1
|
van Haaren MJH, Steller LB, Vastert SJ, Calis JJA, van Loosdregt J. Get Spliced: Uniting Alternative Splicing and Arthritis. Int J Mol Sci 2024; 25:8123. [PMID: 39125692 PMCID: PMC11311815 DOI: 10.3390/ijms25158123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Immune responses demand the rapid and precise regulation of gene protein expression. Splicing is a crucial step in this process; ~95% of protein-coding gene transcripts are spliced during mRNA maturation. Alternative splicing allows for distinct functional regulation, as it can affect transcript degradation and can lead to alternative functional protein isoforms. There is increasing evidence that splicing can directly regulate immune responses. For several genes, immune cells display dramatic changes in isoform-level transcript expression patterns upon activation. Recent advances in long-read RNA sequencing assays have enabled an unbiased and complete description of transcript isoform expression patterns. With an increasing amount of cell types and conditions that have been analyzed with such assays, thousands of novel transcript isoforms have been identified. Alternative splicing has been associated with autoimmune diseases, including arthritis. Here, GWASs revealed that SNPs associated with arthritis are enriched in splice sites. In this review, we will discuss how alternative splicing is involved in immune responses and how the dysregulation of alternative splicing can contribute to arthritis pathogenesis. In addition, we will discuss the therapeutic potential of modulating alternative splicing, which includes examples of spliceform-based biomarkers for disease severity or disease subtype, splicing manipulation using antisense oligonucleotides, and the targeting of specific immune-related spliceforms using antibodies.
Collapse
Affiliation(s)
- Maurice J. H. van Haaren
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Levina Bertina Steller
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Division of Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, 3584 CX Utrecht, The Netherlands
| | - Jorg J. A. Calis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
2
|
Sachslehner AP, Surbek M, Holthaus KB, Steinbinder J, Golabi B, Hess C, Eckhart L. The Evolution of Transglutaminases Underlies the Origin and Loss of Cornified Skin Appendages in Vertebrates. Mol Biol Evol 2024; 41:msae100. [PMID: 38781495 DOI: 10.1093/molbev/msae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Transglutaminases (TGMs) cross-link proteins by introducing covalent bonds between glutamine and lysine residues. These cross-links are essential for epithelial cornification which enables tetrapods to live on land. Here, we investigated which evolutionary adaptations of vertebrates were associated with specific changes in the family of TGM genes. We determined the catalog of TGMs in the main clades of vertebrates, performed a comprehensive phylogenetic analysis of TGMs, and localized the distribution of selected TGMs in tissues. Our data suggest that TGM1 is the phylogenetically oldest epithelial TGM, with orthologs being expressed in the cornified teeth of the lamprey, a basal vertebrate. Gene duplications led to the origin of TGM10 in stem vertebrates, the origin of TGM2 in jawed vertebrates, and an increasing number of epithelium-associated TGM genes in the lineage leading to terrestrial vertebrates. TGM9 is expressed in the epithelial egg tooth, and its evolutionary origin in stem amniotes coincided with the evolution of embryonic development in eggs that are surrounded by a protective shell. Conversely, viviparous mammals have lost both the epithelial egg tooth and TGM9. TGM3 and TGM6 evolved as regulators of cornification in hair follicles and underwent pseudogenization upon the evolutionary loss of hair in cetaceans. Taken together, this study reveals the gain and loss of vertebrate TGM genes in association with the evolution of cornified skin appendages and suggests an important role of TGM9 in the evolution of amniotes.
Collapse
Affiliation(s)
| | - Marta Surbek
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Julia Steinbinder
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Peltola M, Kaukinen K, Basnyat P, Raitanen J, Haimila K, Liimatainen S, Rainesalo S, Peltola J. Hippocampal sclerosis is associated with celiac disease type immunity in patients with drug-resistant temporal lobe epilepsy. J Neurol 2024; 271:2596-2604. [PMID: 38337123 PMCID: PMC11055723 DOI: 10.1007/s00415-024-12210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/16/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND A prior small-scale single center study suggested an association between celiac disease (CD)-type immunity and refractory temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS). The present study addresses this putative association in a large, well-characterized group of drug-resistant epilepsy (DRE) patients. These patients were grouped based on the spectrum of CD and gluten sensitivity-associated antibodies. METHODS In this cross-sectional study, 253 consecutive adult epilepsy patients (135 females, 118 males; age 16-76 years) were categorized into three groups: (i) CD-positive group with either prior diagnosis of CD or CD-specific TG2/EmA antibodies, (ii) AGA-positive group with antigliadin antibodies (AGA) but without CD, and (iii) CD/AGA-negative group without any gluten sensitivity-associated antibodies or CD. Clinical and immunological findings were then compared among the groups. RESULTS TLE with HS was more common in the CD-positive group compared to CD/AGA-negative group (31.8% versus 11.9%, P = 0.019). Autoimmune disorders were more common in the AGA-positive group than in the CD/AGA-negative group (P = 0.025). Considering HS lateralization; left lateralization was more common in CD-positive group compared to CD/AGA-negative group (71.4% versus 25%, P = 0.030). TG6 seropositivity did not differ among the groups (P > 0.05). CONCLUSIONS This study provides further evidence linking TLE with HS and CD-type autoimmunity suggesting that CD-type immune response to gluten can be one potential mechanism as a disease modifier leading to DRE and HS. Understanding these immunological factors is imperative for developing immunomodulatory or dietary treatments for DRE potentially preventing HS progression.
Collapse
Affiliation(s)
- Maria Peltola
- Department of Psychiatry, Tampere University Hospital, Tampere, Finland.
- Department of Neurology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Vanha Vaasa Hospital, Vierinkiventie 1, 65380, Vaasa, Finland.
| | - Katri Kaukinen
- Coeliac Disease Research Centre, Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Pabitra Basnyat
- Department of Neurology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jani Raitanen
- Faculty of Social Sciences, Health Sciences, Tampere University, Tampere, Finland
- UKK Institute for Health Promotion Research, Tampere, Finland
| | - Katri Haimila
- Immunogenetics Laboratory, Finnish Red Cross Blood Service, Vantaa, Finland
| | - Suvi Liimatainen
- Department of Neurology, Tampere University Hospital, Tampere, Finland
- Administration Centre, Tampere University Hospital, Pirkanmaa Wellbeing County, Tampere, Finland
| | - Sirpa Rainesalo
- Division of Acute Medicine, Tampere University Hospital, Tampere, Finland
| | - Jukka Peltola
- Department of Neurology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Neurology, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
4
|
Velikova T, Vasilev G, Shumnalieva R, Chervenkov L, Miteva DG, Gulinac M, Priftis S, Lazova S. Autoantibodies related to ataxia and other central nervous system manifestations of gluten enteropathy. World J Clin Cases 2024; 12:2031-2039. [PMID: 38680259 PMCID: PMC11045506 DOI: 10.12998/wjcc.v12.i12.2031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Gluten ataxia and other central nervous system disorders could be linked to gluten enteropathy and related autoantibodies. In this narrative review, we focus on the various neuro-logical manifestations in patients with gluten sensitivity/celiac disease, immunological and autoimmune mechanisms of ataxia in connection to gluten sensitivity and the autoantibodies that could be used as a biomarker for diagnosing and following. We focused on the anti-gliadin antibodies, antibodies to different isoforms of tissue transglutaminase (TG) (anti-TG2, 3, and 6 antibodies), anti-glycine receptor antibodies, anti-glutamine acid decarboxylase antibodies, anti-deamidated gliadin peptides antibodies, etc. Most studies found a higher prevalence of these antibodies in patients with gluten sensitivity and neurological dysfunction, presented as different neurological disorders. We also discuss the role of a gluten-free diet on the clinical improvement of patients and also on imaging of these disorders.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Medical Faculty, Sofia University "St. Kliment Ohridski", Sofia 1407, Bulgaria
| | - Georgi Vasilev
- Medical Faculty, Sofia University "St. Kliment Ohridski", Sofia 1407, Bulgaria
- Clinic of Neurology and Department of Emergency Medicine, UMHAT "Sv. Georgi", Plovdiv 4000, Bulgaria
| | - Russka Shumnalieva
- Medical Faculty, Sofia University "St. Kliment Ohridski", Sofia 1407, Bulgaria
- Department of Rheumatology, Clinic of Rheumatology, University Hospital "St. Ivan Rilski", Medical University-Sofia, Sofia 1612, Bulgaria
| | - Lyubomir Chervenkov
- Department of Diagnostic Imaging, Medical University Plovdiv, Plovdiv 4000, Bulgaria
| | - Dimitrina Georgieva Miteva
- Medical Faculty, Sofia University "St. Kliment Ohridski", Sofia 1407, Bulgaria
- Department of Genetics, Faculty of Biology, Sofia University "St. Kliment Ohridski", Sofia 1164, Bulgaria
| | - Milena Gulinac
- Medical Faculty, Sofia University "St. Kliment Ohridski", Sofia 1407, Bulgaria
- Department of General and Clinical Pathology, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Stamatios Priftis
- Department of Healthcare, Faculty of Public Health “Prof. Tsekomir Vodenicharov, MD, DSc”, Medical University of Sofia, Sofia 1407, Bulgaria
| | - Snezhina Lazova
- Medical Faculty, Sofia University "St. Kliment Ohridski", Sofia 1407, Bulgaria
- Department of Healthcare, Faculty of Public Health “Prof. Tsekomir Vodenicharov, MD, DSc”, Medical University of Sofia, Sofia 1407, Bulgaria
- Department of Pediatric, University Hospital "N. I. Pirogov", Sofia 1606, Bulgaria
| |
Collapse
|
5
|
Buccarelli M, Castellani G, Fiorentino V, Pizzimenti C, Beninati S, Ricci-Vitiani L, Scattoni ML, Mischiati C, Facchiano F, Tabolacci C. Biological Implications and Functional Significance of Transglutaminase Type 2 in Nervous System Tumors. Cells 2024; 13:667. [PMID: 38667282 PMCID: PMC11048792 DOI: 10.3390/cells13080667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Transglutaminase type 2 (TG2) is the most ubiquitously expressed member of the transglutaminase family. TG2 catalyzes the transamidation reaction leading to several protein post-translational modifications and it is also implicated in signal transduction thanks to its GTP binding/hydrolyzing activity. In the nervous system, TG2 regulates multiple physiological processes, such as development, neuronal cell death and differentiation, and synaptic plasticity. Given its different enzymatic activities, aberrant expression or activity of TG2 can contribute to tumorigenesis, including in peripheral and central nervous system tumors. Indeed, TG2 dysregulation has been reported in meningiomas, medulloblastomas, neuroblastomas, glioblastomas, and other adult-type diffuse gliomas. The aim of this review is to provide an overview of the biological and functional relevance of TG2 in the pathogenesis of nervous system tumors, highlighting its involvement in survival, tumor inflammation, differentiation, and in the resistance to standard therapies.
Collapse
Affiliation(s)
- Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Cristina Pizzimenti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy;
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Claudio Tabolacci
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
6
|
Floare ML, Wharton SB, Simpson JE, Aeschlimann D, Hoggard N, Hadjivassiliou M. Cerebellar degeneration in gluten ataxia is linked to microglial activation. Brain Commun 2024; 6:fcae078. [PMID: 38510211 PMCID: PMC10953628 DOI: 10.1093/braincomms/fcae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/16/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Gluten sensitivity has long been recognized exclusively for its gastrointestinal involvement; however, more recent research provides evidence for the existence of neurological manifestations that can appear in combination with or independent of the small bowel manifestations. Amongst all neurological manifestations of gluten sensitivity, gluten ataxia is the most commonly occurring one, accounting for up to 40% of cases of idiopathic sporadic ataxia. However, despite its prevalence, its neuropathological basis is still poorly defined. Here, we provide a neuropathological characterization of gluten ataxia and compare the presence of neuroinflammatory markers glial fibrillary acidic protein, ionized calcium-binding adaptor molecule 1, major histocompatibility complex II and cluster of differentiation 68 in the central nervous system of four gluten ataxia cases to five ataxia controls and seven neurologically healthy controls. Our results demonstrate that severe cerebellar atrophy, cluster of differentiation 20+ and cluster of differentiation 8+ lymphocytic infiltration in the cerebellar grey and white matter and a significant upregulation of microglial immune activation in the cerebellar granular layer, molecular layer and cerebellar white matter are features of gluten ataxia, providing evidence for the involvement of both cellular and humoral immune-mediated processes in gluten ataxia pathogenesis.
Collapse
Affiliation(s)
- Mara-Luciana Floare
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Daniel Aeschlimann
- Matrix Biology and Tissue Repair Research Unit, College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK
| | - Nigel Hoggard
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2JF, UK
| | - Marios Hadjivassiliou
- Academic Department of Neuroscience, Sheffield Teaching Hospitals NHS Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
| |
Collapse
|
7
|
Bauer L, Edwards J, Heil A, Dewitt S, Biebermann H, Aeschlimann D, Knäuper V. Mesenchymal Transglutaminase 2 Activates Epithelial ADAM17: Link to G-Protein-Coupled Receptor 56 (ADGRG1) Signalling. Int J Mol Sci 2024; 25:2329. [PMID: 38397010 PMCID: PMC10889368 DOI: 10.3390/ijms25042329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
A wound healing model was developed to elucidate the role of mesenchymal-matrix-associated transglutaminase 2 (TG2) in keratinocyte re-epithelialisation. TG2 drives keratinocyte migratory responses by activation of disintegrin and metalloproteinase 17 (ADAM17). We demonstrate that epidermal growth factor (EGF) receptor ligand shedding leads to EGFR-transactivation and subsequent rapid keratinocyte migration on TG2-positive ECM. In contrast, keratinocyte migration was impaired in TG2 null conditions. We show that keratinocytes express the adhesion G-protein-coupled receptor, ADGRG1 (GPR56), which has been proposed as a TG2 receptor. Using ADAM17 activation as a readout and luciferase reporter assays, we demonstrate that TG2 activates GPR56. GPR56 activation by TG2 reached the same level as observed with an agonistic N-GPR56 antibody. The N-terminal GPR56 domain is required for TG2-regulated signalling response, as the constitutively active C-GPR56 receptor was not activated by TG2. Signalling required the C-terminal TG2 β-barrel domains and involved RhoA-associated protein kinase (ROCK) and ADAM17 activation, which was blocked by specific inhibitors. Cell surface binding of TG2 to the N-terminal GPR56 domain is rapid and is associated with TG2 and GPR56 endocytosis. TG2 and GPR56 represent a ligand receptor pair causing RhoA and EGFR transactivation. Furthermore, we determined a binding constant for the interaction of human TG2 with N-GPR56 and show for the first time that only the calcium-enabled "open" TG2 conformation associates with N-GPR56.
Collapse
Affiliation(s)
- Lea Bauer
- College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK (S.D.)
| | - Jessica Edwards
- College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK (S.D.)
| | - Andreas Heil
- College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK (S.D.)
| | - Sharon Dewitt
- College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK (S.D.)
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Daniel Aeschlimann
- College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK (S.D.)
| | - Vera Knäuper
- College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK (S.D.)
| |
Collapse
|
8
|
Donadio V, Sturchio A, Rizzo G, Abu Rumeileh S, Liguori R, Espay AJ. Pathology vs pathogenesis: Rationale and pitfalls in the clinicopathology model of neurodegeneration. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:35-55. [PMID: 36796947 DOI: 10.1016/b978-0-323-85538-9.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In neurodegenerative disorders, the term pathology is often implicitly referred to as pathogenesis. Pathology has been conceived as a window into the pathogenesis of neurodegenerative disorders. This clinicopathologic framework posits that what can be identified and quantified in postmortem brain tissue can explain both premortem clinical manifestations and the cause of death, a forensic approach to understanding neurodegeneration. As the century-old clinicopathology framework has yielded little correlation between pathology and clinical features or neuronal loss, the relationship between proteins and degeneration is ripe for revisitation. There are indeed two synchronous consequences of protein aggregation in neurodegeneration: the loss of the soluble/normal proteins on one; the accrual of the insoluble/abnormal fraction of these proteins on the other. The omission of the first part in the protein aggregation process is an artifact of the early autopsy studies: soluble, normal proteins have disappeared, with only the remaining insoluble fraction amenable to quantification. We here review the collective evidence from human data suggesting that protein aggregates, known collectively as pathology, are the consequence of many biological, toxic, and infectious exposures, but may not explain alone the cause or pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.
| | - Andrea Sturchio
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institutet, Stockholm, Sweden; James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Giovanni Rizzo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Samir Abu Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
9
|
Giuffrè M, Gazzin S, Zoratti C, Llido JP, Lanza G, Tiribelli C, Moretti R. Celiac Disease and Neurological Manifestations: From Gluten to Neuroinflammation. Int J Mol Sci 2022; 23:15564. [PMID: 36555205 PMCID: PMC9779232 DOI: 10.3390/ijms232415564] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Celiac disease (CD) is a complex multi-organ disease with a high prevalence of extra-intestinal involvement, including neurological and psychiatric manifestations, such as cerebellar ataxia, peripheral neuropathy, epilepsy, headache, cognitive impairment, and depression. However, the mechanisms behind the neurological involvement in CD remain controversial. Recent evidence shows these can be related to gluten-mediated pathogenesis, including antibody cross-reaction, deposition of immune-complex, direct neurotoxicity, and in severe cases, vitamins or nutrients deficiency. Here, we have summarized new evidence related to gut microbiota and the so-called "gut-liver-brain axis" involved in CD-related neurological manifestations. Additionally, there has yet to be an agreement on whether serological or neurophysiological findings can effectively early diagnose and properly monitor CD-associated neurological involvement; notably, most of them can revert to normal with a rigorous gluten-free diet. Moving from a molecular level to a symptom-based approach, clinical, serological, and neurophysiology data might help to disentangle the many-faceted interactions between the gut and brain in CD. Eventually, the identification of multimodal biomarkers might help diagnose, monitor, and improve the quality of life of patients with "neuroCD".
Collapse
Affiliation(s)
- Mauro Giuffrè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Silvia Gazzin
- The Liver-Brain Unit “Rita Moretti”, Italian Liver Foundation, 34149 Trieste, Italy
| | - Caterina Zoratti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - John Paul Llido
- The Liver-Brain Unit “Rita Moretti”, Italian Liver Foundation, 34149 Trieste, Italy
- Department of Life Sciences, University of Trieste, 34128 Trieste, Italy
- Philippine Council for Healthcare Research and Development, Department of Science and Technology, Bicutan Taguig City 1631, Philippines
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Claudio Tiribelli
- The Liver-Brain Unit “Rita Moretti”, Italian Liver Foundation, 34149 Trieste, Italy
| | - Rita Moretti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
10
|
A Comprehensive Review of the Neurological Manifestations of Celiac Disease and Its Treatment. Diseases 2022; 10:diseases10040111. [PMID: 36412605 PMCID: PMC9680226 DOI: 10.3390/diseases10040111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Celiac disease (CD) is a common chronic inflammatory disorder occurring in genetically predisposed individuals secondary to gluten ingestion. CD usually presents with gastrointestinal symptoms such as pain, bloating, flatulence, and constipation or diarrhea. However, individuals can present in a nonclassical manner with only extraintestinal symptoms. The neurological manifestations of CD include ataxia, cognitive impairment, epilepsy, headache, and neuropathy. A lifelong gluten-free diet is the current recommended treatment for CD. This review discusses the relevant neurological manifestations associated with CD and the novel therapeutics. Further research is required to get a better understanding of the underlying pathophysiology of the neurological manifestations associated with CD. Clinicians should keep CD in the differential diagnosis in individuals presenting with neurological dysfunction of unknown cause.
Collapse
|
11
|
Paolella G, Sposito S, Romanelli AM, Caputo I. Type 2 Transglutaminase in Coeliac Disease: A Key Player in Pathogenesis, Diagnosis and Therapy. Int J Mol Sci 2022; 23:ijms23147513. [PMID: 35886862 PMCID: PMC9318967 DOI: 10.3390/ijms23147513] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 transglutaminase (TG2) is the main autoantigen in coeliac disease (CD), a widespread inflammatory enteropathy caused by the ingestion of gluten-containing cereals in genetically predisposed individuals. As a consequence, serum antibodies to TG2 represent a very useful marker in CD diagnosis. However, TG2 is also an important player in CD pathogenesis, for its ability to deamidate some Gln residues of gluten peptides, which become more immunogenic in CD intestinal mucosa. Given the importance of TG2 enzymatic activities in CD, several studies have sought to discover specific and potent inhibitors that could be employed in new therapeutical approaches for CD, as alternatives to a lifelong gluten-free diet. In this review, we summarise all the aspects regarding TG2 involvement in CD, including its enzymatic reactions in pathogenesis, the role of anti-TG2 antibodies in disease management, and the exploration of recent strategies to reduce deamidation or to use transamidation to detoxify gluten.
Collapse
Affiliation(s)
- Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, SA, Italy; (S.S.); (A.M.R.)
- Correspondence: (G.P.); (I.C.)
| | - Silvia Sposito
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, SA, Italy; (S.S.); (A.M.R.)
| | | | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, SA, Italy; (S.S.); (A.M.R.)
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Salerno, 84084 Fisciano, SA, Italy
- Correspondence: (G.P.); (I.C.)
| |
Collapse
|
12
|
El-Abassi RN, Soliman M, Levy MH, England JD. Treatment and Management of Autoimmune Neuropathies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Sharawat IK, Panda PK, Bhunia NS, Dawman L. Clinical Spectrum of TGM6-Related Movement Disorders: A New Report with a Pooled Analysis of 48 Patients. J Neurosci Rural Pract 2021; 12:656-665. [PMID: 34737499 PMCID: PMC8559089 DOI: 10.1055/s-0041-1734006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background
Spinocerebellar ataxias (SCAs) are a diverse group of progressive neurodegenerative disorders. Until now, more than 20 genes have been implicated to be associated with this phenotype and
TGM6
is one of these genes, associated with spinocerebellar ataxia-35 (SCA-35). The majority of disease-causing variants in the
TGM6
gene predominantly have been reported from China and Taiwan and the association with Parkinson's disease (PD) have also been reported recently.
Methods
We report the first Indian case with SCA-35 in a 16-year-old-boy with atypical age of onset at 9 years, prominent extrapyramidal features, intellectual disability, and a novel missense mutation in the
TGM6
gene. We also reviewed and collated all previously published cases with pathogenic TGM6 variants.
Results
Including the index case, 54 cases were identified from 10 relevant articles in literature and 48 cases had adequate clinical details to be included in the pooled analysis. Around two-thirds of reported cases had SCA-35 phenotype, with cerebellar atrophy. Onset in the majority of cases was the fourth decade of life onwards. A proportion of SCA-35 cases also had spasmodic torticollis, impaired proprioception, extrapyramidal features, and myoclonic jerks. The patients with PD had often early-onset milder symptoms, slower progression, and favorable response to levodopa/carbidopa. One patient each presented with episodic ataxia and dystonic tremor of the upper limb. Most of the cases had missense mutations, without any definite hotspot or genotype–phenotype correlation.
Conclusions
TGM6 mutation should be suspected in patients with SCA like presentation, especially when it is accompanied by extrapyramidal features, spasmodic torticollis, impaired proprioception, or myoclonus.
Collapse
Affiliation(s)
- Indar Kumar Sharawat
- Department of Pediatrics, Pediatric Neurology Division, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Prateek Kumar Panda
- Department of Pediatrics, Pediatric Neurology Division, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Niladri Sekhar Bhunia
- Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Lesa Dawman
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
14
|
Schulze-Krebs A, Canneva F, Stemick J, Plank AC, Harrer J, Bates GP, Aeschlimann D, Steffan JS, von Hörsten S. Transglutaminase 6 Is Colocalized and Interacts with Mutant Huntingtin in Huntington Disease Rodent Animal Models. Int J Mol Sci 2021; 22:8914. [PMID: 34445621 PMCID: PMC8396294 DOI: 10.3390/ijms22168914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023] Open
Abstract
Mammalian transglutaminases (TGs) catalyze calcium-dependent irreversible posttranslational modifications of proteins and their enzymatic activities contribute to the pathogenesis of several human neurodegenerative diseases. Although different transglutaminases are found in many different tissues, the TG6 isoform is mostly expressed in the CNS. The present study was embarked on/undertaken to investigate expression, distribution and activity of transglutaminases in Huntington disease transgenic rodent models, with a focus on analyzing the involvement of TG6 in the age- and genotype-specific pathological features relating to disease progression in HD transgenic mice and a tgHD transgenic rat model using biochemical, histological and functional assays. Our results demonstrate the physical interaction between TG6 and (mutant) huntingtin by co-immunoprecipitation analysis and the contribution of its enzymatic activity for the total aggregate load in SH-SY5Y cells. In addition, we identify that TG6 expression and activity are especially abundant in the olfactory tubercle and piriform cortex, the regions displaying the highest amount of mHTT aggregates in transgenic rodent models of HD. Furthermore, mHTT aggregates were colocalized within TG6-positive cells. These findings point towards a role of TG6 in disease pathogenesis via mHTT aggregate formation.
Collapse
Affiliation(s)
- Anja Schulze-Krebs
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| | - Fabio Canneva
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| | - Judith Stemick
- Department of Molecular Neurology, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Anne-Christine Plank
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| | - Julia Harrer
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| | - Gillian P. Bates
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Daniel Aeschlimann
- Matrix Biology and Tissue Repair Research Unit, College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK;
| | - Joan S. Steffan
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA;
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA
| | - Stephan von Hörsten
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| |
Collapse
|
15
|
Marsili L, Sharma J, Espay AJ, Migazzi A, Abdelghany E, Hill EJ, Duque KR, Hagen MC, Stephen CD, Kovacs GG, Lang AE, Hadjivassiliou M, Basso M, Kauffman MA, Sturchio A. Neither a Novel Tau Proteinopathy nor an Expansion of a Phenotype: Reappraising Clinicopathology-Based Nosology. Int J Mol Sci 2021; 22:ijms22147292. [PMID: 34298918 PMCID: PMC8329925 DOI: 10.3390/ijms22147292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/10/2023] Open
Abstract
The gold standard for classification of neurodegenerative diseases is postmortem histopathology; however, the diagnostic odyssey of this case challenges such a clinicopathologic model. We evaluated a 60-year-old woman with a 7-year history of a progressive dystonia–ataxia syndrome with supranuclear gaze palsy, suspected to represent Niemann–Pick disease Type C. Postmortem evaluation unexpectedly demonstrated neurodegeneration with 4-repeat tau deposition in a distribution diagnostic of progressive supranuclear palsy (PSP). Whole-exome sequencing revealed a new heterozygous variant in TGM6, associated with spinocerebellar ataxia type 35 (SCA35). This novel TGM6 variant reduced transglutaminase activity in vitro, suggesting it was pathogenic. This case could be interpreted as expanding: (1) the PSP phenotype to include a spinocerebellar variant; (2) SCA35 as a tau proteinopathy; or (3) TGM6 as a novel genetic variant underlying a SCA35 phenotype with PSP pathology. None of these interpretations seem adequate. We instead hypothesize that impairment in the crosslinking of tau by the TGM6-encoded transglutaminase enzyme may compromise tau functionally and structurally, leading to its aggregation in a pattern currently classified as PSP. The lessons from this case study encourage a reassessment of our clinicopathology-based nosology.
Collapse
Affiliation(s)
- Luca Marsili
- Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45219, USA; (J.S.); (A.J.E.); (E.A.); (E.J.H.); (K.R.D.); (A.S.)
- Correspondence: ; Tel.: +1-(513)558-4050
| | - Jennifer Sharma
- Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45219, USA; (J.S.); (A.J.E.); (E.A.); (E.J.H.); (K.R.D.); (A.S.)
| | - Alberto J. Espay
- Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45219, USA; (J.S.); (A.J.E.); (E.A.); (E.J.H.); (K.R.D.); (A.S.)
| | - Alice Migazzi
- Laboratory of Transcriptional Neurobiology, Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy; (A.M.); (M.B.)
| | - Elhusseini Abdelghany
- Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45219, USA; (J.S.); (A.J.E.); (E.A.); (E.J.H.); (K.R.D.); (A.S.)
| | - Emily J. Hill
- Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45219, USA; (J.S.); (A.J.E.); (E.A.); (E.J.H.); (K.R.D.); (A.S.)
| | - Kevin R. Duque
- Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45219, USA; (J.S.); (A.J.E.); (E.A.); (E.J.H.); (K.R.D.); (A.S.)
| | - Matthew C. Hagen
- Department of Pathology, University of Cincinnati, Cincinnati, OH 45219, USA;
| | - Christopher D. Stephen
- Ataxia Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Gabor G. Kovacs
- Tanz Centre for Research in Neurodegenerative Disease (CRND), Department of Laboratory Medicine and Pathobiology, University of Toronto, 60 Leonard Ave, Krembil Discovery Tower, Toronto, ON M5T 0S8, Canada;
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON M5T 1M8, Canada
- Edmond J. Safra Program in Parkinson’s Disease, Rossy Progressive Supranuclear Palsy Program and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada;
| | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson’s Disease, Rossy Progressive Supranuclear Palsy Program and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada;
| | - Marios Hadjivassiliou
- Academic Department of Neurosciences, Royal Hallamshire Hospital, University of Sheffield, Sheffield S10 2JF, UK;
| | - Manuela Basso
- Laboratory of Transcriptional Neurobiology, Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy; (A.M.); (M.B.)
| | - Marcelo A. Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología José María Ramos Mejía, Buenos Aires C1221ADC, Argentina;
| | - Andrea Sturchio
- Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45219, USA; (J.S.); (A.J.E.); (E.A.); (E.J.H.); (K.R.D.); (A.S.)
| |
Collapse
|
16
|
Osman D, Umar S, Muhammad H, Nikfekr E, Rostami K, Ishaq S. Neurological manifestation of coeliac disease with particular emphasis on gluten ataxia and immunological injury: a review article. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2021; 14:1-7. [PMID: 33868603 PMCID: PMC8035534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/22/2020] [Indexed: 11/09/2022]
Abstract
Coeliac disease (CD) is a gluten-induced enteropathy affecting 1% of the population and has extra intestinal manifestations. One such expression involves nervous system, and CD may present as gluten ataxia (GA), peripheral neuropathy and epileptiform disorder among others. Considerable controversy exists on the exact pathophysiological mechanism of gluten leading to ataxia. It is, however, clear that in intestinal axis tissue transglutaminase 2 (tTG2) is the primary target but in the nervous system, tTG6 may be the causative antigen although its exact role is not clear. Furthermore, it has also been postulated that anti-gangliodise antibodies may play a role in the emergence of central pathology if not the key contender. Moreover, the association of neurological injury with non-coeliac gluten sensitivity (NCGS), a related but pathologically different condition implies an independent mechanism of neuronal injury by gluten in the absence of CD. This review will touch on the salient features of CD and the nervous system and will highlight current controversies in relation to gluten and GA.
Collapse
Affiliation(s)
- Dina Osman
- North Cumbria University Hospital NHSF Trust, UK
| | | | | | | | - Kamran Rostami
- Department of Gastroenterology Mid-Central District Health Board, Palmerston North, New Zealand
| | | |
Collapse
|
17
|
Chermnykh ES, Alpeeva EV, Vorotelyak EA. Transglutaminase 3: The Involvement in Epithelial Differentiation and Cancer. Cells 2020; 9:cells9091996. [PMID: 32872587 PMCID: PMC7563467 DOI: 10.3390/cells9091996] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Transglutaminases (TGMs) contribute to the formation of rigid, insoluble macromolecular complexes, which are essential for the epidermis and hair follicles to perform protective and barrier functions against the environment. During differentiation, epidermal keratinocytes undergo structural alterations being transformed into cornified cells, which constitute a highly tough outermost layer of the epidermis, the stratum corneum. Similar processes occur during the hardening of the hair follicle and the hair shaft, which is provided by the enzymatic cross-linking of the structural proteins and keratin intermediate filaments. TGM3, also known as epidermal TGM, is one of the pivotal enzymes responsible for the formation of protein polymers in the epidermis and the hair follicle. Numerous studies have shown that TGM3 is extensively involved in epidermal and hair follicle physiology and pathology. However, the roles of TGM3, its substrates, and its importance for the integument system are not fully understood. Here, we summarize the main advances that have recently been achieved in TGM3 analyses in skin and hair follicle biology and also in understanding the functional role of TGM3 in human tumor pathology as well as the reliability of its prognostic clinical usage as a cancer diagnosis biomarker. This review also focuses on human and murine hair follicle abnormalities connected with TGM3 mutations.
Collapse
|
18
|
Staffler R, Pasternack R, Hils M, Kaiser W, Möller FM. Nucleotide binding kinetics and conformational change analysis of tissue transglutaminase with switchSENSE. Anal Biochem 2020; 605:113719. [PMID: 32697952 DOI: 10.1016/j.ab.2020.113719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 04/03/2020] [Indexed: 01/06/2023]
Abstract
Function, activity, and interactions of proteins crucially depend on their three-dimensional structure and are often regulated by effector binding and environmental changes. Tissue transglutaminase (Transglutaminase 2, TG2) is a multifunctional protein, allosterically regulated by nucleotides and Ca2+ ions, which trigger opposing conformational changes. Here we introduce switchSENSE as a versatile tool for TG2 characterization and provide novel insights into protein conformation as well as analyte binding kinetics. For the first time, we succeeded in measuring the kinetic rate constants and affinities (kon, koff, KD) for guanosine nucleotides (GMP, GDP, GTP, GTPγS). Further, the conformational changes induced by GDP, Ca2+ and the covalent inhibitor Z-DON were observed by changes in TG2's hydrodynamic diameter. We confirmed the well-known compaction by guanosine nucleotides and extension by Ca2+, and provide evidence for TG2 conformations so far not described by structural analysis. Moreover, we analyze the influence of the peptidic Z-DON inhibitor and the R580A mutation on the conformational responsiveness of TG2 to its natural effectors. In summary, this work shows how the combination of structural and kinetic information obtained by switchSENSE opens new perspectives for the characterization of conformationally active proteins and their interactions with ligands, e.g. potential drug candidates.
Collapse
Affiliation(s)
- Regina Staffler
- Dynamic Biosensors GmbH, Lochhamer Str. 15, 82152, Martinsried, Germany
| | | | - Martin Hils
- Zedira GmbH, Roesslerstrasse 83, 64293, Darmstadt, Germany
| | - Wolfgang Kaiser
- Dynamic Biosensors GmbH, Lochhamer Str. 15, 82152, Martinsried, Germany
| | | |
Collapse
|
19
|
He B, Gao P, Ding YY, Chen CH, Chen G, Chen C, Kim H, Tasian SK, Hunger SP, Tan K. Diverse noncoding mutations contribute to deregulation of cis-regulatory landscape in pediatric cancers. SCIENCE ADVANCES 2020; 6:eaba3064. [PMID: 32832663 PMCID: PMC7439310 DOI: 10.1126/sciadv.aba3064] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/10/2020] [Indexed: 05/14/2023]
Abstract
Interpreting the function of noncoding mutations in cancer genomes remains a major challenge. Here, we developed a computational framework to identify putative causal noncoding mutations of all classes by joint analysis of mutation and gene expression data. We identified thousands of SNVs/small indels and structural variants as putative causal mutations in five major pediatric cancers. We experimentally validated the oncogenic role of CHD4 overexpression via enhancer hijacking in B-ALL. We observed a general exclusivity of coding and noncoding mutations affecting the same genes and pathways. We showed that integrated mutation profiles can help define novel patient subtypes with different clinical outcomes. Our study introduces a general strategy to systematically identify and characterize the full spectrum of noncoding mutations in cancers.
Collapse
Affiliation(s)
- Bing He
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Peng Gao
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yang-Yang Ding
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chia-Hui Chen
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gregory Chen
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Changya Chen
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hannah Kim
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sarah K. Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen P. Hunger
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author.
| |
Collapse
|
20
|
Tripathy D, Migazzi A, Costa F, Roncador A, Gatto P, Fusco F, Boeri L, Albani D, Juárez-Hernández JL, Musio C, Colombo L, Salmona M, Wilhelmus MMM, Drukarch B, Pennuto M, Basso M. Increased transcription of transglutaminase 1 mediates neuronal death in in vitro models of neuronal stress and Aβ1-42-mediated toxicity. Neurobiol Dis 2020; 140:104849. [PMID: 32222473 DOI: 10.1016/j.nbd.2020.104849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/01/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. At the pre-symptomatic phase of the disease, the processing of the amyloid precursor protein (APP) produces toxic peptides, called amyloid-β 1-42 (Aβ 1-42). The downstream effects of Aβ 1-42 production are not completely uncovered. Here, we report the involvement of transglutaminase 1 (TG1) in in vitro AD models of neuronal toxicity. TG1 was increased at late stages of the disease in the hippocampus of a mouse model of AD and in primary cortical neurons undergoing stress. Silencing of TGM1 gene was sufficient to prevent Aβ-mediated neuronal death. Conversely, its overexpression enhanced cell death. TGM1 upregulation was mediated at the transcriptional level by an activator protein 1 (AP1) binding site that when mutated halted TGM1 promoter activation. These results indicate that TG1 acts downstream of Aβ-toxicity, and that its stress-dependent increase makes it suitable for pharmacological intervention.
Collapse
Affiliation(s)
- Debasmita Tripathy
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy
| | - Alice Migazzi
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy
| | - Federica Costa
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy
| | - Alessandro Roncador
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy
| | - Pamela Gatto
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy
| | - Federica Fusco
- Department of Neuroscience, Laboratory of Genetics of Neurodegenerative Disorders, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Diego Albani
- Department of Neuroscience, Laboratory of Genetics of Neurodegenerative Disorders, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - J Leon Juárez-Hernández
- Institute of Biophysics, Trento Unit, National Research Council (IBF-CNR), Bruno Kessler Foundation (FBK), LabSSAH, Via alla Cascata 56/C, 38123 Trento, Italy
| | - Carlo Musio
- Institute of Biophysics, Trento Unit, National Research Council (IBF-CNR), Bruno Kessler Foundation (FBK), LabSSAH, Via alla Cascata 56/C, 38123 Trento, Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, Laboratory of Biochemistry and Protein Chemistry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Laboratory of Biochemistry and Protein Chemistry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - M M Micha Wilhelmus
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, the Netherlands
| | - Benjamin Drukarch
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, the Netherlands
| | - Maria Pennuto
- Dulbecco Telethon Institute Lab of Neurodegenerative Diseases, Centre for Integrative Biology (CIBIO), University of Trento, Italy; Department of Biomedical sciences, via Ugo Bassi 58/B, University of Padova, 35131 Padova, Italy; Padova Neuroscience Center, 35100 Padova, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy.
| |
Collapse
|
21
|
Rouvroye MD, Zis P, Van Dam AM, Rozemuller AJ, Bouma G, Hadjivassiliou M. The Neuropathology of Gluten-Related Neurological Disorders: A Systematic Review. Nutrients 2020; 12:nu12030822. [PMID: 32244870 PMCID: PMC7146117 DOI: 10.3390/nu12030822] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 01/10/2023] Open
Abstract
Gluten-related neurological disorders (GRND) represent a spectrum of neurological manifestations that are triggered by gluten. In coeliac disease, a T-cell mediated enteropathy is triggered by gluten in genetically predisposed individuals. The underlying pathological mechanism of the neurological dysfunction is not yet clear. The aim of this review is to collate existing neuropathological findings in GRND as a means of aiding the understanding of the pathophysiology. A systematic search of the Pubmed Database yielded 188 articles, of which 32 were included, containing 98 eligible cases with a description of pathological findings in GRND. In gluten ataxia, loss of Purkinje cells, atrophy, gliosis and astrocytosis were apparent, as well as diffuse lymphocytic infiltration and perivascular cuffing with lymphocytes. In patients with large-fiber neuropathy, nerve biopsies revealed axonopathy, loss of myelinated fibers and focal and perivascular infiltration by inflammatory cells. Inflammatory infiltrate was also observed in muscle in myopathy and in cerebrum of patients with encephalopathy and patients with epilepsy. Such changes were not seen in skin biopsies from patients with small fiber neuropathies. The findings from this systematic review suggest an immune mediated pathogenesis for GRND. Future research should focus on the characterization of the inflammatory cell infiltrates and identifying target epitopes.
Collapse
Affiliation(s)
- Maxine D Rouvroye
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Gastroenterology and Hepatology, AG&M research institute, 1081HZ Amsterdam, The Netherlands;
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, 1081HZ Amsterdam, The Netherlands;
- Correspondence:
| | - Panagiotis Zis
- Medical School, University of Cyprus, 2408 Nicosia, Cyprus;
| | - Anne-Marie Van Dam
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, 1081HZ Amsterdam, The Netherlands;
| | - Annemieke J.M. Rozemuller
- Amsterdam UMC, Vrije Universiteit, Department of Pathology, Amsterdam Neuroscience, 1081HZ Amsterdam, The Netherlands;
| | - Gerd Bouma
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Gastroenterology and Hepatology, AG&M research institute, 1081HZ Amsterdam, The Netherlands;
| | - Marios Hadjivassiliou
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF South Yorkshire, UK;
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The current review develops the clinical presentations of nonparaneoplastic autoimmune cerebellar ataxia (ACA) and analyzes the association with autoantibodies. RECENT FINDINGS Emerging evidence suggests that autoimmunity is involved in a significant proportion of sporadic ataxia cases. Moreover, numerous autoantibodies have recently been described in association with sporadic cerebellar ataxia, improving diagnosis and patient categorization. SUMMARY Nonparaneoplastic ACA encompasses postinfectious acute cerebellar ataxia, opsoclonus-myoclonus-ataxia syndrome, and pure cerebellar ataxia with or without autoantibodies. There is still confusion about how to diagnose and classify the patients, and retrospective data suggest that these very rare entities are in fact largely underrecognized. Numerous autoantibodies have been found associated with sporadic ataxia, improving diagnosis accuracy, and patient categorization. However, although anti-glutamate decarboxylase isotype 65 (GAD65), anti-contactin-associated protein 2 (CASPR2), and anti metabotropic glutamate receptor (mGluR1) antibodies are well recognized biomarkers, many other autoantibodies have been described in very small numbers of patients and their specificity is unknown. Efficient biomarkers for ACA are still lacking and in many cases the diagnosis has to rely on a body of converging evidence.
Collapse
|
23
|
Duarte L, Matte CR, Bizarro CV, Ayub MAZ. Transglutaminases: part I-origins, sources, and biotechnological characteristics. World J Microbiol Biotechnol 2020; 36:15. [PMID: 31897837 DOI: 10.1007/s11274-019-2791-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
Abstract
The transglutaminases form a large family of intracellular and extracellular enzymes that catalyze cross-links between protein molecules. Transglutaminases crosslinking properties are widely applied to various industrial processes, to improve the firmness, viscosity, elasticity, and water-holding capacity of products in the food and pharmaceutical industries. However, the extremely high costs of obtaining transglutaminases from animal sources have prompted scientists to search for new sources of these enzymes. Therefore, research has been focused on producing transglutaminases by microorganisms, which may present wider scope of use, based on enzyme-specific characteristics. In this review, we present an overview of the literature addressing the origins, types, reactions, and general characterizations of this important enzyme family. A second review will deal with transglutaminases applications in the area of food industry, medicine, pharmaceuticals and biomaterials, as well as applications in the textile and leather industries.
Collapse
Affiliation(s)
- Lovaine Duarte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil
| | - Carla Roberta Matte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil
| | - Cristiano Valim Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), 92A Building at TECNOPUC, 4592 Bento Gonçalves Avenue, Porto Alegre, 90650-001, Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
24
|
Hadjivassiliou M, Croall ID, Zis P, Sarrigiannis PG, Sanders DS, Aeschlimann P, Grünewald RA, Armitage PA, Connolly D, Aeschlimann D, Hoggard N. Neurologic Deficits in Patients With Newly Diagnosed Celiac Disease Are Frequent and Linked With Autoimmunity to Transglutaminase 6. Clin Gastroenterol Hepatol 2019; 17:2678-2686.e2. [PMID: 30885888 DOI: 10.1016/j.cgh.2019.03.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/19/2019] [Accepted: 03/10/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Celiac disease is an autoimmune disorder induced by ingestion of gluten that affects 1% of the population and is characterized by gastrointestinal symptoms, weight loss, and anemia. We evaluated the presence of neurologic deficits and investigated whether the presence of antibodies to Transglutaminase 6 (TG6) increases the risk of neurologic defects in patients with a new diagnosis of celiac disease. METHODS We performed a prospective cohort study at a secondary-care gastroenterology center of 100 consecutive patients who received a new diagnosis of celiac disease based on gastroscopy and duodenal biopsy. We collected data on neurologic history, and patients were evaluated in a clinical examination along with magnetic resonance imaging of the brain, magnetic resonance (MR) spectroscopy of the cerebellum, and measurements of antibodies against TG6 in serum samples. The first 52 patients recruited underwent repeat MR spectroscopy at 1 year after a gluten-free diet (GFD). The primary aim was to establish if detection of antibodies against TG6 can be used to identify patients with celiac disease and neurologic dysfunction. RESULTS Gait instability was reported in 24% of the patients, persisting sensory symptoms in 12%, and frequent headaches in 42%. Gait ataxia was found in 29% of patients, nystagmus in 11%, and distal sensory loss in 10%. Sixty percent of patients had abnormal results from magnetic resonance imaging, 47% had abnormal results from MR spectroscopy of the cerebellum, and 25% had brain white matter lesions beyond that expected for their age group. Antibodies against TG6 were detected in serum samples from 40% of patients-these patients had significant atrophy of subcortical brain regions compared with patients without TG6 autoantibodies. In patients with abnormal results from MR spectroscopy of the cerebellum, those on the GFD had improvements detected in the repeat MR spectroscopy 1 year later. CONCLUSIONS In a prospective cohort study of patients with a new diagnosis of celiac disease at a gastroenterology clinic, neurologic deficits were common and 40% had circulating antibodies against TG6. We observed a significant reduction in volume of specific brain regions in patients with TG6 autoantibodies, providing evidence for a link between autoimmunity to TG6 and brain atrophy in patients with celiac disease. There is a need for early diagnosis, increased awareness of the neurologic manifestations among clinicians, and reinforcement of adherence to a strict GFD by patients to avoid permanent neurologic disability.
Collapse
Affiliation(s)
- Marios Hadjivassiliou
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom.
| | - Iain D Croall
- Department of Neuroradiology, Sheffield Teaching Hospitals National Health Service Trust, Sheffield, United Kingdom
| | - Panagiotis Zis
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - Ptolemaios G Sarrigiannis
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - David S Sanders
- Department of Gastroenterology, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - Pascale Aeschlimann
- Matrix Biology and Tissue Repair Research Unit, College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Richard A Grünewald
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - Paul A Armitage
- Department of Neuroradiology, Sheffield Teaching Hospitals National Health Service Trust, Sheffield, United Kingdom
| | - Daniel Connolly
- Department of Neuroradiology, Sheffield Teaching Hospitals National Health Service Trust, Sheffield, United Kingdom
| | - Daniel Aeschlimann
- Matrix Biology and Tissue Repair Research Unit, College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Nigel Hoggard
- Department of Neuroradiology, Sheffield Teaching Hospitals National Health Service Trust, Sheffield, United Kingdom
| |
Collapse
|
25
|
Somatic LINE-1 retrotransposition in cortical neurons and non-brain tissues of Rett patients and healthy individuals. PLoS Genet 2019; 15:e1008043. [PMID: 30973874 PMCID: PMC6478352 DOI: 10.1371/journal.pgen.1008043] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 04/23/2019] [Accepted: 02/21/2019] [Indexed: 11/19/2022] Open
Abstract
Mounting evidence supports that LINE-1 (L1) retrotransposition can occur postzygotically in healthy and diseased human tissues, contributing to genomic mosaicism in the brain and other somatic tissues of an individual. However, the genomic distribution of somatic human-specific LINE-1 (L1Hs) insertions and their potential impact on carrier cells remain unclear. Here, using a PCR-based targeted bulk sequencing approach, we profiled 9,181 somatic insertions from 20 postmortem tissues from five Rett patients and their matched healthy controls. We identified and validated somatic L1Hs insertions in both cortical neurons and non-brain tissues. In Rett patients, somatic insertions were significantly depleted in exons—mainly contributed by long genes—than healthy controls, implying that cells carrying MECP2 mutations might be defenseless against a second exonic L1Hs insertion. We observed a significant increase of somatic L1Hs insertions in the brain compared with non-brain tissues from the same individual. Compared to germline insertions, somatic insertions were less sense-depleted to transcripts, indicating that they underwent weaker selective pressure on the orientation of insertion. Our observations demonstrate that somatic L1Hs insertions contribute to genomic diversity and MeCP2 dysfunction alters their genomic patterns in Rett patients. Human-specific LINE-1 (L1Hs) is the most active autonomous retrotransposon family in the human genome. Mounting evidence supports that L1Hs retrotransposition occurs postzygotically in the human brain cells, contributing to neuronal genomic diversity, but the extent of L1Hs-driven mosaicism in the brain is debated. In this study, we profiled genome-wide L1Hs insertions among 20 postmortem tissues from Rett patients and matched controls. We identified and validated somatic L1Hs insertions in both cortical neurons and non-brain tissues, with a higher jumping activity in the brain. We further found that MeCP2 dysfunction might alter the genomic pattern of somatic L1Hs in Rett patients.
Collapse
|
26
|
Zhou Y, Zang Y, Yang Y, Xiang J, Chen Z. Candidate genes involved in metastasis of colon cancer identified by integrated analysis. Cancer Med 2019; 8:2338-2347. [PMID: 30884206 PMCID: PMC6536975 DOI: 10.1002/cam4.2071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Colon cancer is one of the most malignant cancers worldwide. Nearly 20% of all colon cancer patients are diagnosed at stage IV (metastasis). However, further study of colon cancer is difficult due to a lack of understanding of its pathogenesis. In this study, we acquired high–throughput sequence data from TCGA datasets and performed integrated bioinformatic analysis including differential gene expression analysis, gene ontology and KEGG pathways analysis, protein–protein analysis, survival analysis, and multivariate Cox proportional hazards regression analysis in order to identify a panel of key candidate genes involved in the metastasis of colon cancer. We then constructed a prognostic signature based on the expression of REG1B, TGM6, NTF4, PNMA5, and HOXC13 which could provide significant prognostic value for colon cancer.
Collapse
Affiliation(s)
- Yiming Zhou
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwen Zang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Yang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianbin Xiang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zongyou Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Vojdani A, Vojdani E. Reaction of antibodies to Campylobacter jejuni and cytolethal distending toxin B with tissues and food antigens. World J Gastroenterol 2019; 25:1050-1066. [PMID: 30862994 PMCID: PMC6406185 DOI: 10.3748/wjg.v25.i9.1050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/16/2019] [Accepted: 01/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The bacteria Campylobacter jejuni (C. jejuni) is commonly associated with Guillane-Barré syndrome (GBS) and irritable bowel syndrome (IBS), but studies have also linked it with Miller Fisher syndrome, reactive arthritis and other disorders, some of which are autoimmune. It is possible that C. jejuni and its toxins may be cross-reactive with some human tissues and food antigens, potentially leading to autoimmune responses.
AIM To measure the immune reactivity of C. jejuni and C. jejuni cytolethal distending toxin (Cdt) antibodies with tissue and food antigens to examine their role in autoimmunities.
METHODS Using enzyme-linked immunosorbent assay (ELISA) methodology, specific antibodies made against C. jejuni and C. jejuni Cdt were applied to a variety of microwell plates coated with 45 tissues and 180 food antigens. The resulting immunoreactivities were compared to reactions with control wells coated with human serum albumin (HSA) which were used as negative controls and with wells coated with C. jejuni lysate or C. jejuni Cdt which served as positive controls.
RESULTS At 3 SD above the mean of control wells coated with HSA or 0.41 OD, the mouse monoclonal antibody made against C. jejuni showed moderate to high reactions with zonulin, somatotropin, acetylcholine receptor, β-amyloid and presenilin. This immune reaction was low with an additional 25 tissue antigens including asialoganglioside, and the same antibody did not react at all with another 15 tissue antigens. Examining the reaction between C. jejuni antibody and 180 food antigens, we found insignificant reactions with 163 foods but low to high immune reactions with 17 food antigens. Similarly, we examined the reaction of C. jejuni Cdt with the same tissues and food antigens. The strongest reactions were observed with zonulin, intrinsic factor and somatotropin. The reaction was moderate with 9 different tissue antigens including thyroid peroxidase, and reaction was low with another 10 different antigens, including neuronal antigens. The reaction of C. jejuni Cdt antibody with an additional 23 tissue antigens was insignificant. Regarding the reaction of C. jejuni Cdt antibody with different food antigens, 160 out of 180 foods showed insignificant reactions, while 20 foods showed reactions ranging from low to high.
CONCLUSION Our findings indicate that C. jejuni and its Cdt may play a role in inflammation and autoimmunities beyond the gut.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab., Inc., Los Angeles, CA 90035, United States
- Cyrex Labs, LLC., Phoenix, AZ 85034, United States
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92354, United States
| | - Elroy Vojdani
- Regenera Medical, Los Angeles, CA 90025, United States
| |
Collapse
|
28
|
Nardecchia S, Auricchio R, Discepolo V, Troncone R. Extra-Intestinal Manifestations of Coeliac Disease in Children: Clinical Features and Mechanisms. Front Pediatr 2019; 7:56. [PMID: 30891436 PMCID: PMC6413622 DOI: 10.3389/fped.2019.00056] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/13/2019] [Indexed: 12/11/2022] Open
Abstract
Celiac disease (CD) is a systemic autoimmune disease due to a dysregulated mucosal immune response to gluten and related prolamines in genetically predisposed individuals. It is a common disorder affecting ~1% of the general population, its incidence is steadily increasing. Changes in the clinical presentation have become evident since the 80s with the recognition of extra-intestinal symptoms like short stature, iron deficiency anemia, altered bone metabolism, elevation of liver enzymes, neurological problems. Recent studies have shown that the overall prevalence of extra-intestinal manifestations is similar between pediatric and adult population; however, the prevalence of specific manifestations and rate of improvement differ in the two age groups. For instance, clinical response in children occurs much faster than in adults. Moreover, an early diagnosis is decisive for a better prognosis. The pathogenesis of extra-intestinal manifestations has not been fully elucidated yet. Two main mechanisms have been advanced: the first related to the malabsorption consequent to mucosal damage, the latter associated with a sustained autoimmune response. Importantly, since extra-intestinal manifestations dominate the clinical presentation of over half of patients, a careful case-finding strategy, together with a more liberal use of serological tools, is crucial to improve the detection rate of CD.
Collapse
Affiliation(s)
- Silvia Nardecchia
- Department of Medical Translational Sciences and European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
| | - Renata Auricchio
- Department of Medical Translational Sciences and European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
| | | | - Riccardo Troncone
- Department of Medical Translational Sciences and European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
| |
Collapse
|
29
|
Mitoma H, Manto M, Hampe CS. Immune-mediated Cerebellar Ataxias: Practical Guidelines and Therapeutic Challenges. Curr Neuropharmacol 2019; 17:33-58. [PMID: 30221603 PMCID: PMC6341499 DOI: 10.2174/1570159x16666180917105033] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/06/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated cerebellar ataxias (IMCAs), a clinical entity reported for the first time in the 1980s, include gluten ataxia (GA), paraneoplastic cerebellar degenerations (PCDs), antiglutamate decarboxylase 65 (GAD) antibody-associated cerebellar ataxia, post-infectious cerebellitis, and opsoclonus myoclonus syndrome (OMS). These IMCAs share common features with regard to therapeutic approaches. When certain factors trigger immune processes, elimination of the antigen( s) becomes a priority: e.g., gluten-free diet in GA and surgical excision of the primary tumor in PCDs. Furthermore, various immunotherapeutic modalities (e.g., steroids, immunoglobulins, plasmapheresis, immunosuppressants, rituximab) should be considered alone or in combination to prevent the progression of the IMCAs. There is no evidence of significant differences in terms of response and prognosis among the various types of immunotherapies. Treatment introduced at an early stage, when CAs or cerebellar atrophy is mild, is associated with better prognosis. Preservation of the "cerebellar reserve" is necessary for the improvement of CAs and resilience of the cerebellar networks. In this regard, we emphasize the therapeutic principle of "Time is Cerebellum" in IMCAs.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Address correspondence to this author at the Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan;, E-mail:
| | | | | |
Collapse
|
30
|
Biocatalysis by Transglutaminases: A Review of Biotechnological Applications. MICROMACHINES 2018; 9:mi9110562. [PMID: 30715061 PMCID: PMC6265872 DOI: 10.3390/mi9110562] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 02/08/2023]
Abstract
The biocatalytic activity of transglutaminases (TGs) leads to the synthesis of new covalent isopeptide bonds (crosslinks) between peptide-bound glutamine and lysine residues, but also the transamidation of primary amines to glutamine residues, which ultimately can result into protein polymerisation. Operating with a cysteine/histidine/aspartic acid (Cys/His/Asp) catalytic triad, TGs induce the post-translational modification of proteins at both physiological and pathological conditions (e.g., accumulation of matrices in tissue fibrosis). Because of the disparate biotechnological applications, this large family of protein-remodelling enzymes have stimulated an escalation of interest. In the past 50 years, both mammalian and microbial TGs polymerising activity has been exploited in the food industry for the improvement of aliments' quality, texture, and nutritive value, other than to enhance the food appearance and increased marketability. At the same time, the ability of TGs to crosslink extracellular matrix proteins, like collagen, as well as synthetic biopolymers, has led to multiple applications in biomedicine, such as the production of biocompatible scaffolds and hydrogels for tissue engineering and drug delivery, or DNA-protein bio-conjugation and antibody functionalisation. Here, we summarise the most recent advances in the field, focusing on the utilisation of TGs-mediated protein multimerisation in biotechnological and bioengineering applications.
Collapse
|
31
|
Yu XB, Uhde M, Green PH, Alaedini A. Autoantibodies in the Extraintestinal Manifestations of Celiac Disease. Nutrients 2018; 10:E1123. [PMID: 30127251 PMCID: PMC6115844 DOI: 10.3390/nu10081123] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023] Open
Abstract
Increased antibody reactivity towards self-antigens is often indicative of a disruption of homeostatic immune pathways in the body. In celiac disease, an autoimmune enteropathy triggered by the ingestion of gluten from wheat and related cereals in genetically predisposed individuals, autoantibody reactivity to transglutaminase 2 is reflective of the pathogenic role of the enzyme in driving the associated inflammatory immune response. Autoantibody reactivity to transglutaminase 2 closely corresponds with the gluten intake and clinical presentation in affected patients, serving as a highly useful biomarker in the diagnosis of celiac disease. In addition to gastrointestinal symptoms, celiac disease is associated with a number of extraintestinal manifestations, including those affecting skin, bones, and the nervous system. Investigations of these manifestations in celiac disease have identified a number of associated immune abnormalities, including B cell reactivity towards various autoantigens, such as transglutaminase 3, transglutaminase 6, synapsin I, gangliosides, and collagen. Clinical relevance, pathogenic potential, mechanism of development, and diagnostic and prognostic value of the various identified autoantibody reactivities continue to be subjects of investigation and will be reviewed here.
Collapse
Affiliation(s)
- Xuechen B Yu
- Department of Medicine, Columbia University Medical Center, 1130 Saint Nicholas Ave., New York, NY 10032, USA.
- Celiac Disease Center, Columbia University, New York, NY 10032, USA.
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA.
| | - Melanie Uhde
- Department of Medicine, Columbia University Medical Center, 1130 Saint Nicholas Ave., New York, NY 10032, USA.
- Celiac Disease Center, Columbia University, New York, NY 10032, USA.
| | - Peter H Green
- Department of Medicine, Columbia University Medical Center, 1130 Saint Nicholas Ave., New York, NY 10032, USA.
- Celiac Disease Center, Columbia University, New York, NY 10032, USA.
| | - Armin Alaedini
- Department of Medicine, Columbia University Medical Center, 1130 Saint Nicholas Ave., New York, NY 10032, USA.
- Celiac Disease Center, Columbia University, New York, NY 10032, USA.
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
32
|
Vojdani A, Vojdani E. Amyloid-Beta 1-42 Cross-Reactive Antibody Prevalent in Human Sera May Contribute to Intraneuronal Deposition of A-Beta-P-42. Int J Alzheimers Dis 2018; 2018:1672568. [PMID: 30034864 PMCID: PMC6032666 DOI: 10.1155/2018/1672568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/13/2018] [Accepted: 04/29/2018] [Indexed: 12/11/2022] Open
Abstract
Antibodies against many neural antigens are detected in the sera of both patients with Alzheimer's disease (AD) and some healthy individuals. Blood-brain barrier dysfunction could make it possible for brain-reactive autoantibodies to reach the brain, where they can react with amyloid ß peptide (AßP). The origin of these autoreactive antibodies in the blood is unclear. The goals of this study were as follows: (1) to examine the immune reactivity of anti-AßP-42 with 22 neuronal and other associated antigens, some of which are involved in the pathophysiology of AD; (2) to classify antibodies to these 22 different antigens into those that cross-react with AßP-42 and those that do not; (3) to determine whether these antibodies react with BBB proteins, nerve growth factors, and enteric neuronal antigens. Using monoclonal AßP-42 antibody and ELISA methodology, we found that the antibody was highly reactive with Aß protein, tau protein, presenilin, rabaptin-5, β-NGF, BDNF, mTG, and enteric nerve. The same antibody produced equivocal to moderate reactions with glutamate-R, S100B, AQP4, GFAP, MBP, α-synuclein, tTG-2, and tTG-3, and not with the rest. These antibodies were also measured in blood samples from 47 AD patients and 47 controls. IgG antibodies were found to be elevated against AßP-42 and many other antigens in a significant percentage of controls. Overall, the mean OD values were significantly higher against 9/23 tested antigens (p <0.001) in the samples with AD. We were indeed able to classify the detected neuronal antibodies into those that cross-react with AßP-42 and those that do not. Our main finding is that although these antibodies may be harmless in a subgroup of controls, in individuals with compromised BBBs these antibodies that cross-react with AßP-42 can reach the brain, where their cross-reactivity with AßP-42 may contribute to the onset and progression of AD, and perhaps other neurodegenerative disorders.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab., Inc., 822 S. Robertson Blvd., Ste. 312, Los Angeles, CA 90035, USA
- Department of Preventive Medicine, Loma Linda University School of Medicine, 24785 Stewart St., Evans Hall, Ste. 111, Loma Linda, CA 92354, USA
| | - Elroy Vojdani
- Regenera Medical, 11860 Wilshire Blvd., Ste. 301, Los Angeles, CA 90025, USA
| |
Collapse
|
33
|
Kárpáti S, Sárdy M, Németh K, Mayer B, Smyth N, Paulsson M, Traupe H. Transglutaminases in autoimmune and inherited skin diseases: The phenomena of epitope spreading and functional compensation. Exp Dermatol 2018; 27:807-814. [PMID: 28940785 DOI: 10.1111/exd.13449] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2017] [Indexed: 02/06/2023]
Abstract
Transglutaminases (TGs) are structurally and functionally related enzymes that modify the post-translational structure and activity of proteins or peptides, and thus are able to turn on or switch off their function. Depending on location and activities, TGs are able to modify the signalling, the function and the fate of cells and extracellular connective tissues. Besides mouse models, human diseases enable us to appreciate the function of various TGs. In this study, skin diseases induced by genetic damages or autoimmune targeting of these enzymes will be discussed. TG1, TG3 and TG5 contribute to the cutaneous barrier and thus to the integrity and function of epidermis. TGM1 mutations related to autosomal recessive ichthyosis subtypes, TGM5 mutations to a mild epidermolysis bullosa phenotype and as novelty TGM3 mutation to uncombable hair syndrome will be discussed. Autoimmunity to TG2, TG3 and TG6 may develop in a few of those genetically determined individuals who lost tolerance to gluten, and manifest as coeliac disease, dermatitis herpetiformis or gluten-dependent neurological symptoms, respectively. These gluten responder diseases commonly occur in combination. In autoimmune diseases, the epitope spreading is remarkable, while in some inherited pathologies, a unique compensation of the lost enzyme function is noted.
Collapse
Affiliation(s)
- Sarolta Kárpáti
- Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Miklós Sárdy
- Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Krisztián Németh
- Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Balázs Mayer
- Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Neil Smyth
- Biological Sciences, University of Southampton, Southampton, UK
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Heiko Traupe
- Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
34
|
Tripathy D, Vignoli B, Ramesh N, Polanco MJ, Coutelier M, Stephen CD, Canossa M, Monin ML, Aeschlimann P, Turberville S, Aeschlimann D, Schmahmann JD, Hadjivassiliou M, Durr A, Pandey UB, Pennuto M, Basso M. Mutations in TGM6 induce the unfolded protein response in SCA35. Hum Mol Genet 2018; 26:3749-3762. [PMID: 28934387 DOI: 10.1093/hmg/ddx259] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/30/2017] [Indexed: 12/23/2022] Open
Abstract
Spinocerebellar ataxia type 35 (SCA35) is a rare autosomal-dominant neurodegenerative disease caused by mutations in the TGM6 gene, which codes for transglutaminase 6 (TG6). Mutations in TG6 induce cerebellar degeneration by an unknown mechanism. We identified seven patients bearing new mutations in TGM6. To gain insights into the molecular basis of mutant TG6-induced neurotoxicity, we analyzed all the seven new TG6 mutants and the five TG6 mutants previously linked to SCA35. We found that the wild-type (TG6-WT) protein mainly localized to the nucleus and perinuclear area, whereas five TG6 mutations showed nuclear depletion, increased accumulation in the perinuclear area, insolubility and loss of enzymatic function. Aberrant accumulation of these TG6 mutants in the perinuclear area led to activation of the unfolded protein response (UPR), suggesting that specific TG6 mutants elicit an endoplasmic reticulum stress response. Mutations associated with activation of the UPR caused death of primary neurons and reduced the survival of novel Drosophila melanogaster models of SCA35. These results indicate that mutations differently impacting on TG6 function cause neuronal dysfunction and death through diverse mechanisms and highlight the UPR as a potential therapeutic target for patient treatment.
Collapse
Affiliation(s)
- Debasmita Tripathy
- Laboratory of Transcriptional Neurobiology, Centre for Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
| | - Beatrice Vignoli
- Laboratory of Neural Stem Cells and Neurogenesis, Centre for Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
| | - Nandini Ramesh
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Jose Polanco
- Dulbecco Telethon Institute Lab of Neurodegenerative Diseases, Centre for Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
| | - Marie Coutelier
- INSERM U 1127, Centre National de la Recherche Scientifique UMR 7225, UMRS 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, Institut du Cerveau et de la Moelle Epinière, 75013 Paris, France
| | - Christopher D Stephen
- Ataxia Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Canossa
- Laboratory of Neural Stem Cells and Neurogenesis, Centre for Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
| | - Marie-Lorraine Monin
- INSERM U 1127, Centre National de la Recherche Scientifique UMR 7225, UMRS 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, Institut du Cerveau et de la Moelle Epinière, 75013 Paris, France
| | - Pascale Aeschlimann
- Matrix Biology & Tissue Repair Research Unit, College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff, UK
| | - Shannon Turberville
- Matrix Biology & Tissue Repair Research Unit, College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff, UK
| | - Daniel Aeschlimann
- Matrix Biology & Tissue Repair Research Unit, College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff, UK
| | - Jeremy D Schmahmann
- Ataxia Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marios Hadjivassiliou
- Academic Department of Neurosciences, Royal Hallamshire Hospital, University of Sheffield, Sheffield, UK
| | - Alexandra Durr
- INSERM U 1127, Centre National de la Recherche Scientifique UMR 7225, UMRS 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, Institut du Cerveau et de la Moelle Epinière, 75013 Paris, France
| | - Udai B Pandey
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Maria Pennuto
- Dulbecco Telethon Institute Lab of Neurodegenerative Diseases, Centre for Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
| | - Manuela Basso
- Laboratory of Transcriptional Neurobiology, Centre for Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
| |
Collapse
|
35
|
Zis P, Rao DG, Sarrigiannis PG, Aeschlimann P, Aeschlimann DP, Sanders D, Grünewald RA, Hadjivassiliou M. Transglutaminase 6 antibodies in gluten neuropathy. Dig Liver Dis 2017; 49:1196-1200. [PMID: 28886934 DOI: 10.1016/j.dld.2017.08.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND TG6 antibodies have been shown to be a marker of gluten ataxia but their presence in the context of other neurological manifestations of gluten sensitivity has not been explored. We investigated the presence of TG6 antibodies in gluten neuropathy (GN), defined as as an otherwise idiopathic peripheral neuropathy associated with serological markers of gluten sensitivity (one or more of antigliadin IgG and/or IgA, endomysial and transglutaminase-2 antibodies). METHODS This was a cross-sectional study conducted at the Sheffield Institute of Gluten Related Diseases, Royal Hallamshire Hospital, Sheffield, UK. Blood samples were collected whilst the patients were on a gluten containing diet. Duodenal biopsies were performed to establish the presence of enteropathy. RESULTS Twenty-eight patients were recruited (mean age 62.5±13.7 years). Fifteen (53.6%) had sensory ganglionopathy, 12 (42.9%) had symmetrical axonal neuropathy and 1 had mononeuritis multiplex. The prevalence of TG6 antibodies was 14 of 28 (50%) compared to 4% in the healthy population. TG6 antibodies were found in 5/15 (33.3%) patients with sensory ganglionopathy and in 8/12 (66.7%) with symmetrical axonal neuropathy. Twenty-four patients underwent duodenal biopsy 11 (45.8%) of which had enteropathy. The prevalence of TG6 was not significantly different when comparing those with or without enteropathy. CONCLUSIONS We found a high prevalence of antibodies against TG6 in patients with GN. This suggests that TG6 involvement is not confined to the central nervous system. The role of transglutaminase 6 in peripheral nerve function remains to be determined but TG6 antibodies may be helpful in the diagnosis of GN.
Collapse
Affiliation(s)
- Panagiotis Zis
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, United Kingdom; University of Sheffield, United Kingdom.
| | - Dasappaiah Ganesh Rao
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, United Kingdom.
| | | | | | | | - David Sanders
- University of Sheffield, United Kingdom; Academic Unit of Gastroenterology, Sheffield Teaching Hospitals NHS Foundation Trust, United Kingdom.
| | - Richard A Grünewald
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, United Kingdom.
| | - Marios Hadjivassiliou
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, United Kingdom; University of Sheffield, United Kingdom.
| |
Collapse
|
36
|
Mitoma H, Manto M, Hampe CS. Immune-mediated cerebellar ataxias: from bench to bedside. CEREBELLUM & ATAXIAS 2017; 4:16. [PMID: 28944066 PMCID: PMC5609024 DOI: 10.1186/s40673-017-0073-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/07/2017] [Indexed: 02/08/2023]
Abstract
The cerebellum is a vulnerable target of autoimmunity in the CNS. The category of immune-mediated cerebellar ataxias (IMCAs) was recently established, and includes in particular paraneoplastic cerebellar degenerations (PCDs), gluten ataxia (GA) and anti-GAD65 antibody (Ab) associated-CA, all characterized by the presence of autoantibodies. The significance of onconeuronal autoantibodies remains uncertain in some cases. The pathogenic role of anti-GAD65Ab has been established both in vitro and in vivo, but a consensus has not been reached yet. Recent studies of anti-GAD65 Ab-associated CA have clarified that (1) autoantibodies are generally polyclonal and elicit pathogenic effects related to epitope specificity, and (2) the clinical course can be divided into two phases: a phase of functional disorder followed by cell death. These features provide the rationale for prompt diagnosis and therapeutic strategies. The concept “Time is brain” has been completely underestimated in the field of immune ataxias. We now put forward the concept “Time is cerebellum” to underline the importance of very early therapeutic strategies in order to prevent or stop the loss of neurons and synapses. The diagnosis of IMCAs should depend not only on Ab testing, but rather on a rapid and comprehensive assessment of the clinical/immune profile. Treatment should be applied during the period of preserved cerebellar reserve, and should encompass early removal of the conditions (such as remote primary tumors) or diseases that trigger the autoimmunity, followed by the combinations of various immunotherapies.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Tokyo Medical University, Medical Education Promotion Center, 6-7-1 Nishi-Shinjyuku, Shinjyuku-ku, Tokyo, 160-0023 Japan
| | - Mario Manto
- Unité d'Etude du Mouvement (UEM), FNRS, ULB-Erasme, 1070 Bruxelles, Belgium.,Service des Neurosciences, University of Mons, 7000 Mons, Belgium
| | | |
Collapse
|
37
|
André W, Nondier I, Valensi M, Guillonneau F, Federici C, Hoffner G, Djian P. Identification of brain substrates of transglutaminase by functional proteomics supports its role in neurodegenerative diseases. Neurobiol Dis 2017; 101:40-58. [DOI: 10.1016/j.nbd.2017.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
|
38
|
|
39
|
Gaetano Gatta N, Romano R, Fioretti E, Gentile V. Transglutaminase inhibition: possible therapeutic mechanisms to protect cells from death in neurological disorders. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.4.399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Cristofanilli M, Gratch D, Pagano B, McDermott K, Huang J, Jian J, Bates D, Sadiq SA. Transglutaminase-6 is an autoantigen in progressive multiple sclerosis and is upregulated in reactive astrocytes. Mult Scler 2016; 23:1707-1715. [PMID: 28273770 DOI: 10.1177/1352458516684022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Transglutaminase-6 (TGM6), a member of the transglutaminase enzyme family, is found predominantly in central nervous system (CNS) neurons under physiological conditions. It has been proposed as an autoimmune target in cerebral palsy, gluten-sensitive cerebellar ataxia, and schizophrenia. OBJECTIVE To investigate TGM6 involvement in multiple sclerosis (MS). METHODS Antibody levels against TGM6 (TGM6-IgG) were measured in the cerebrospinal fluid (CSF) of 62 primary progressive multiple sclerosis (PPMS), 85 secondary progressive multiple sclerosis (SPMS), and 50 relapsing-remitting multiple sclerosis (RRMS) patients and 51 controls. TGM6 protein expression was analyzed in MS brain autopsy, murine experimental autoimmune encephalomyelitis (EAE), and cultured astrocytes. RESULTS CSF levels of TGM6-IgG were significantly higher in PPMS and SPMS compared to RRMS and controls. Notably, patients with clinically active disease had the highest TGM6-IgG levels. Additionally, brain pathology revealed strong TGM6 expression by reactive astrocytes within MS plaques. In EAE, TGM6 expression in the spinal cord correlated with disease course and localized in reactive astrocytes infiltrating white matter lesions. Finally, knocking down TGM6 expression in cultured reactive astrocytes reduced their glial fibrillary acidic protein (GFAP) expression. CONCLUSION TGM6-IgG may be a candidate CSF biomarker to predict and monitor disease activity in progressive MS patients. Furthermore, TGM6 expression by reactive astrocytes within both human and mouse lesions suggests its involvement in the mechanisms of glial scar formation.
Collapse
Affiliation(s)
| | - Daniel Gratch
- Tisch MS Research Center of New York, New York, NY, USA
| | | | | | - Jessie Huang
- Tisch MS Research Center of New York, New York, NY, USA
| | - Jeffrey Jian
- Tisch MS Research Center of New York, New York, NY, USA
| | - Deneb Bates
- International Multiple Sclerosis Management Practice, New York, NY, USA
| | - Saud A Sadiq
- Tisch MS Research Center of New York, New York, NY, USA
| |
Collapse
|
41
|
Homann OR, Misura K, Lamas E, Sandrock RW, Nelson P, McDonough SI, DeLisi LE. Whole-genome sequencing in multiplex families with psychoses reveals mutations in the SHANK2 and SMARCA1 genes segregating with illness. Mol Psychiatry 2016; 21:1690-1695. [PMID: 27001614 PMCID: PMC5033653 DOI: 10.1038/mp.2016.24] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 12/30/2022]
Abstract
A current focus in psychiatric genetics is detection of multiple common risk alleles through very large genome-wide association study analyses. Yet families do exist, albeit rare, that have multiple affected members who are presumed to have a similar inherited cause to their illnesses. We hypothesized that within some of these families there may be rare highly penetrant mutations that segregate with illness. In this exploratory study, the genomes of 90 individuals across nine families were sequenced. Each family included a minimum of three available relatives affected with a psychotic illness and three available unaffected relatives. Twenty-six variants were identified that are private to a family, alter protein sequence, and are transmitted to all sequenced affected individuals within the family. In one family, seven siblings with schizophrenia spectrum disorders each carry a novel private missense variant within the SHANK2 gene. This variant lies within the consensus SH3 protein-binding motif by which SHANK2 may interact with post-synaptic glutamate receptors. In another family, four affected siblings and their unaffected mother each carry a novel private missense variant in the SMARCA1 gene on the X chromosome. Both variants represent candidates that may be causal for psychotic disorders when considered in the context of their transmission pattern and known gene and disease biology.
Collapse
Affiliation(s)
| | | | | | | | - Paul Nelson
- The BVARI Foundation, VA Boston Healthcare System
| | | | - Lynn E DeLisi
- The BVARI Foundation, VA Boston Healthcare System, VA Boston Healthcare System, Boston and Brockton, Ma, Department of Psychiatry, Harvard Medical School,Corresponding Author Address: Building 2, Rm 204, 940 Belmont Avenue, Brockton, Massachusetts, 02301 USA, Phone: 774-826-3155;
| |
Collapse
|
42
|
Iismaa SE. The prostate-specific protein, transglutaminase 4 (TG4), is an autoantigen associated with male subfertility. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:S35. [PMID: 27868003 DOI: 10.21037/atm.2016.10.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Siiri E Iismaa
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; ; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
43
|
Gaetano Gatta N, Cammarota G, Gentile V. Possible roles of transglutaminases in molecular mechanisms responsible for human neurodegenerative diseases. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.4.529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Schulze-Krebs A, Canneva F, Schnepf R, Dobner J, Dieterich W, von Hörsten S. In situ enzymatic activity of transglutaminase isoforms on brain tissue sections of rodents: A new approach to monitor differences in post-translational protein modifications during neurodegeneration. Brain Res 2015; 1631:22-33. [PMID: 26616340 DOI: 10.1016/j.brainres.2015.11.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 11/04/2015] [Accepted: 11/13/2015] [Indexed: 11/29/2022]
Abstract
Mammalian transglutaminases (TGs) catalyze the irreversible post-translational modifications of proteins, the most prominent of which is the calcium-dependent formation of covalent acyl transfers between the γ-carboxamide group of glutamine and the ε-amino-group of lysine (GGEL-linkage). In the central nervous system, at least four TG isoforms are present and some of them are differentially expressed under pathological conditions in human patients. However, the precise TG-isoform-dependent enzymatic activities in the brain as well as their anatomical distribution are unknown. Specificity of the used biotinylated peptides was analyzed using an in vitro assay. Isoform-specific TG activity was evaluated in in vitro and in situ studies, using brain extracts and native brain tissue obtained from rodents. Our method allowed us to reveal in vitro and in situ TG-isoform-dependent enzymatic activity in brain extracts and tissue of rats and mice, with a specific focus on TG6. In situ activity of this isoform varied between BACHD mice in comparison to their wt controls. TG isozyme-specific activity can be detected by isoform-specific biotinylated peptides in brain tissue sections of rodents to reveal differences in the anatomical and/or subcellular distribution of TG activity. Our findings yield the basis for a broader application of this method for the screening of pathological expression and activity of TGs in a variety of animal models of human diseases, as in the case of neurodegenerative conditions such as Huntington׳s, Parkinson׳s and Alzheimer׳s, where protein modification is involved as a key mechanism of disease progression.
Collapse
Affiliation(s)
- Anja Schulze-Krebs
- Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| | - Fabio Canneva
- Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Rebecca Schnepf
- Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Julia Dobner
- Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Walburga Dieterich
- Department of Medicine 1, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Stephan von Hörsten
- Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
45
|
Adamczyk M, Griffiths R, Dewitt S, Knäuper V, Aeschlimann D. P2X7 receptor activation regulates rapid unconventional export of transglutaminase-2. J Cell Sci 2015; 128:4615-28. [PMID: 26542019 PMCID: PMC4696497 DOI: 10.1242/jcs.175968] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/29/2015] [Indexed: 12/24/2022] Open
Abstract
Transglutaminases (denoted TG or TGM) are externalized from cells via an unknown unconventional secretory pathway. Here, we show for the first time that purinergic signaling regulates active secretion of TG2 (also known as TGM2), an enzyme with a pivotal role in stabilizing extracellular matrices and modulating cell–matrix interactions in tissue repair. Extracellular ATP promotes TG2 secretion by macrophages, and this can be blocked by a selective antagonist against the purinergic receptor P2X7 (P2X7R, also known as P2RX7). Introduction of functional P2X7R into HEK293 cells is sufficient to confer rapid, regulated TG2 export. By employing pharmacological agents, TG2 release could be separated from P2X7R-mediated microvesicle shedding. Neither Ca2+ signaling alone nor membrane depolarization triggered TG2 secretion, which occurred only upon receptor membrane pore formation and without pannexin channel involvement. A gain-of-function mutation in P2X7R associated with autoimmune disease caused enhanced TG2 externalization from cells, and this correlated with increased pore activity. These results provide a mechanistic explanation for a link between active TG2 secretion and inflammatory responses, and aberrant enhanced TG2 activity in certain autoimmune conditions. Summary: Purinergic signaling regulates unconventional secretion of transglutaminase-2 (TG2) and explains the link between aberrant protein modifications and inflammatory responses in TG2-dependent autoimmunity.
Collapse
Affiliation(s)
- Magdalena Adamczyk
- Matrix Biology & Tissue Repair Research Unit and Arthritis Research UK Biomechanics and Bioengineering Center of Excellence, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Rhiannon Griffiths
- Matrix Biology & Tissue Repair Research Unit and Arthritis Research UK Biomechanics and Bioengineering Center of Excellence, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Sharon Dewitt
- Matrix Biology & Tissue Repair Research Unit and Arthritis Research UK Biomechanics and Bioengineering Center of Excellence, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Vera Knäuper
- Matrix Biology & Tissue Repair Research Unit and Arthritis Research UK Biomechanics and Bioengineering Center of Excellence, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Daniel Aeschlimann
- Matrix Biology & Tissue Repair Research Unit and Arthritis Research UK Biomechanics and Bioengineering Center of Excellence, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| |
Collapse
|
46
|
Malešević M, Migge A, Hertel TC, Pietzsch M. A fluorescence-based array screen for transglutaminase substrates. Chembiochem 2015; 16:1169-74. [PMID: 25940638 DOI: 10.1002/cbic.201402709] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 01/05/2023]
Abstract
Transglutaminases (EC 2.3.2.13) form an enzyme family that catalyzes the formation of isopeptide bonds between the γ-carboxamide group of glutamine and the ε-amine group of lysine residues of peptides and proteins. Other primary amines can be accepted in place of lysine. Because of their important physiological and pathophysiological functions, transglutaminases have been studied for 60 years. However, the substrate preferences of this enzyme class remain largely elusive. In this study, we used focused combinatorial libraries of 400 peptides to investigate the influence of the amino acids adjacent to the glutamine and lysine residues on the catalysis of isopeptide bond formation by microbial transglutaminase. Using the peptide microarray technology we found a strong positive influence of hydrophobic and basic amino acids, especially arginine, tyrosine, and leucine. Several tripeptide substrates were synthesized, and enzymatic kinetic parameters were determined both by microarray analysis and in solution.
Collapse
Affiliation(s)
- Miroslav Malešević
- Institute of Biochemistry and Biotechnology, Department of Enzymology, Project Group gFP5, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale (Germany)
| | - Andreas Migge
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Faculty of Sciences I, Biosciences, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale (Germany)
| | - Thomas C Hertel
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Faculty of Sciences I, Biosciences, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale (Germany)
| | - Markus Pietzsch
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Faculty of Sciences I, Biosciences, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale (Germany).
| |
Collapse
|
47
|
Serretiello E, Iannaccone M, Titta F, G. Gatta N, Gentile V. Possible pathophysiological roles of transglutaminase-catalyzed reactions in the pathogenesis of human neurodegenerative diseases. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.4.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Sulic AM, Kurppa K, Rauhavirta T, Kaukinen K, Lindfors K. Transglutaminase as a therapeutic target for celiac disease. Expert Opin Ther Targets 2014; 19:335-48. [PMID: 25410283 DOI: 10.1517/14728222.2014.985207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The only current treatment for celiac disease is a strict gluten-free diet. The ubiquitous presence of gluten in groceries, however, makes the diet burdensome and difficult to maintain, and alternative treatment options are thus needed. Here, the important role of transglutaminase 2 (TG2) in the pathogenesis of celiac disease makes it an attractive target for drug development. AREAS COVERED The present paper gives an overview of TG2 and addresses its significance in the pathogenesis of celiac disease. Moreover, the article summarizes preclinical studies performed with TG2 inhibitors and scrutinizes issues related to this therapeutic approach. EXPERT OPINION Activation of TG2 in the intestinal mucosa is central in celiac disease pathogenesis and researchers have therefore suggested TG2 inhibitors as a potential therapeutic approach. However, a prerequisite for such a drug is that it should be specific for TG2 and not affect the activity of other members of the transglutaminase family. Such compounds have already been introduced and tested in vitro, but a major obstacle to further development is the lack of a well-defined animal model for celiac disease. Nonetheless, with encouraging results in preclinical studies clinical trials with TG2 inhibitors are eagerly awaited.
Collapse
Affiliation(s)
- Ana-Marija Sulic
- Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital , Tampere , Finland +358 50 3186306; +358 3 3641369 ;
| | | | | | | | | |
Collapse
|
49
|
McKeon A, Lennon VA, Pittock SJ, Kryzer TJ, Murray J. The neurologic significance of celiac disease biomarkers. Neurology 2014; 83:1789-96. [PMID: 25261501 DOI: 10.1212/wnl.0000000000000970] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To report neurologic phenotypes and their etiologies determined among 68 patients with either (1) celiac disease (CD) or (2) no CD, but gliadin antibody positivity (2002-2012). METHODS Neurologic patients included both those with the CD-prerequisite major histocompatibility complex class II human leukocyte antigen (HLA)-DQ2/DQ8 haplotype, and those without. The 3 groups were as follows: group 1 (n = 44), CD or transglutaminase (Tg)-2/deamidated gliadin immunoglobulin (Ig)A/IgG detected; group 2 (n = 15), HLA-DQ2/DQ8 noncarriers, and gliadin IgA/IgG detected; and group 3 (n = 9), HLA-DQ2/DQ8 carriers, and gliadin IgA/IgG detected. Neurologic patients and 21 nonneurologic CD patients were evaluated for neural and Tg6 antibodies. RESULTS In group 1, 42 of 44 patients had CD. Neurologic phenotypes (cerebellar ataxia, 13; neuropathy, 11; dementia, 8; myeloneuropathy, 5; other, 7) and causes (autoimmune, 9; deficiencies of vitamin E, folate, or copper, 6; genetic, 6; toxic or metabolic, 4; unknown, 19) were diverse. In groups 2 and 3, 21 of 24 patients had cerebellar ataxia; none had CD. Causes of neurologic disorders in groups 2 and 3 were diverse (autoimmune, 4; degenerative, 4; toxic, 3; nutritional deficiency, 1; other, 2; unknown, 10). One or more neural-reactive autoantibodies were detected in 10 of 68 patients, all with autoimmune neurologic diagnoses (glutamic acid decarboxylase 65 IgG, 4; voltage-gated potassium channel complex IgG, 3; others, 5). Tg6-IgA/IgG was detected in 7 of 68 patients (cerebellar ataxia, 3; myelopathy, 2; ataxia and parkinsonism, 1; neuropathy, 1); the 2 patients with myelopathy had neurologic disorders explained by malabsorption of copper, vitamin E, and folate rather than by neurologic autoimmunity. CONCLUSIONS Our data support causes alternative to gluten exposure for neurologic dysfunction among most gliadin antibody-positive patients without CD. Nutritional deficiency and coexisting autoimmunity may cause neurologic dysfunction in CD.
Collapse
Affiliation(s)
- Andrew McKeon
- From the Departments of Laboratory Medicine and Pathology (A.M., V.A.L., S.J.P., T.J.K.), Neurology (A.M., V.A.L., S.J.P.), Immunology (V.A.L., J.M.), and Gastroenterology (J.M.), College of Medicine, Mayo Clinic, Rochester, MN.
| | - Vanda A Lennon
- From the Departments of Laboratory Medicine and Pathology (A.M., V.A.L., S.J.P., T.J.K.), Neurology (A.M., V.A.L., S.J.P.), Immunology (V.A.L., J.M.), and Gastroenterology (J.M.), College of Medicine, Mayo Clinic, Rochester, MN
| | - Sean J Pittock
- From the Departments of Laboratory Medicine and Pathology (A.M., V.A.L., S.J.P., T.J.K.), Neurology (A.M., V.A.L., S.J.P.), Immunology (V.A.L., J.M.), and Gastroenterology (J.M.), College of Medicine, Mayo Clinic, Rochester, MN
| | - Thomas J Kryzer
- From the Departments of Laboratory Medicine and Pathology (A.M., V.A.L., S.J.P., T.J.K.), Neurology (A.M., V.A.L., S.J.P.), Immunology (V.A.L., J.M.), and Gastroenterology (J.M.), College of Medicine, Mayo Clinic, Rochester, MN
| | - Joseph Murray
- From the Departments of Laboratory Medicine and Pathology (A.M., V.A.L., S.J.P., T.J.K.), Neurology (A.M., V.A.L., S.J.P.), Immunology (V.A.L., J.M.), and Gastroenterology (J.M.), College of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
50
|
Keillor JW, Clouthier CM, Apperley KYP, Akbar A, Mulani A. Acyl transfer mechanisms of tissue transglutaminase. Bioorg Chem 2014; 57:186-197. [PMID: 25035302 DOI: 10.1016/j.bioorg.2014.06.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/14/2014] [Accepted: 06/18/2014] [Indexed: 02/01/2023]
Abstract
Tissue transglutaminase (TG2) is a calcium-dependent enzyme that catalyses several acyl transfer reactions. The most biologically relevant of these involve protein-bound Gln residues as an acyl-donor substrate, and either water or a primary amine as an acyl-acceptor substrate. The former leads to deamidation of Gln to Glu, whereas the latter leads to transamidation, typically resulting in protein cross-linking when the amine substrate is a protein-bound Lys residue. In this review, we present an overview of over fifty years of mechanistic studies that have led to our current understanding of TG2-mediated hydrolysis and transamidation.
Collapse
Affiliation(s)
- Jeffrey W Keillor
- Department of Chemistry, University of Ottawa, 10 Marie-Cure, Ottawa, Ontario K1N 6N5, Canada.
| | - Christopher M Clouthier
- Department of Chemistry, University of Ottawa, 10 Marie-Cure, Ottawa, Ontario K1N 6N5, Canada
| | - Kim Y P Apperley
- Department of Chemistry, University of Ottawa, 10 Marie-Cure, Ottawa, Ontario K1N 6N5, Canada
| | - Abdullah Akbar
- Department of Chemistry, University of Ottawa, 10 Marie-Cure, Ottawa, Ontario K1N 6N5, Canada
| | - Amina Mulani
- Department of Chemistry, University of Ottawa, 10 Marie-Cure, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|