1
|
Li M, Qiu J, Yan G, Zheng X, Li A. How does the neurotoxin β-N-methylamino-L-alanine exist in biological matrices and cause toxicity? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171255. [PMID: 38417517 DOI: 10.1016/j.scitotenv.2024.171255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) has been deemed as a risk factor for some neurodegenerative diseases such as amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC). This possible link has been proved in some primate models and cell cultures with the appearance that BMAA exposure can cause excitotoxicity, formation of protein aggregates, and/or oxidative stress. The neurotoxin BMAA extensively exists in the environment and can be transferred through the food web to human beings. In this review, the occurrence, toxicological mechanisms, and characteristics of BMAA were comprehensively summarized, and proteins and peptides were speculated as its possible binding substances in biological matrices. It is difficult to compare the published data from previous studies due to the inconsistent analytical methods and components of BMAA. The binding characteristics of BMAA should be focused on to improve our understanding of its health risk to human health in the future.
Collapse
Affiliation(s)
- Min Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guowang Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xianyao Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
2
|
Hackney CM, Flórez Salcedo P, Mueller E, Koch TL, Kjelgaard LD, Watkins M, Zachariassen LG, Tuelung PS, McArthur JR, Adams DJ, Kristensen AS, Olivera B, Finol-Urdaneta RK, Safavi-Hemami H, Morth JP, Ellgaard L. A previously unrecognized superfamily of macro-conotoxins includes an inhibitor of the sensory neuron calcium channel Cav2.3. PLoS Biol 2023; 21:e3002217. [PMID: 37535677 PMCID: PMC10437998 DOI: 10.1371/journal.pbio.3002217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/18/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
Animal venom peptides represent valuable compounds for biomedical exploration. The venoms of marine cone snails constitute a particularly rich source of peptide toxins, known as conotoxins. Here, we identify the sequence of an unusually large conotoxin, Mu8.1, which defines a new class of conotoxins evolutionarily related to the well-known con-ikot-ikots and 2 additional conotoxin classes not previously described. The crystal structure of recombinant Mu8.1 displays a saposin-like fold and shows structural similarity with con-ikot-ikot. Functional studies demonstrate that Mu8.1 curtails calcium influx in defined classes of murine somatosensory dorsal root ganglion (DRG) neurons. When tested on a variety of recombinantly expressed voltage-gated ion channels, Mu8.1 displayed the highest potency against the R-type (Cav2.3) calcium channel. Ca2+ signals from Mu8.1-sensitive DRG neurons were also inhibited by SNX-482, a known spider peptide modulator of Cav2.3 and voltage-gated K+ (Kv4) channels. Our findings highlight the potential of Mu8.1 as a molecular tool to identify and study neuronal subclasses expressing Cav2.3. Importantly, this multidisciplinary study showcases the potential of uncovering novel structures and bioactivities within the largely unexplored group of macro-conotoxins.
Collapse
Affiliation(s)
- Celeste M. Hackney
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Paula Flórez Salcedo
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
| | - Emilie Mueller
- Enzyme and Protein Chemistry, Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Thomas Lund Koch
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lau D. Kjelgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Maren Watkins
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Linda G. Zachariassen
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jeffrey R. McArthur
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Anders S. Kristensen
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Baldomero Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Rocio K. Finol-Urdaneta
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
- Electrophysiology Facility for Cell Phenotyping and Drug Discovery, Wollongong, Australia
| | - Helena Safavi-Hemami
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Jens Preben Morth
- Enzyme and Protein Chemistry, Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lars Ellgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Groome JR. Historical Perspective of the Characterization of Conotoxins Targeting Voltage-Gated Sodium Channels. Mar Drugs 2023; 21:md21040209. [PMID: 37103349 PMCID: PMC10142487 DOI: 10.3390/md21040209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Marine toxins have potent actions on diverse sodium ion channels regulated by transmembrane voltage (voltage-gated ion channels) or by neurotransmitters (nicotinic acetylcholine receptor channels). Studies of these toxins have focused on varied aspects of venom peptides ranging from evolutionary relationships of predator and prey, biological actions on excitable tissues, potential application as pharmacological intervention in disease therapy, and as part of multiple experimental approaches towards an understanding of the atomistic characterization of ion channel structure. This review examines the historical perspective of the study of conotoxin peptides active on sodium channels gated by transmembrane voltage, which has led to recent advances in ion channel research made possible with the exploitation of the diversity of these marine toxins.
Collapse
Affiliation(s)
- James R Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
4
|
Duque HM, Rodrigues G, Santos LS, Franco OL. The biological role of charge distribution in linear antimicrobial peptides. Expert Opin Drug Discov 2023; 18:287-302. [PMID: 36720196 DOI: 10.1080/17460441.2023.2173736] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Antimicrobial peptides (AMP) have received particular attention due to their capacity to kill bacteria. Although much is known about them, peptides are currently being further researched. A large number of AMPs have been discovered, but only a few have been approved for topical use, due to their promiscuity and other challenges, which need to be overcome. AREAS COVERED AMPs are diverse in structure. Consequently, they have varied action mechanisms when targeting microorganisms or eukaryotic cells. Herein, the authors focus on linear peptides, particularly those that are alpha-helical structured, and examine how their charge distribution and hydrophobic amino acids could modulate their biological activity. EXPERT OPINION The world currently needs urgent solutions to the infective problems caused by resistant pathogens. In order to start the race for antimicrobial development from the charge distribution viewpoint, bioinformatic tools will be necessary. Currently, there is no software available that allows to discriminate charge distribution in AMPs and predicts the biological effects of this event. Furthermore, there is no software available that predicts the side-chain length of residues and its role in biological functions. More specialized software is necessary.
Collapse
Affiliation(s)
- Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160, Brasília-DF, Brazil
| | - Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160, Brasília-DF, Brazil
| | - Lucas Souza Santos
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160, Brasília-DF, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160, Brasília-DF, Brazil.,S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010, Campo Grande-MS, Brazil
| |
Collapse
|
5
|
Wiere S, Sugai C, Espiritu MJ, Aurelio VP, Reyes CD, Yuzon N, Whittal RM, Tytgat J, Peigneur S, Bingham JP. Research into the Bioengineering of a Novel α-Conotoxin from the Milked Venom of Conus obscurus. Int J Mol Sci 2022; 23:12096. [PMID: 36292948 PMCID: PMC9602734 DOI: 10.3390/ijms232012096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
The marine cone snail produces one of the fastest prey strikes in the animal kingdom. It injects highly efficacious venom, often causing prey paralysis and death within seconds. Each snail has hundreds of conotoxins, which serve as a source for discovering and utilizing novel analgesic peptide therapeutics. In this study, we discovered, isolated, and synthesized a novel α3/5-conotoxins derived from the milked venom of Conus obscurus (α-conotoxin OI) and identified the presence of α-conotoxin SI-like sequence previously found in the venom of Conus striatus. Five synthetic analogs of the native α-conotoxin OI were generated. These analogs incorporated single residue or double residue mutations. Three synthetic post-translational modifications (PTMs) were synthetically incorporated into these analogs: N-terminal truncation, proline hydroxylation, and tryptophan bromination. The native α-conotoxin OI demonstrated nanomolar potency in Poecilia reticulata and Homosapiens muscle-type nicotinic acetylcholine receptor (nAChR) isoforms. Moreover, the synthetic α-[P9K] conotoxin OI displayed enhanced potency in both bioassays, ranging from a 2.85 (LD50) to 18.4 (IC50) fold increase in comparative bioactivity. The successful incorporation of PTMs, with retention of both potency and nAChR isoform selectivity, ultimately pushes new boundaries of peptide bioengineering and the generation of novel α-conotoxin-like sequences.
Collapse
Affiliation(s)
- Sean Wiere
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai’i, Honolulu, HI 96822, USA
| | - Christopher Sugai
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai’i, Honolulu, HI 96822, USA
| | - Michael J. Espiritu
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai’i, Honolulu, HI 96822, USA
- School of Pharmacy, Pacific University Oregon, Hillsboro, OR 97123, USA
| | - Vincent P. Aurelio
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai’i, Honolulu, HI 96822, USA
| | - Chloe D. Reyes
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai’i, Honolulu, HI 96822, USA
| | - Nicole Yuzon
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai’i, Honolulu, HI 96822, USA
| | - Randy M. Whittal
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N II, 3000 Leuven, Belgium
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N II, 3000 Leuven, Belgium
| | - Jon-Paul Bingham
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai’i, Honolulu, HI 96822, USA
| |
Collapse
|
6
|
Proteogenomic Assessment of Intraspecific Venom Variability: Molecular Adaptations in the Venom Arsenal of Conus purpurascens. Mol Cell Proteomics 2021; 20:100100. [PMID: 34029722 PMCID: PMC8260871 DOI: 10.1016/j.mcpro.2021.100100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/14/2021] [Indexed: 11/28/2022] Open
Abstract
Cone snails produce venom that contains diverse groups of peptides (conopeptides/conotoxins) and display a wide mass range, high rate of posttranslational modifications, and many potential pharmacological targets. Here we employ a proteogenomic approach to maximize conopeptide identification from the injected venom of Conus purpurascens. mRNA sequences from C. purpurascens venom ducts were assembled into a search database and complemented with known sequences and de novo approaches. We used a top-down peptidomic approach and tandem mass spectrometry identification to compare injected venom samples of 27 specimens. This intraspecific analysis yielded 543 unique conopeptide identifications, which included 33 base conopeptides and their toxiforms, 21 of which are novel. The results reveal two distinct venom profiles with different synergistic interactions to effectively target neural pathways aimed to immobilize prey. These venom expression patterns will aid target prediction, a significant step toward developing conotoxins into valuable drugs or neural probes. We analyzed the injected venom of 27 specimens of Conus purpurascens. We found 543 unique conopeptide identifications. We identified 21 novel base conopeptides. We found two distinct venom profiles with different synergistic interactions.
Collapse
|
7
|
Discovery of a Novel Cysteine Framework XXIV Conotoxin from Conus striatus, S24a, with Potential Analgesic Activity. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Morales Duque H, Campos Dias S, Franco OL. Structural and Functional Analyses of Cone Snail Toxins. Mar Drugs 2019; 17:md17060370. [PMID: 31234371 PMCID: PMC6628382 DOI: 10.3390/md17060370] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Cone snails are marine gastropod mollusks with one of the most powerful venoms in nature. The toxins, named conotoxins, must act quickly on the cone snails´ prey due to the fact that snails are extremely slow, reducing their hunting capability. Therefore, the characteristics of conotoxins have become the object of investigation, and as a result medicines have been developed or are in the trialing process. Conotoxins interact with transmembrane proteins, showing specificity and potency. They target ion channels and ionotropic receptors with greater regularity, and when interaction occurs, there is immediate physiological decompensation. In this review we aimed to evaluate the structural features of conotoxins and the relationship with their target types.
Collapse
Affiliation(s)
- Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande-MS 79.117-900, Brazil.
| |
Collapse
|
9
|
Vijayasarathy M, Balaram P. Cone snail prolyl-4-hydroxylase α-subunit sequences derived from transcriptomic data and mass spectrometric analysis of variable proline hydroxylation in C. amadis venom. J Proteomics 2019; 194:37-48. [DOI: 10.1016/j.jprot.2018.12.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 10/27/2022]
|
10
|
Vijayasarathy M, Basheer SM, Balaram P. Cone Snail Glutaminyl Cyclase Sequences from Transcriptomic Analysis and Mass Spectrometric Characterization of Two Pyroglutamyl Conotoxins. J Proteome Res 2018; 17:2695-2703. [DOI: 10.1021/acs.jproteome.8b00132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Marimuthu Vijayasarathy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Soorej M. Basheer
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
- Department of Molecular Biology, Kannur University, Nileshwaram Campus, Kasargod 671314, Kerala, India
| | - Padmanabhan Balaram
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
11
|
Zhang RY, Thapa P, Espiritu MJ, Menon V, Bingham JP. From nature to creation: Going around in circles, the art of peptide cyclization. Bioorg Med Chem 2018; 26:1135-1150. [DOI: 10.1016/j.bmc.2017.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 02/02/2023]
|
12
|
Vijayasarathy M, Balaram P. Mass spectrometric identification of bromotryptophan containing conotoxin sequences from the venom of C. amadis. Toxicon 2018; 144:68-74. [PMID: 29447903 DOI: 10.1016/j.toxicon.2018.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 11/29/2022]
Abstract
Four 30 residue conotoxin have been identified from the venom of C. amadis. MS/MS analysis of crude venom subjected to global reduction/alkylation yielded fragmentation patterns, which permitted searching and matching with a database of putative mature toxin sequences obtained from transcriptomic analysis. Of the four sequences identified, Am3408(Am6.1b), Am3452(Am6.1c), Am3136(Am6.2a) and Am3214(Am6.2b), three contain bromotryptophan residues, while an additional post translational modification, gamma carboxylation of glutamic acid, is present in Am3408(Am6.1b)/3452(Am6.1c). The conotoxins belong to the O1/O2 gene superfamily and possess cysteine framework VI/VII. While, the cysteine patterns show a similarity to omega conotoxins, the three C. amadis peptides are highly negatively charged and possess a significant content of hydrophobic residues.
Collapse
Affiliation(s)
- M Vijayasarathy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - P Balaram
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
| |
Collapse
|
13
|
Discovery of two P-superfamily conotoxins, lt9a and lt9b, with different modifications on voltage-sensitive sodium channels. Toxicon 2017; 134:6-13. [DOI: 10.1016/j.toxicon.2017.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/23/2022]
|
14
|
Thapa P, Cabalteja CC, Philips EE, Espiritu MJ, Peigneur S, Mille BG, Tytgat J, Cummins TR, Bingham JP. t-boc synthesis of huwentoxin-i through native chemical ligation incorporating a trifluoromethanesulfonic acid cleavage strategy. Biopolymers 2017; 106:737-45. [PMID: 27271997 DOI: 10.1002/bip.22887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/24/2016] [Accepted: 05/31/2016] [Indexed: 11/10/2022]
Abstract
Tert-butyloxycarbonyl (t-Boc)-based native chemical ligation (NCL) techniques commonly employ hydrogen fluoride (HF) to create the thioester fragment required for the ligation process. Our research aimed to assess the replacement of HF with Trifluoromethanesulfonic acid (TFMSA). Here we examined a 33 amino acid test peptide, Huwentoxin-I (HwTx-I) as a novel candidate for our TFMSA cleavage protocol. Structurally HwTx-I has an X-Cys(16) -Cys(17) -X sequence mid-region, which makes it an ideal candidate for NCL. Experiments determined that the best yields (16.8%) obtained for 50 mg of a thioester support resin were achieved with a TFMSA volume of 100 μL with a 0.5-h incubation on ice, followed by 2.0 h at room temperature. RP-HPLC/UV and mass spectra indicated the appropriate parent mass and retention of the cleaved HwTx-I N-terminal thioester fragment (Ala(1) -Cys(16) ), which was used in preparation for NCL. The resulting chemically ligated HwTx-I was oxidized/folded, purified, and then assessed for pharmacological target selectivity. Native-like HwTx-I produced by this method yielded an EC50 value of 340.5 ± 26.8 nM for Nav 1.2 and an EC50 value of 504.1 ± 81.3 nM for Nav 1.3, this being similar to previous literature results using native material. This article represents the first NCL based synthesis of this potent sodium channel blocker. Our illustrated approach removes potential restrictions in the advancement of NCL as a common peptide laboratory technique with minimal investment, and removes the hazards associated with HF usage. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 737-745, 2016.
Collapse
Affiliation(s)
- Parashar Thapa
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI, 96822
| | - Chino C Cabalteja
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI, 96822
| | - Edwin E Philips
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI, 96822
| | - Michael J Espiritu
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI, 96822
| | - Steve Peigneur
- Department of Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N II, Leuven, 3000, Belgium
| | - Bea G Mille
- Department of Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N II, Leuven, 3000, Belgium
| | - Jan Tytgat
- Department of Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N II, Leuven, 3000, Belgium
| | - Theodore R Cummins
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN.,Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, 320 West 25th Street, NB-414F, Indianapolis, IN, 46202-2266
| | - Jon-Paul Bingham
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI, 96822.
| |
Collapse
|
15
|
Molecular Engineering of Conus Peptides as Therapeutic Leads. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1030:229-254. [DOI: 10.1007/978-3-319-66095-0_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Yayeh T, Im EJ, Kwon TH, Roh SS, Kim S, Kim JH, Hong SB, Cho JY, Park NH, Rhee MH. Hemeoxygenase 1 partly mediates the anti-inflammatory effect of dieckol in lipopolysaccharide stimulated murine macrophages. Int Immunopharmacol 2014; 22:51-8. [PMID: 24953853 DOI: 10.1016/j.intimp.2014.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/12/2014] [Accepted: 06/06/2014] [Indexed: 11/24/2022]
Abstract
Eisenia bicyclis is edible brown algae recognized as a rich source of bioactive derivatives mainly phlorotannins reported for their anti-oxidant properties. Of all phlorotannins identified so far, dieckol has shown the most potent effect in anti-inflammatory, radical scavenging and neuroprotective functions. However, whether dieckol up-regulates hemeoxygenase 1 (HO-1) and this mediates its anti-inflammatory effect in murine macrophages remains poorly understood. Dieckol (12.5-50 μM) inhibited nitric oxide production and attenuated inducible nitric oxide synthase, phospho (p)-PI-3K, p-Akt, p-IKK-α/β, p-IκB-α and nuclear p-NF-κBp65 protein expressions, and NF-κB transcriptional activity in LPS (0.1 μg/ml) stimulated murine macrophages. On the other hand, dieckol up-regulated HO-1 which partly mediated its anti-inflammatory effect in murine macrophages. Thus, dieckol appeared to be a potential therapeutic agent against inflammation through HO-1 up-regulation.
Collapse
Affiliation(s)
- Taddesse Yayeh
- Laboratory of Veterinary Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Eun Ju Im
- Laboratory of Veterinary Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Tae-Hyung Kwon
- Department of Research & Development, Gyeongbuk Institute for Marine Bio-Industry, Uljin 767-813, Republic of Korea; Food Science and Biotechnology Major, Andong National University, Andong 760-749, Republic of Korea
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Republic of Korea
| | - Suk Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Seung-Bok Hong
- Department of Clinical Laboratory Science, Chungbuk Health and Science University, Chungbuk 363-794, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Nyun-Ho Park
- Department of Research & Development, Gyeongbuk Institute for Marine Bio-Industry, Uljin 767-813, Republic of Korea.
| | - Man Hee Rhee
- Laboratory of Veterinary Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
17
|
Espiritu MJ, Collier AC, Bingham JP. A 21st-century approach to age-old problems: the ascension of biologics in clinical therapeutics. Drug Discov Today 2014; 19:1109-13. [DOI: 10.1016/j.drudis.2014.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 12/31/2013] [Accepted: 01/20/2014] [Indexed: 01/07/2023]
|
18
|
Thapa P, Espiritu MJ, Cabalteja CC, Bingham JP. Conotoxins and their regulatory considerations. Regul Toxicol Pharmacol 2014; 70:197-202. [PMID: 25013992 DOI: 10.1016/j.yrtph.2014.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 01/21/2023]
Abstract
Venom derived peptides from marine cone snails, conotoxins, have demonstrated unique pharmacological targeting properties that have been pivotal in advancing medical research. The awareness of their true toxic origins and potent pharmacological nature is emphasized by their 'select agent' classification by the US Centers for Disease Control and Prevention. We briefly introduce the biochemical and pharmacological aspects of conotoxins, highlighting current advancements into their biological engineering, and provide details to the present regulations that govern their use in research.
Collapse
Affiliation(s)
- Parashar Thapa
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai'i, Honolulu, HI 96822, USA
| | - Michael J Espiritu
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai'i, Honolulu, HI 96822, USA
| | - Chino C Cabalteja
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai'i, Honolulu, HI 96822, USA
| | - Jon-Paul Bingham
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai'i, Honolulu, HI 96822, USA.
| |
Collapse
|