new means of therapy of diseases and decelerate the process of aging. In this review, modifications of proteins by reactive nitrogen species and reactive halogen species, is briefly presented and means of prevention of these modifications and their sequelae are discussed, including the denitrase activity and inhibitors of myeloperoxidase.
Collapse
Affiliation(s)
- I Sadowska-Bartosz
- Department of Biochemistry and Cell Biology, University of Rzeszów , Rzeszów , Poland
| | | | | | | |
Collapse
|
30
|
Tsikas D, Duncan MW. Mass spectrometry and 3-nitrotyrosine: strategies, controversies, and our current perspective. MASS SPECTROMETRY REVIEWS 2014; 33:237-76. [PMID: 24167057 DOI: 10.1002/mas.21396] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 05/11/2023]
Abstract
Reactive-nitrogen species (RNS) such as peroxynitrite (ONOO(-)), that is, the reaction product of nitric oxide ((•)NO) and superoxide (O2(-•)), nitryl chloride (NO2Cl) and (•)NO2 react with the activated aromatic ring of tyrosine to form 3-nitrotyrosine. This modification, which has been known for more than a century, occurs to both the free form of the amino acid (i.e., soluble/free tyrosine) and to tyrosine residues covalently bound within the backbone of peptides and proteins. Nitration of tyrosine is thought to be of biological significance and has been linked to health and disease, but determining its role has proved challenging. Several key questions have been the focus of much of the research activity: (a) to what extent is free/soluble tyrosine nitrated in biological tissues and fluids, and (b) are there specific site(s) of nitration within peptides/proteins and to what extent (i.e., stoichiometry) does this modification occur? These issues have been addressed in a wide range of sample types (e.g., blood, urine, CSF, exhaled breath condensate and various tissues) and a diverse array of physiological/pathophysiological scenarios. The accurate determination of nitrated tyrosine is, however, a stumbling block. Despite extensive study, the extent to which nitration occurs in vivo, the specificity of the nitration reaction, and its importance in health and disease, remain unclear. In this review, we highlight the analytical challenges and discuss the approaches adopted to address them. Mass spectrometry, in combination with either gas chromatography (GC-MS, GC-MS/MS) or liquid chromatography (LC-MS/MS), has played the central role in the analysis of 3-nitrotyrosine and tyrosine-nitrated biological macromolecules. We discuss its unique attributes and highlight the role of stable-isotope labeled 3-nitrotyrosine analogs in both accurate quantification, and in helping to define the biological relevance of tyrosine nitration. We show that the application of sophisticated mass spectrometric techniques is advantageous if not essential, but that this alone is by no means a guarantee of accurate findings. We discuss the important analytical challenges in quantifying 3-nitrotyrosine, possible workarounds, and we attempt to make sense of the disparate findings that have been reported so far.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
31
|
Hawkins CL, Davies MJ. Detection and characterisation of radicals in biological materials using EPR methodology. Biochim Biophys Acta Gen Subj 2014; 1840:708-21. [DOI: 10.1016/j.bbagen.2013.03.034] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/28/2013] [Indexed: 12/21/2022]
|
32
|
Gouveia DD, Silva AMN, Vitorino R, Domingues MRM, Domingues P. The efficiency of trypsin digestion for mass-spectrometry-based identification and quantification of oxidized proteins: evaluation of the digestion of oxidized bovine serum albumin. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:271-278. [PMID: 24892298 DOI: 10.1255/ejms.1279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In bottom-up proteomics approaches, the enzymatic proteolysis step before mass spectrometry (MS) analysis is of crucial importance, as only the efficient digestion of the protein will ensure its accurate quantification. The structural and chemical alterations occurring upon protein oxidation may decrease the efficiency of trypsin digestion, compromising the ensuing MS analysis. Herein, the efficiency of the trypsin digestion of oxidized bovine serum albumin (BSA) was assessed by protein-sequence coverage and the exponentially modified protein abundance index (emPAI) algorithm, allowing a comparison of protein abundance in samples with different levels of oxidation. Despite the extensive oxidation induced to BSA, verified by analysis of protein carbonyls, no significant difference in the yield of tryptic peptides from oxidized samples could be observed by nano-high-performance liquid chromatography (HPLC) and nano-HPLC7-electrospray ionization-MS analysis. After a database search, similar protein-sequence coverage rates were obtained for both treated and control samples. Thus, exponentially modified protein abundance index scores confirmed that, regardless of being oxidized, the same amount of BSA was present in the sodium dodecyl sulfate/polyacrylamide gel electrophoresis bands excised for digestion. The obtained results show that the digestion of the control and oxidized samples were similar, leading to the conclusion that in-gel proteolysis is not a main hindrance for the identification and quantification of oxidized proteins by MS.
Collapse
Affiliation(s)
- Duarte D Gouveia
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - André M N Silva
- REQUIMTE/Departmento de Química e Bioquimica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Rui Vitorino
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Pedro Domingues
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
33
|
Silva AMN, Vitorino R, Domingues MRM, Spickett CM, Domingues P. Post-translational modifications and mass spectrometry detection. Free Radic Biol Med 2013; 65:925-941. [PMID: 24002012 DOI: 10.1016/j.freeradbiomed.2013.08.184] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 12/14/2022]
Abstract
In this review, we provide a comprehensive bibliographic overview of the role of mass spectrometry and the recent technical developments in the detection of post-translational modifications (PTMs). We briefly describe the principles of mass spectrometry for detecting PTMs and the protein and peptide enrichment strategies for PTM analysis, including phosphorylation, acetylation and oxidation. This review presents a bibliographic overview of the scientific achievements and the recent technical development in the detection of PTMs is provided. In order to ascertain the state of the art in mass spectrometry and proteomics methodologies for the study of PTMs, we analyzed all the PTM data introduced in the Universal Protein Resource (UniProt) and the literature published in the last three years. The evolution of curated data in UniProt for proteins annotated as being post-translationally modified is also analyzed. Additionally, we have undertaken a careful analysis of the research articles published in the years 2010 to 2012 reporting the detection of PTMs in biological samples by mass spectrometry.
Collapse
Affiliation(s)
- André M N Silva
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rui Vitorino
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Rosário M Domingues
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7 ET, United Kingdom
| | - Pedro Domingues
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
34
|
Abstract
SIGNIFICANCE The conversion of protein-bound Tyr residues to 3-nitrotyrosine (3NY) can occur during nitrative stress and has been correlated to aging and many disease states. Proteomic analysis of this post-translational modification, using mass spectrometry-based techniques, is crucial for understanding its potential role in pathological and physiological processes. RECENT ADVANCES To overcome some of the disadvantages inherent to well-established nitroproteomic methods using anti-3NY antibodies and gel-based separations, methods involving multidimensional chromatography, precursor ion scanning, and/or chemical derivatization have emerged for both identification and quantitation of protein nitration sites. A few of these methods have successfully detected endogenous 3NY modifications from biological samples. CRITICAL ISSUES While model systems often show promising results, identification of endogenous 3NY modifications remains largely elusive. The frequently low abundance of nitrated proteins in vivo, even under inflammatory conditions, is especially challenging, and sample loss due to derivatization and cleaning may become significant. FUTURE DIRECTIONS Continued efforts to avoid interference from non-nitrated peptides without sacrificing recovery of nitrated peptides are needed. Quantitative methods are emerging and are crucial for identifying endogenous modifications that may have significant biological impacts.
Collapse
Affiliation(s)
- Maria B Feeney
- Department of Pharmaceutical Chemistry, The University of Kansas , Lawrence, Kansas
| | | |
Collapse
|
35
|
Redox activation of Nrf2 & NF-κB: a double end sword? Cell Signal 2013; 25:2548-57. [PMID: 23993959 DOI: 10.1016/j.cellsig.2013.08.007] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/23/2013] [Indexed: 12/20/2022]
Abstract
Moderate concentrations of reactive oxygen species (ROS) are produced by diverse sources under physiological conditions. At such low levels, these molecules may act as upstream mediators of relevant signaling pathways; however an increase in their concentration with respect to the antioxidant system activity, changes their redox signaling function into a deleterious role. Thus, cell health depends, at least in part, on redox balance. This review includes global aspects of oxygen chemistry, ROS generation, antioxidant system, and redox signaling. It is also focused on the description of two relevant redox-sensitive transcription factors: nuclear factor erythroid 2-related factor 2 (Nrf2), which may be a potential target to confer cell protection, and nuclear factor κB (NF-κB), which is involved in deleterious effects in the cell. Finally, recent findings on the interplay between both factors for the development of different pathologies are discussed.
Collapse
|
36
|
Černý M, Skalák J, Cerna H, Brzobohatý B. Advances in purification and separation of posttranslationally modified proteins. J Proteomics 2013; 92:2-27. [PMID: 23777897 DOI: 10.1016/j.jprot.2013.05.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 11/25/2022]
Abstract
Posttranslational modifications (PTMs) of proteins represent fascinating extensions of the dynamic complexity of living cells' proteomes. The results of enzymatically catalyzed or spontaneous chemical reactions, PTMs form a fourth tier in the gene - transcript - protein cascade, and contribute not only to proteins' biological functions, but also to challenges in their analysis. There have been tremendous advances in proteomics during the last decade. Identification and mapping of PTMs in proteins have improved dramatically, mainly due to constant increases in the sensitivity, speed, accuracy and resolution of mass spectrometry (MS). However, it is also becoming increasingly evident that simple gel-free shotgun MS profiling is unlikely to suffice for comprehensive detection and characterization of proteins and/or protein modifications present in low amounts. Here, we review current approaches for enriching and separating posttranslationally modified proteins, and their MS-independent detection. First, we discuss general approaches for proteome separation, fractionation and enrichment. We then consider the commonest forms of PTMs (phosphorylation, glycosylation and glycation, lipidation, methylation, acetylation, deamidation, ubiquitination and various redox modifications), and the best available methods for detecting and purifying proteins carrying these PTMs. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Martin Černý
- Department of Molecular Biology and Radiobiology, Mendel University in Brno & CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | | | | | | |
Collapse
|
37
|
Spickett CM, Reis A, Pitt AR. Use of narrow mass-window, high-resolution extracted product ion chromatograms for the sensitive and selective identification of protein modifications. Anal Chem 2013; 85:4621-7. [PMID: 23534669 DOI: 10.1021/ac400131f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein modifications, including oxidative modifications, glycosylations, and oxidized lipid-protein adducts, are becoming increasingly important as biomarkers and in understanding disease etiology. There has been a great deal of interest in mapping these on Apo B100 from low density lipoprotein (LDL). We have used extracted ion chromatograms of product ions generated using a very narrow mass window from high-resolution tandem mass spectrometric data collected on a rapid scanning quadrupole time-of-flight (QTOF) instrument, to selectively and sensitively detect modified peptides and identify the site and nature of a number of protein modifications in parallel. We have demonstrated the utility of this method by characterizing for the first time oxidized phospholipid adducts to LDL and human serum albumin and for the detection of glycosylation and kynurenin formation from the oxidation of tryptophan residues in LDL.
Collapse
Affiliation(s)
- Corinne M Spickett
- Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom
| | | | | |
Collapse
|
38
|
Tveen-Jensen K, Reis A, Mouls L, Pitt AR, Spickett CM. Reporter ion-based mass spectrometry approaches for the detection of non-enzymatic protein modifications in biological samples. J Proteomics 2013; 92:71-9. [PMID: 23603107 DOI: 10.1016/j.jprot.2013.03.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/29/2013] [Accepted: 03/31/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED Development of mass spectrometry techniques to detect protein oxidation, which contributes to signalling and inflammation, is important. Label-free approaches have the advantage of reduced sample manipulation, but are challenging in complex samples owing to undirected analysis of large data sets using statistical search engines. To identify oxidised proteins in biological samples, we previously developed a targeted approach involving precursor ion scanning for diagnostic MS(3) ions from oxidised residues. Here, we tested this approach for other oxidations, and compared it with an alternative approach involving the use of extracted ion chromatograms (XICs) generated from high-resolution MSMS data using very narrow mass windows. This accurate mass XIC data methodology was effective at identifying nitrotyrosine, chlorotyrosine, and oxidative deamination of lysine, and for tyrosine oxidations highlighted more modified peptide species than precursor ion scanning or statistical database searches. Although some false positive peaks still occurred in the XICs, these could be identified by comparative assessment of the peak intensities. The method has the advantage that a number of different modifications can be analysed simultaneously in a single LC-MSMS run.This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. BIOLOGICAL SIGNIFICANCE The use of accurate mass extracted product ion chromatograms to detect oxidised peptides could improve the identification of oxidatively damaged proteins in inflammatory conditions.
Collapse
|
39
|
Eggleton P, Nissim A, Ryan BJ, Whiteman M, Winyard PG. Detection and isolation of human serum autoantibodies that recognize oxidatively modified autoantigens. Free Radic Biol Med 2013; 57:79-91. [PMID: 23246567 DOI: 10.1016/j.freeradbiomed.2012.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 10/05/2012] [Accepted: 11/10/2012] [Indexed: 12/13/2022]
Abstract
The breakdown of human immune tolerance to self-proteins occurs by a number of mechanisms, including posttranslational modifications of host molecules by reactive oxygen, nitrogen, or chlorine species. This has led to great interest in detecting serum autoantibodies raised against small quantities of oxidatively modified host proteins in patients with autoimmune inflammatory diseases, such as rheumatoid arthritis. Here, we provide protocols for the preparation and chemical characterization of oxidatively modified protein antigens and procedures for their use in immunoblotting and ELISAs that detect autoantibodies against these antigens in clinical samples. These gel electrophoresis- and plate reader-based immunochemical methods sometimes suffer from low analytical specificity and/or sensitivity when used for serum autoantibody detection. This is often because a single solid-phase protein (antigen) is exposed to a complex mixture of serum proteins that undergo nonspecific binding. Therefore more sensitive/specific techniques are required to detect autoantibodies specifically directed against oxidatively modified proteins. To address this, we describe novel affinity chromatography protocols by which purified autoantibodies are isolated from small volumes (<1 ml) of serum. We have also developed strategies to conjugate submilligram amounts of isolated immunoglobulins and other proteins to fluorophores. This set of methods will help facilitate the discovery of novel diagnostic autoantibodies in patients.
Collapse
Affiliation(s)
- Paul Eggleton
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon EX1 2LU, UK
| | | | | | | | | |
Collapse
|
40
|
The response of human skin commensal bacteria as a reflection of UV radiation: UV-B decreases porphyrin production. PLoS One 2012; 7:e47798. [PMID: 23133525 PMCID: PMC3485044 DOI: 10.1371/journal.pone.0047798] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/17/2012] [Indexed: 11/19/2022] Open
Abstract
Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV) radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes), a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD) in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ)-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER) of a peptide chain release factor 2 (RF2) were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre-symptomatic diagnosis of radiation risk in a battlefield exposure, nuclear accidents, terrorist attacks, or cancer imaging/therapy.
Collapse
|
41
|
Crestoni ME, Chiavarino B, Scuderi D, Di Marzio A, Fornarini S. Discrimination of 4-hydroxyproline diastereomers by vibrational spectroscopy of the gaseous protonated species. J Phys Chem B 2012; 116:8771-9. [PMID: 22764742 DOI: 10.1021/jp302382p] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydroxylation of proline is a prominent oxidative post-translational modification (oxPTM) in animals, characterized by site specificity and stereochemical control. The presence of this irreversible modification and the ensuing generation of a chiral center have been assayed in (2S,4R)-4-hydroxyproline and (2S,4S)-4-hydroxyproline forming the protonated species by electrospray ionization and sampling them by infrared multiple photon dissociation (IRMPD) spectroscopy. IRMPD spectra, recorded both in the 950-1950 cm(-1) (using the CLIO free electron laser) and in the 3200-3700 cm(-1) [using a tabletop parametric oscillator/amplifier (OPO/OPA) laser] regions, have been interpreted by comparison with the absorbance spectra of the lowest energy structures calculated at MP2/6-311+G** level of theory. Remarkable spectral differences have emerged in the fingerprint region, pointing to the unambiguous discrimination between S,R and S,S diastereomers. The main differences arise from the position of the carbonyl stretching mode, a signature of nonzwitterionic structures, moving from 1750 cm(-1) for the S,R form to 1770 cm(-1) for the S,S diastereomer. Furthermore, a well-defined band associated with the NH(2) wagging mode at 1333 cm(-1) is a distinct mark of the S,S isomer. Each gaseous protonated epimer comprises a population of at least three conformers, stabilized by intramolecular hydrogen bonds linking the two hydrogens of protonated secondary amine group with the 4-hydroxy substituent and with an oxygen atom of the carboxylic group, respectively. Interestingly, a tendency to adopt either C(4)-exo (up) or C(4)-endo (down) pyrrolidine puckering upon proline 4(R)- or 4(S)-hydroxylation, respectively, is observed here. The same bias is found in neutral hydroxyprolines and in collagen model peptides. In the protonated species under examination, this bias originates chirality-induced vibrational features revealed by IRMPD spectroscopy.
Collapse
Affiliation(s)
- Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma La Sapienza, P. le A. Moro 5, I-00185 Roma, Italy.
| | | | | | | | | |
Collapse
|
42
|
Yang H, Lundbäck P, Ottosson L, Erlandsson-Harris H, Venereau E, Bianchi ME, Al-Abed Y, Andersson U, Tracey KJ, Antoine DJ. Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1). Mol Med 2012; 18:250-9. [PMID: 22105604 DOI: 10.2119/molmed.2011.00389] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/07/2011] [Indexed: 11/06/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear protein with extracellular inflammatory cytokine activity. It is released passively during cell injury and necrosis, and secreted actively by immune cells. HMGB1 contains three conserved redox-sensitive cysteine residues: C23 and C45 can form an intramolecular disulfide bond, whereas C106 is unpaired and is essential for the interaction with Toll-Like Receptor (TLR) 4. However, a comprehensive characterization of the dynamic redox states of each cysteine residue and of their impacts on innate immune responses is lacking. Using tandem mass spectrometric analysis, we now have established that the C106 thiol and the C23-C45 disulfide bond are required for HMGB1 to induce nuclear NF-κB translocation and tumor necrosis factor (TNF) production in macrophages. Both irreversible oxidation to sulphonates and complete reduction to thiols of these cysteines inhibited TNF production markedly. In a proof of concept murine model of hepatic necrosis induced by acetaminophen, during inflammation, the predominant form of serum HMGB1 is the active one, containing a C106 thiol group and a disulfide bond between C23 and C45, whereas the inactive form of HMGB1, containing terminally oxidized cysteines, accumulates during inflammation resolution and hepatic regeneration. These results reveal critical posttranslational redox mechanisms that control the proinflammatory activity of HMGB1 and its inactivation during pathogenesis.
Collapse
Affiliation(s)
- Huan Yang
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lee SH, Miyamoto K, Goto T, Oe T. Non-invasive proteomic analysis of human skin keratins: Screening of methionine oxidation in keratins by mass spectrometry. J Proteomics 2011; 75:435-49. [DOI: 10.1016/j.jprot.2011.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/10/2011] [Accepted: 08/13/2011] [Indexed: 01/23/2023]
|
44
|
|