1
|
Almeida DV, Ciancaglini I, Sandano ALH, Roman EKB, Andrade VB, Nunes AB, Tramontina R, da Silva VM, Gabel F, Corrêa TLR, Damasio A, Muniz JRC, Squina FM, Garcia W. Unveiling the crystal structure of thermostable dienelactone hydrolase exhibiting activity on terephthalate esters. Enzyme Microb Technol 2024; 180:110498. [PMID: 39182429 DOI: 10.1016/j.enzmictec.2024.110498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Dienelactone hydrolase (DLH) is one of numerous hydrolytic enzymes with an α/β-hydrolase fold, which catalyze the hydrolysis of dienelactone to maleylacetate. The DLHs share remarkably similar tertiary structures and a conserved arrangement of catalytic residues. This study presents the crystal structure and comprehensive functional characterization of a novel thermostable DLH from the bacterium Hydrogenobacter thermophilus (HtDLH). The crystal structure of the HtDLH, solved at a resolution of about 1.67 Å, exhibits a canonical α/β-hydrolase fold formed by eight β-sheet strands in the core, with one buried α-helix and six others exposed to the solvent. The structure also confirmed the conserved catalytic triad of DHLs formed by Cys121, Asp170, and His202 residues. The HtDLH forms stable homodimers in solution. Functional studies showed that HtDLH has the expected esterase activity over esters with short carbon chains, such as p-nitrophenyl acetate, reaching optimal activity at pH 7.5 and 70 °C. Furthermore, HtDLH maintains more than 50 % of its activity even after incubation at 90 °C for 16 h. Interestingly, HtDLH exhibits catalytic activity towards polyethylene terephthalate (PET) monomers, including bis-1,2-hydroxyethyl terephthalate (BHET) and 1-(2-hydroxyethyl) 4-methyl terephthalate, as well as other aliphatic and aromatic esters. These findings associated with the lack of activity on amorphous PET indicate that HtDLH has characteristic of a BHET-degrading enzyme. This work expands our understanding of enzyme families involved in PET degradation, providing novel insights for plastic biorecycling through protein engineering, which could lead to eco-friendly solutions to reduce the accumulation of plastic in landfills and natural environments.
Collapse
Affiliation(s)
- Dnane Vieira Almeida
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC),Santo André, SP, Brazil
| | - Iara Ciancaglini
- Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil; Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Ellen K B Roman
- Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil; Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Viviane Brito Andrade
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC),Santo André, SP, Brazil
| | - Ana Bárbara Nunes
- Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil; Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Robson Tramontina
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Viviam Moura da Silva
- Institut de Biologie Structurale (IBS), CEA, CNRS, UGA, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Frank Gabel
- Institut de Biologie Structurale (IBS), CEA, CNRS, UGA, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Thamy L R Corrêa
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - André Damasio
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Fabio Marcio Squina
- Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil.
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC),Santo André, SP, Brazil.
| |
Collapse
|
2
|
Andrade VB, Tomazetto G, Almeida DV, Tramontina R, Squina FM, Garcia W. Enzymatic and biophysical characterization of a novel modular cellulosomal GH5 endoglucanase multifunctional from the anaerobic gut fungus Piromyces finnis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140963. [PMID: 37690538 DOI: 10.1016/j.bbapap.2023.140963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/14/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Cellulases from anaerobic fungi are enzymes less-studied biochemically and structurally than cellulases from bacteria and aerobic fungi. Currently, only thirteen GH5 cellulases from anaerobic fungi were biochemically characterized and two crystal structures were reported. In this context, here, we report the functional and biophysical characterization of a novel multi-modular cellulosomal GH5 endoglucanase from the anaerobic gut fungus Piromyces finnis (named here PfGH5). Multiple sequences alignments indicate that PfGH5 is composed of a GH5 catalytic domain and a CBM1 carbohydrate-binding module connected through a CBM10 dockerin module. Our results showed that PfGH5 is an endoglucanase from anaerobic fungus with a large spectrum of activity. PfGH5 exhibited preference for hydrolysis of oat β-glucan, followed by galactomannan, carboxymethyl cellulose, mannan, lichenan and barley β-glucan, therefore displaying multi-functionality. For oat β-glucan, PfGH5 reaches its optimum enzymatic activity at 40 °C and pH 5.5, with Km of 7.1 μM. Ion exchange chromatography analyzes revealed the production of oligosaccharides with a wide degree of polymerization indicated that PfGH5 has endoglucanase activity. The ability to bind and cleave different types of carbohydrates evidence the potential of PfGH5 for use in biotechnology and provide a useful basis for future investigation and application of new anaerobic fungi enzymes.
Collapse
Affiliation(s)
- Viviane Brito Andrade
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Geizecler Tomazetto
- Department of Biological and Chemical Engineering (BCE), Aarhus University, 8200 Aarhus, Denmark
| | - Dnane Vieira Almeida
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Robson Tramontina
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, SP, Brazil
| | - Fabio Marcio Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, SP, Brazil
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
3
|
Huang YY, Lv ZH, Zheng HZ, Zhu Q, Liu MT, Sang P, Wang F, Zhu D, Xian WD, Yin YR. Characterization of a thermophilic and glucose-tolerant GH1 β-glucosidase from hot springs and its prospective application in corn stover degradation. Front Microbiol 2023; 14:1286682. [PMID: 38179451 PMCID: PMC10764553 DOI: 10.3389/fmicb.2023.1286682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction β-Glucosidase serves as the pivotal rate-limiting enzyme in the cellulose degradation process, facilitating the hydrolysis of cellobiose and cellooligosaccharides into glucose. However, the widespread application of numerous β-glucosidases is hindered by their limited thermostability and low glucose tolerance, particularly in elevated-temperature and high-glucose environments. Methods This study presents an analysis of a β-glucosidase gene belonging to the GH1 family, denoted lqbg8, which was isolated from the metagenomic repository of Hehua hot spring located in Tengchong, China. Subsequently, the gene was cloned and heterologously expressed in Escherichia coli BL21(DE3). Post expression, the recombinant β-glucosidase (LQBG8) underwent purification through a Ni affinity chromatography column, thereby enabling the in-depth exploration of its enzymatic properties. Results LQBG8 had an optimal temperature of 70°C and an optimum pH of 5.6. LQBG8 retained 100 and 70% of its maximum activity after 2-h incubation periods at 65°C and 70°C, respectively. Moreover, even following exposure to pH ranges of 3.0-10.0 for 24 h, LQBG8 retained approximately 80% of its initial activity. Notably, the enzymatic prowess of LQBG8 remained substantial at glucose concentrations of up to 3 M, with a retention of over 60% relative activity. The kinetic parameters of LQBG8 were characterized using cellobiose as substrate, with Km and Vmax values of 28 ± 1.9 mg/mL and 55 ± 3.2 μmol/min/mg, respectively. Furthermore, the introduction of LQBG8 (at a concentration of 0.03 mg/mL) into a conventional cellulase reaction system led to an impressive 43.7% augmentation in glucose yield from corn stover over a 24-h period. Molecular dynamics simulations offered valuable insights into LQBG8's thermophilic nature, attributing its robust stability to reduced fluctuations, conformational changes, and heightened structural rigidity in comparison to mesophilic β-glucosidases. Discussion In summation, its thermophilic, thermostable, and glucose-tolerant attributes, render LQBG8 ripe for potential applications across diverse domains encompassing food, feed, and the production of lignocellulosic ethanol.
Collapse
Affiliation(s)
- Yu-Ying Huang
- College of Agriculture and Biological Science, Dali University, Dali, China
| | - Zhi-Hua Lv
- College of Agriculture and Biological Science, Dali University, Dali, China
| | - Hong-Zhao Zheng
- College of Agriculture and Biological Science, Dali University, Dali, China
| | - Qian Zhu
- College of Agriculture and Biological Science, Dali University, Dali, China
| | - Meng-Ting Liu
- College of Agriculture and Biological Science, Dali University, Dali, China
- Key Laboratory of Bioinformatics and Computational Biology, Department of Education of Yunnan Province, Dali University, Dali, China
| | - Peng Sang
- College of Agriculture and Biological Science, Dali University, Dali, China
- Key Laboratory of Bioinformatics and Computational Biology, Department of Education of Yunnan Province, Dali University, Dali, China
| | - Fei Wang
- College of Agriculture and Biological Science, Dali University, Dali, China
| | - Dan Zhu
- College of Agriculture and Biological Science, Dali University, Dali, China
| | - Wen-Dong Xian
- Marine Microorganism Ecological and Application Lab, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Yi-Rui Yin
- College of Agriculture and Biological Science, Dali University, Dali, China
- Key Laboratory of Bioinformatics and Computational Biology, Department of Education of Yunnan Province, Dali University, Dali, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali, China
| |
Collapse
|
4
|
Akram F, Haq IU, Shah FI, Aqeel A, Ahmed Z, Mir AS, Qureshi SS, Raja SI. Genus Thermotoga: A valuable home of multifunctional glycoside hydrolases (GHs) for industrial sustainability. Bioorg Chem 2022; 127:105942. [PMID: 35709577 DOI: 10.1016/j.bioorg.2022.105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Nature is a dexterous and prolific chemist for cataloging a number of hostile niches that are the ideal residence of various thermophiles. Apart from having other species, these subsurface environments are considered a throne of bacterial genus Thermotoga. The genome sequence of Thermotogales encodes complex and incongruent clusters of glycoside hydrolases (GHs), which are superior to their mesophilic counterparts and play a prominent role in various applications due to their extreme intrinsic stability. They have a tremendous capacity to use a wide variety of simple and multifaceted carbohydrates through GHs, formulate fermentative hydrogen and bioethanol at extraordinary yield, and catalyze high-temperature reactions for various biotechnological applications. Nevertheless, no stringent rules exist for the thermo-stabilization of biocatalysts present in the genus Thermotoga. These enzymes endure immense attraction in fundamental aspects of how these polypeptides attain and stabilize their distinctive three-dimensional (3D) structures to accomplish their physiological roles. Moreover, numerous genome sequences from Thermotoga species have revealed a significant fraction of genes most closely related to those of archaeal species, thus firming a staunch belief of lateral gene transfer mechanism. However, the question of its magnitude is still in its infancy. In addition to GHs, this genus is a paragon of encapsulins which carry pharmacological and industrial significance in the field of life sciences. This review highlights an intricate balance between the genomic organizations, factors inducing the thermostability, and pharmacological and industrial applications of GHs isolated from genus Thermotoga.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan.
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Pakistan Academy of Science, Islamabad, Pakistan
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Zeeshan Ahmed
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Azka Shahzad Mir
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Sumbal Sajid Qureshi
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Saleha Ibadat Raja
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
5
|
Production of Daidzein and Genistein from Seed and Root Extracts of Korean Wild Soybean (Glycine soja) by Thermostable β-Galactosidase from Thermoproteus uzoniensis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Isoflavone glycosides are commonly biotransformed into isoflavone aglycones due to the superior biological activities of the latter. Wild soybeans contain a higher isoflavone content than domesticated soybeans due to their high level of genetic diversity. In this study, we cloned and characterized a thermostable β-galactosidase from the extreme thermophile Thermoproteus uzoniensis for potential application in isoflavone conversion in Korean wild soybeans. The purified recombinant enzyme exhibited a maximum specific activity of 1103 μmol/min/mg at pH 5.0 and 90 °C with a half-life of 46 h and exists as a homodimer of 113 kDa. The enzyme exhibited the highest activity for p-nitrophenyl (pNP)-β-D-galactopyranoside among aryl glycosides and it hydrolyzed isoflavone glycosides in the order genistin > daidzin > ononin > glycitin. The enzyme completely hydrolyzed 2.77 mM daidzin and 3.85 mM genistin in the seed extract of wild soybean after 80 and 70 min with productivities of 1.86 and 3.30 mM/h, respectively, and 9.89 mM daidzin and 1.67 mM genistin in the root extract after 180 and 30 min, with the highest productivities of 3.30 and 3.36 mM/h, respectively, compared to other glycosidases. Our results will contribute to the industrial production of isoflavone aglycone using wild soybean and this is the first report on the enzymatic production of isoflavone aglycones from isoflavone glycosides in wild soybeans.
Collapse
|
6
|
Lanzilli M, Esercizio N, Vastano M, Xu Z, Nuzzo G, Gallo C, Manzo E, Fontana A, d’Ippolito G. Effect of Cultivation Parameters on Fermentation and Hydrogen Production in the Phylum Thermotogae. Int J Mol Sci 2020; 22:ijms22010341. [PMID: 33396970 PMCID: PMC7795431 DOI: 10.3390/ijms22010341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 01/19/2023] Open
Abstract
The phylum Thermotogae is composed of a single class (Thermotogae), 4 orders (Thermotogales, Kosmotogales, Petrotogales, Mesoaciditogales), 5 families (Thermatogaceae, Fervidobacteriaceae, Kosmotogaceae, Petrotogaceae, Mesoaciditogaceae), and 13 genera. They have been isolated from extremely hot environments whose characteristics are reflected in the metabolic and phenotypic properties of the Thermotogae species. The metabolic versatility of Thermotogae members leads to a pool of high value-added products with application potentials in many industry fields. The low risk of contamination associated with their extreme culture conditions has made most species of the phylum attractive candidates in biotechnological processes. Almost all members of the phylum, especially those in the order Thermotogales, can produce bio-hydrogen from a variety of simple and complex sugars with yields close to the theoretical Thauer limit of 4 mol H2/mol consumed glucose. Acetate, lactate, and L-alanine are the major organic end products. Thermotagae fermentation processes are influenced by various factors, such as hydrogen partial pressure, agitation, gas sparging, culture/headspace ratio, inoculum, pH, temperature, nitrogen sources, sulfur sources, inorganic compounds, metal ions, etc. Optimization of these parameters will help to fully unleash the biotechnological potentials of Thermotogae and promote their applications in industry. This article gives an overview of how these operational parameters could impact Thermotogae fermentation in terms of sugar consumption, hydrogen yields, and organic acids production.
Collapse
Affiliation(s)
- Mariamichela Lanzilli
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Nunzia Esercizio
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Marco Vastano
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Zhaohui Xu
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA;
| | - Genoveffa Nuzzo
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Carmela Gallo
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Emiliano Manzo
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Angelo Fontana
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Giuliana d’Ippolito
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
- Correspondence: ; Tel.: +39-081-8675096
| |
Collapse
|
7
|
Sharma K, Thakur A, Kumar R, Goyal A. Structure and biochemical characterization of glucose tolerant β-1,4 glucosidase (HtBgl) of family 1 glycoside hydrolase from Hungateiclostridium thermocellum. Carbohydr Res 2019; 483:107750. [PMID: 31357130 DOI: 10.1016/j.carres.2019.107750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/14/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022]
Abstract
β-1,4-glucosidase (HtBgl) of family 1 glycoside hydrolase from Hungateiclostridium thermocellum was cloned in pET28a(+) vector, expressed, biochemically and structurally characterized. HtBgl displayed 67 U/mg activity against 4-nitrophenyl-β-d-glucopyranoside, followed by 180 U/mg against cellobiose and 42 U/mg activity against 4-nitrophenyl-β-d-galactopyranoside. HtBgl displayed an optimum temperature of 65 °C and an optimum pH of 6.0. HtBgl was stable in the pH range, 4.0-8.0 and displayed the thermostability up to 60 °C for 1 h. HtBgl displayed the glucose tolerance up to 750 mM and retained ~70% activity after 20 h. HtBgl crystal structure submitted (PDB id 5OGZ) by others exhibited a classical Triosephosphate Isomerase, (β/α)8-barrel fold. Protein melting analysis of HtBgl exhibited a single peak at 78 °C and the addition of 5 mM Mg2+ shifted the peak to 82 °C. Molecular dynamics studies showed that the amino acid residues from 351 to 375 exhibit the flexibility due to the presence of the catalytic acid residue. The structure comparison of HtBgl with homologous proteins and its docking analysis with probable ligands revealed that the residues, E166 and E355 are involved in the catalysis. The SAXS analysis of HtBgl showed that the protein is monomeric and present in a fully folded state. The radius of gyration (Rg) found was 2.15-2.26 nm. The bell-shaped curve obtained by Kratky plot analysis displayed the globular shape and fully folded state with flexibility in the N-terminal region. The HtBgl crystal structure superposed well with the SAXS derived dummy atom model.
Collapse
Affiliation(s)
- Kedar Sharma
- DBT PAN-IIT Centre of Bioenergy, Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Abhijeet Thakur
- DBT PAN-IIT Centre of Bioenergy, Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Rajeev Kumar
- DBT PAN-IIT Centre of Bioenergy, Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Arun Goyal
- DBT PAN-IIT Centre of Bioenergy, Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
8
|
Tofanello A, Araujo JN, Nantes-Cardoso IL, Ferreira FF, Souza JA, Lim DW, Kitagawa H, Garcia W. Ultrafast fabrication of thermally stable protein-coated silver iodide nanoparticles for solid-state superionic conductors. Colloids Surf B Biointerfaces 2019; 176:47-54. [DOI: 10.1016/j.colsurfb.2018.12.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/28/2018] [Accepted: 12/20/2018] [Indexed: 01/01/2023]
|
9
|
Rapid Synthesis via Green Route of Plasmonic Protein-Coated Silver/Silver Chloride Nanoparticles with Controlled Contents of Metallic Silver and Application for Dye Remediation. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0947-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Cruz GF, Tofanello A, Araújo JN, Nantes-Cardoso IL, Ferreira FF, Garcia W. Fast One-Pot Photosynthesis of Plasmonic Protein-Coated Silver/Silver Bromide Nanoparticles with Efficient Photocatalytic Performance. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0851-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Akram F, Haq IU, Mukhtar H. Gene cloning, characterization and thermodynamic analysis of a novel multidomain hyperthermophilic GH family 3 β-glucosidase (TnBglB) from Thermotoga naphthophila RKU-10T. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Photobiosynthesis of stable and functional silver/silver chloride nanoparticles with hydrolytic activity using hyperthermophilic β-glucosidases with industrial potential. Int J Biol Macromol 2017; 102:84-91. [DOI: 10.1016/j.ijbiomac.2017.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/29/2017] [Indexed: 11/17/2022]
|
13
|
da Silva VM, Sato JAP, Araujo JN, Squina FM, Muniz JRC, Riske KA, Garcia W. Systematic studies of the interactions between a model polyphenol compound and microbial β-glucosidases. PLoS One 2017; 12:e0181629. [PMID: 28727856 PMCID: PMC5519169 DOI: 10.1371/journal.pone.0181629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/04/2017] [Indexed: 01/22/2023] Open
Abstract
Lignin is a major obstacle for cost-effective conversion of cellulose into fermentable sugars. Non-productive adsorption onto insoluble lignin fragments and interactions with soluble phenols are important inhibition mechanisms of cellulases, including β-glucosidases. Here, we examined the inhibitory effect of tannic acid (TAN), a model polyphenolic compound, on β-glucosidases from the bacterium Thermotoga petrophila (TpBGL1 and TpBGL3) and archaeon Pyrococcus furiosus (PfBGL1). The results revealed that the inhibition effects on β-glucosidases were TAN concentration-dependent. TpBGL1 and TpBGL3 were more tolerant to the presence of TAN when compared with PfBGL1, while TpBGL1 was less inhibited when compared with TpBGL3. In an attempt to better understand the inhibitory effect, the interaction between TAN and β-glucosidases were analyzed by isothermal titration calorimetry (ITC). Furthermore, the exposed hydrophobic surface areas in β-glucosidases were analyzed using a fluorescent probe and compared with the results of inhibition and ITC. The binding constants determined by ITC for the interactions between TAN and β-glucosidases presented the same order of magnitude. However, the number of binding sites and exposed hydrophobic surface areas varied for the β-glucosidases studied. The binding between TAN and β-glucosidases were driven by enthalpic effects and with an unfavorable negative change in entropy upon binding. Furthermore, the data suggest that there is a high correlation between exposed hydrophobic surface areas and the number of binding sites on the inhibition of microbial β-glucosidases by TAN. These studies can be useful for biotechnological applications.
Collapse
Affiliation(s)
- Viviam M. da Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, São Paulo, Brazil
| | - Juliana A. P. Sato
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, São Paulo, Brazil
| | - Juscemácia N. Araujo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, São Paulo, Brazil
| | - Fabio M. Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - João R. C. Muniz
- Instituto de Física de São Carlos (IFSC), Universidade de São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Karin A. Riske
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
14
|
Non-productive adsorption of bacterial β-glucosidases on lignins is electrostatically modulated and depends on the presence of fibronection type III-like domain. Enzyme Microb Technol 2016; 87-88:1-8. [PMID: 27178788 DOI: 10.1016/j.enzmictec.2016.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 01/09/2023]
Abstract
Non-productive adsorption of cellulases onto lignins is an important mechanism that negatively affects the enzymatic hydrolysis of lignocellulose biomass. Here, we examined the non-productive adsorption of two bacterial β-glucosidases (GH1 and GH3) on lignins. The results showed that β-glucosidases can adsorb to lignins through different mechanisms. GH1 β-glucosidase adsorption onto lignins was found to be strongly pH-dependent, suggesting that the adsorption is electrostatically modulated. For GH3 β-glucosidase, the results suggested that the fibronectin type III-like domain interacts with lignins through electrostatic and hydrophobic interactions that can partially, or completely, overcome repulsive electrostatic forces between the catalytic domain and lignins. Finally, the increase of temperature did not result in the increase of β-glucosidases adsorption, probably because there is no significant increase in hydrophobic regions in the β-glucosidases structures. The data provided here can be useful for biotechnological applications, especially in the field of plant structural polysaccharides conversion into bioenergy and bioproducts.
Collapse
|
15
|
Souza TV, Araujo JN, da Silva VM, Liberato MV, Pimentel AC, Alvarez TM, Squina FM, Garcia W. Chemical stability of a cold-active cellulase with high tolerance toward surfactants and chaotropic agent. ACTA ACUST UNITED AC 2015; 9:1-8. [PMID: 28352586 PMCID: PMC5360981 DOI: 10.1016/j.btre.2015.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 11/28/2022]
Abstract
CelE1 is a cold-active endo-acting glucanase with high activity at a broad temperature range and under alkaline conditions. Here, we examined the effects of pH on the secondary and tertiary structures, net charge, and activity of CelE1. Although variation in pH showed a small effect in the enzyme structure, the activity was highly influenced at acidic conditions, while reached the optimum activity at pH 8. Furthermore, to estimate whether CelE1 could be used as detergent additives, CelE1 activity was evaluated in the presence of surfactants. Ionic and nonionic surfactants were not able to reduce CelE1 activity significantly. Therefore, CelE1 was found to be promising candidate for use as detergent additives. Finally, we reported a thermodynamic analysis based on the structural stability and the chemical unfolding/refolding process of CelE1. The results indicated that the chemical unfolding proceeds as a reversible two-state process. These data can be useful for biotechnological applications.
Collapse
Affiliation(s)
- Thaís V Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Juscemácia N Araujo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Viviam M da Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Marcelo V Liberato
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | - Agnes C Pimentel
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | - Thabata M Alvarez
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | - Fabio M Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| |
Collapse
|