1
|
Hai C, Hao Z, Bu L, Lei J, Liu X, Zhao Y, Bai C, Su G, Yang L, Li G. Increased rumen Prevotella enhances BCAA synthesis, leading to synergistically increased skeletal muscle in myostatin-knockout cattle. Commun Biol 2024; 7:1575. [PMID: 39592704 PMCID: PMC11599727 DOI: 10.1038/s42003-024-07252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Myostatin (MSTN) is a negative regulator of muscle growth, and its relationship with the gut microbiota is not well understood. In this study, we observed increase muscle area and branched-chain amino acids (BCAAs), an energy source of muscle, in myostatin knockout (MSTN-KO) cattle. To explore the link between increased BCAAs and rumen microbiota, we performed metagenomic sequencing, metabolome analysis of rumen fluid, and muscle transcriptomics. MSTN-KO cattle showed a significant increase in the phylum Bacteroidota (formerly Bacteroidetes), particularly the genus Prevotella (P = 3.12e-04). Within this genus, Prevotella_sp._CAG:732, Prevotella_sp._MSX73, and Prevotella_sp._MA2016 showed significant upregulation of genes related to BCAA synthesis. Functional enrichment analysis indicated enrichment of BCAA synthesis-related pathways in both rumen metagenomes and metabolomes. Additionally, muscle transcriptomics indicated enrichment in muscle fiber and amino acid metabolism, with upregulation of solute carrier family genes, enhancing BCAA transport. These findings suggest that elevated rumen Prevotella in MSTN-KO cattle, combined with MSTN deletion, synergistically improves muscle growth through enhanced BCAA synthesis and transport.
Collapse
Affiliation(s)
- Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Zhenting Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Lige Bu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Jiaru Lei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Yuefang Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China.
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
2
|
Whaikid P, Piaseu N. The effectiveness of protein supplementation combined with resistance exercise programs among community-dwelling older adults with sarcopenia: a systematic review and meta-analysis. Epidemiol Health 2024; 46:e2024030. [PMID: 38374703 PMCID: PMC11369567 DOI: 10.4178/epih.e2024030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/10/2024] [Indexed: 02/21/2024] Open
Abstract
OBJECTIVES The combination of protein supplementation and resistance exercise shows promise for improving and maintaining muscle mass, strength, and performance in older adults with sarcopenia. This systematic review aimed to evaluate the effects of this combination on muscle mass, muscle strength, and physical performance in community-dwelling older adults with sarcopenia. METHODS We conducted a comprehensive search of 4 electronic databases: PubMed, Scopus, Embase, and the MEDLINE Library. The search covered literature from January 2013 to January 2023 and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Two independent reviewers assessed the methodological quality of each study using the standard critical appraisal tool from the Joanna Briggs Institute (JBI). Meta-analysis was performed with the JBI Sumari program. RESULTS The review included 7 randomized controlled trials and 1 quasi-experimental study, encompassing a total of 854 participants aged 60 years and above. The study durations ranged from 10 weeks to 24 weeks. An analysis of standardized mean differences (SMDs) showed that protein supplementation combined with resistance exercise significantly increased muscle mass (SMD, 0.95; 95% confidence interval [CI], 0.13 to 1.78; p<0.05) and muscle strength (SMD, 0.32; 95% CI, 0.08 to 0.56; p<0.05). CONCLUSIONS Although the limited number of randomized controlled trials restricts the robustness of our conclusions, the evidence suggests that protein supplementation combined with resistance exercise is effective in enhancing muscle mass and strength in community-dwelling older adults with sarcopenia.
Collapse
Affiliation(s)
- Phatcharaphon Whaikid
- Ramathibodi School of Nursing, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Noppawan Piaseu
- Ramathibodi School of Nursing, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Lee SY, Lee HJ, Lim JY. Effects of leucine-rich protein supplements in older adults with sarcopenia: A systematic review and meta-analysis of randomized controlled trials. Arch Gerontol Geriatr 2022; 102:104758. [DOI: 10.1016/j.archger.2022.104758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
|
4
|
Mori T, Yoshioka K. Quick and effective improvement of leucine enriched dietary supplement on malnutrition in acute stroke patients receiving enteral tube feeding. BMC Emerg Med 2020; 20:56. [PMID: 32689936 PMCID: PMC7370442 DOI: 10.1186/s12873-020-00351-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/06/2020] [Indexed: 01/28/2023] Open
Abstract
Background Malnutrition often occurs in acute stroke patients receiving enteral tube feeding (ETF). Unless malnutrition is improved, their clinical outcome is poor. However, strategies to improve malnutrition in these patients have not been established. Branched-chain amino acids (BCAA) may enhance protein synthesis and attenuate inflammation. Our study aimed to investigate whether a leucine enriched BCAA dietary supplement (LEBDs) could quickly increase serum levels of albumin (Alb) or transthyretin (TTR) and decrease high-sensitivity C-reactive protein (CRP) in the development of severe malnutrition within a few days after stroke onset compared to standard BCAA dietary supplement (SBDs). Methods We retrospectively included acute stroke patients who: 1) were admitted between August 2016 and July 2017; 2) underwent ETF for 7 days or longer after admission, and 3) underwent blood examination of Alb, TTR, and CRP on admission, the fifth day and the seventh day. We defined severe malnutrition as severe hypoproteinemia: decrease of TTR to less than 15 mg/dl on the 5th day. In LEBDs and SBDs groups, patients started to receive a dietary supplement containing leucine of 1.44 and 0. 72 g twice a day on the fifth day, respectively. We evaluated Alb (g/dl), TTR (mg/dl), and CRP (mg/dl) on admission, the fifth day, and the seventh day. Results Twenty-nine patients met our inclusion criteria:15 in LEBDs and 14 in SBDs. In LEBDs and SBDs groups, the median Alb was 3.5 and 3.3 g/dl, TTR was 12.7 and 10.7 mg/dl, and CRP was 1.02 and 0.673 mg/dl on admission, respectively. In LEBDs, the median Alb and TTR decreased to 2.6 g/dl and 11.9 mg/dl, and CRP increased to 5.337 mg/dl on the fifth day. On the 7th day, TTR increased, and CRP decreased, although Alb did not improve. In SBDs, the median Alb and TTR decreased to 2.6 g/dl and 9.7 mg/dl, and CRP increased to 4.077 mg/dl on the fifth day. On the 7th day, Alb, TTR, and CRP did not improve. Conclusion In acute stroke patients receiving leucine enriched BCAA dietary supplement, quick improvements in transthyretin and CRP were observed.
Collapse
Affiliation(s)
- Takahisa Mori
- Department of Stroke Treatment, Shonan Kamakura General Hospital Stroke Center, Okamoto 1370-1, Kamakura City, Kanagawa, 247-8533, Japan.
| | - Kazuhiro Yoshioka
- Department of Stroke Treatment, Shonan Kamakura General Hospital Stroke Center, Okamoto 1370-1, Kamakura City, Kanagawa, 247-8533, Japan
| |
Collapse
|
5
|
An YH, Kim J, Kim HJ, Lim K. Effects of leucine-enriched essential amino acid supplementation on muscular fatigue and inflammatory cytokines in wheelchair basketball players. Phys Act Nutr 2020; 24:38-46. [PMID: 32698260 PMCID: PMC7451841 DOI: 10.20463/pan.2020.0013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 11/22/2022] Open
Abstract
PURPOSE This study aimed to investigate the effects of leucine-enriched essential amino acid (LEAA) supplementation on muscle fatigue and the level of inflammatory cytokines in wheelchair basketball players after a basketball game and interval training. METHODS Of the ten recruited wheelchair basketball players (aged 34.5±8.9 years; lean body mass of 34.3±10.0 kg) who had spinal cord injury (SCI) and had undergone amputation, nine participated in the final test. These nine athletes received LEAA supplements (3 times 4.0 g/day) or placebo treatment in a double-blind, randomized, crossover study. We measured variables related to muscular fatigue and inflammatory response before the intense exercise and 4 days after recovery. RESULTS The significant effect of LEAA supplementation was inhibition of circulating IL-6 levels in the LEAA-treated group compared with the placebo group (P < .05). However, no changes were observed in the TNF-α and creatinine kinase levels. Moreover, analysis of variance analysis showed no significant difference in the relative values of muscle soreness. However, the effect size analysis with Cohen's d reported a significant improvement in the relative values of whole body and back muscle soreness. CONCLUSION Our results revealed that LEAA supplementation before and after intense exercise could help reduce muscle soreness and IL-6 levels in wheelchair basketball players.
Collapse
Affiliation(s)
- Young Hwan An
- Department of Physical Education, Konkuk University, SeoulRepublic of Korea
| | - Jisu Kim
- Department of Sports Medicine and Science in Graduate School, Konkuk University, SeoulRepublic of Korea
- Physical Activity and Performance Institute, Konkuk University, SeoulRepublic of Korea
| | - Hee-Jae Kim
- Physical Activity and Performance Institute, Konkuk University, SeoulRepublic of Korea
| | - Kiwon Lim
- Department of Physical Education, Konkuk University, SeoulRepublic of Korea
- Department of Sports Medicine and Science in Graduate School, Konkuk University, SeoulRepublic of Korea
- Physical Activity and Performance Institute, Konkuk University, SeoulRepublic of Korea
| |
Collapse
|
6
|
Waskiw-Ford M, Hannaian S, Duncan J, Kato H, Abou Sawan S, Locke M, Kumbhare D, Moore D. Leucine-Enriched Essential Amino Acids Improve Recovery from Post-Exercise Muscle Damage Independent of Increases in Integrated Myofibrillar Protein Synthesis in Young Men. Nutrients 2020; 12:nu12041061. [PMID: 32290521 PMCID: PMC7231404 DOI: 10.3390/nu12041061] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Leucine-enriched essential amino acids (LEAAs) acutely enhance post-exercise myofibrillar protein synthesis (MyoPS), which has been suggested to be important for muscle repair and recovery. However, the ability of LEAAs to concurrently enhance MyoPS and muscle damage recovery in free-living humans has not been studied. METHODS In a randomized, double-blind, placebo-controlled, parallel-group design, twenty recreationally active males consuming a controlled diet (1.2 g/kg/d of protein) were supplemented thrice daily with 4 g of LEAAs (containing 1.6 g leucine) or isocaloric placebo for four days following an acute bout of lower-body resistance exercise (RE). MyoPS at rest and integrated over 96 h of recovery was measured by D2O. Isometric and isokinetic torque, muscle soreness, Z-band streaming, muscle heat shock protein (HSP) 25 and 72, plasma creatine kinase (CK), and plasma interleukin-6 (IL-6) were measured over 96 h post-RE to assess various direct and indirect markers of muscle damage. RESULTS Integrated MyoPS increased ~72% over 96 h after RE (p < 0.05), with no differences between groups (p = 0.98). Isometric, isokinetic, and total peak torque decreased ~21% by 48 h after RE (p < 0.05), whereas total peak torque was ~10% greater overall during recovery in LEAAs compared to placebo (p < 0.05). There were moderate to large effects for peak torque in favour of LEAAs. Muscle soreness increased during recovery with no statistical differences between groups but small to moderate effects in favour of LEAAs that correlated with changes in peak torque. Plasma CK, plasma IL-6, and muscle HSP25 increased after RE (p < 0.05) but were not significantly different between groups (p ≥ 0.13). Consistent with a trend toward attenuated Z-band streaming in LEAAs (p = 0.07), muscle HSP72 expression was lower (p < 0.05) during recovery in LEAAs compared with placebo. There were no correlations between MyoPS and any measures of muscle damage (p ≥ 0.37). CONCLUSION Collectively, our data suggest that LEAAs moderately attenuated muscle damage without concomitant increases in integrated MyoPS in the days following an acute bout of resistance exercise in free-living recreationally active men.
Collapse
Affiliation(s)
- Marcus Waskiw-Ford
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.W.-F.); (S.H.); (J.D.); (S.A.S.); (M.L.)
| | - Sarkis Hannaian
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.W.-F.); (S.H.); (J.D.); (S.A.S.); (M.L.)
| | - Justin Duncan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.W.-F.); (S.H.); (J.D.); (S.A.S.); (M.L.)
| | - Hiroyuki Kato
- Technology Development Center, Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan;
| | - Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.W.-F.); (S.H.); (J.D.); (S.A.S.); (M.L.)
| | - Marius Locke
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.W.-F.); (S.H.); (J.D.); (S.A.S.); (M.L.)
| | - Dinesh Kumbhare
- Toronto Rehabilitation Institute, Toronto, ON M5G 2A2, Canada;
| | - Daniel Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.W.-F.); (S.H.); (J.D.); (S.A.S.); (M.L.)
- Correspondence: ; Tel.: +1-416-946-4088
| |
Collapse
|
7
|
Fedewa MV, Spencer SO, Williams TD, Becker ZE, Fuqua CA. Effect of branched-Chain Amino Acid Supplementation on Muscle Soreness following Exercise: A Meta-Analysis. INT J VITAM NUTR RES 2019; 89:348-356. [DOI: 10.1024/0300-9831/a000543] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract. Delayed onset muscle soreness (DOMS) is a symptom of exercise-induced muscle damage that occurs following exercise. Previous research has indicated that branched-chain amino acid (BCAA) supplementation may attenuate exercise-induced muscle damage that causes delayed onset muscle soreness, however the results are inconsistent. The primary aim of this study was to examine the previous literature assessing the effect of BCAA supplementation on DOMS following an acute bout of exercise in adults. This review was conducted in accordance with PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-analyses), and identified peer-reviewed articles comparing a BCAA supplement to a placebo non-BCAA supplement following an acute bout of exercise. An electronic search of three databases (EbscoHost, Web of Science, and SPORTDiscus) yielded 42 articles after duplicates were removed. All studies included in the current analyis were: 1) peer-reviewed publications; 2) available in English; 3) utilized a random control design that compared a BCAA group to a placebo control group following exercise; 4) and assessed soreness of muscle tissue during recovery. DOMS was assessed in 61 participants following ingestion of a BCAA supplement over the course of these interventions. The cumulative results of 37 effects gathered from 8 studies published between 2007 and 2017 indicated that BCAA supplementation reduced DOMS following exercise training (ES = 0.7286, 95% CI: 0.5017 to 0.9555, p < 0.001). A large decrease in DOMS occurs following BCAA supplementation after exercise compared to a placebo supplement.
Collapse
Affiliation(s)
- Michael V. Fedewa
- Department of Kinesiology, The University of Alabama, Tuscaloosa, Alabama, United States
| | - Steven O. Spencer
- Department of Kinesiology, The University of Alabama, Tuscaloosa, Alabama, United States
| | - Tyler D. Williams
- Department of Kinesiology, The University of Alabama, Tuscaloosa, Alabama, United States
- Department of Kinesiology, Samford University, Birmingham, Alabama, United States
| | - Zachery E. Becker
- Department of Kinesiology, The University of Alabama, Tuscaloosa, Alabama, United States
| | - Collin A. Fuqua
- Department of Kinesiology, The University of Alabama, Tuscaloosa, Alabama, United States
| |
Collapse
|
8
|
The Effects of Leucine-Enriched Branched-Chain Amino Acid Supplementation on Recovery After High-Intensity Resistance Exercise. Int J Sports Physiol Perform 2019; 14:1081-1088. [DOI: 10.1123/ijspp.2018-0579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/16/2018] [Accepted: 01/08/2019] [Indexed: 11/18/2022]
Abstract
Context: Of the 3 branched-chain amino acids (BCAA), leucine has arguably received the most attribution for the role of BCAA supplementation in alleviating symptoms of exercise-induced muscle damage and facilitation of acute performance recovery. Purpose: To examine whether enrichment of a standard BCAA supplement with additional leucine or a standalone leucine (LEU) supplement differentially affects exercise-induced muscle damage and performance recovery compared with a standard BCAA supplement. Methods: A total of 22 recreationally active male and female subjects were recruited and assigned to consume a BCAA, leucine-enriched BCAA (LBCAA), or LEU supplement for 11 d. On the eighth day, subjects performed eccentric-based resistance exercise (ECRE). Lower-body mean average and peak power, plasma creatine kinase, soreness, and pain threshold were measured before and 24, 48, and 72 h after ECRE. Results: LEU showed decreased mean average power (P = .02) and mean peak power (P = .01) from baseline to 48 h post-ECRE, whereas LBCAA and BCAA only trended toward a reduction at 24 hours post-ECRE. At 48 h post-ECRE, BCAA showed greater recovery of mean peak power than LEU (P = .04). At 24 h post-ECRE, LEU demonstrated a greater increase in plasma creatine kinase from baseline than BCAA (P = .04). Area under the curve for creatine kinase was greater in LEU than BCAA (P = .02), whereas BCAA and LBCAA did not differ. Only LEU demonstrated increased soreness during rest and under muscular tension at 24 and 48 h post-ECRE (P < .05). Conclusions: LBCAA failed to afford any advantages over a standard BCAA supplement for postexercise muscle recovery, whereas a LEU supplement was comparatively ineffective.
Collapse
|
9
|
Matsui Y, Takayanagi S, Ohira T, Watanabe M, Murano H, Furuhata Y, Miyakawa S. Effect of a leucine-enriched essential amino acids mixture on muscle recovery. J Phys Ther Sci 2019; 31:95-101. [PMID: 30774214 PMCID: PMC6348179 DOI: 10.1589/jpts.31.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/24/2018] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The aim of this study was to determine whether the consumption of a leucine-enriched essential amino acid mixture (LEAA), which is known to increase protein synthesis in muscles, alleviates muscle damage and accelerates recovery by ameliorating muscle damage. [Participants and Methods] A double-blind, randomized crossover trial was conducted over a 5-week period. Ten untrained males (age, 23.0 ± 1.6 years) were asked to repeatedly flex and extend their elbows for 10 counts/set × 5 sets at full power while using a dynamometer. The participants took 3.6-g supplements (LEAA mixture or placebo) 3 times daily on day 0 and for the next 7 days. Changes in serum creatine phosphokinase (CPK) activity and myoglobin concentration as markers of muscle tissue damage were evaluated prior to and after exercise and on days 1, 2, 3, 5, and 7. [Results] The relative ratio of the changes in peak serum CPK activity measured on day 5 was significantly lower after taking LEAA than after taking the placebo. [Conclusion] LEAA consumption suppressed exercise-induced elevation of muscle damage markers in blood, which suggests that LEAA could attenuate muscle damage and aid muscle recovery.
Collapse
Affiliation(s)
- Yasushi Matsui
- Faculty of Health Sciences, Tsukuba University of Technology: 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8577, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan
| | | | - Takuya Ohira
- Institute of Food Sciences & Technologies, Ajinomoto Co., Japan
| | - Masahiro Watanabe
- Department of Physical Therapy, Faculty of Health Science, Tsukuba International University, Japan
| | | | | | - Shumpei Miyakawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan
| |
Collapse
|
10
|
Aquilani R, Zuccarelli Ginetto C, Rutili C, Pisano P, Pasini E, Baldissarro E, Verri M, Boschi F. Supplemented amino acids may enhance the walking recovery of elderly subjects after hip fracture surgery. Aging Clin Exp Res 2019; 31:157-160. [PMID: 29667153 DOI: 10.1007/s40520-018-0941-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/27/2018] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to investigate whether supplemented essential amino acids (EAAs) could enhance rehabilitation therapy (Rehab) for recovery of walking capacity in subjects after hip fracture surgery (HFS). Eighty-three elderly subjects with HFS (20 ± 11 days after acute trauma) were eligible for the study and randomized to receive Rehab only (Rehab; n = 27), Rehab + placebo (RP; n = 28) or Rehab + EAAs (RE 8 g/day; n = 28). The patients' walking capacity (m) was measured by 6-min walking distance (6MWD) at admission and at discharge (median 66 days after admission). All patient groups were treated with the same Rehab (2 sessions/day × 5 days/week). The results showed that the gain in 6MWD was higher in RE than in Rehab and RP (p = 0.034; p = 0.024). The study shows that EAA supplementation can enhance walking recovery rate in subjects with HFS.
Collapse
Affiliation(s)
- Roberto Aquilani
- Dipartimento di Biologia e Biotecnologie Università degli Studi di Pavia, Via Ferrata, 1, 27100, Pavia, Italy
| | - Carlo Zuccarelli Ginetto
- Istituto Geriatrico P. Redaelli -Reparti di Riabilitazione Geriatrica e di Mantenimento, Via Leopardi, 3, 20090, Vimodrone, Milano, Italy
| | - Carla Rutili
- Istituto Geriatrico P. Redaelli -Reparti di Riabilitazione Geriatrica e di Mantenimento, Via Leopardi, 3, 20090, Vimodrone, Milano, Italy
| | - Pietro Pisano
- Istituto Geriatrico P. Redaelli -Reparti di Riabilitazione Geriatrica e di Mantenimento, Via Leopardi, 3, 20090, Vimodrone, Milano, Italy
| | - Evasio Pasini
- Divisione di Riabilitazione Cardiologica, Centro Medico di Lumezzane, Istituti Clinici Scientifici "Maugeri", IRCCS, Via G. Mazzini, 129, 25065, Lumezzane, BS, Italy
| | - Eleonora Baldissarro
- Dipartimento di Medicina Fisica e Riabilitativa, Centro Medico di Nervi, Istituti Clinici Scientifici "Maugeri", IRCCS, Via Missolungi 14, 16167, Nervi, GE, Italy
| | - Manuela Verri
- Dipartimento di Biologia e Biotecnologie Università degli Studi di Pavia, Via Ferrata, 1, 27100, Pavia, Italy
| | - Federica Boschi
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Viale Taramelli, 14, 27100, Pavia, Italy.
| |
Collapse
|
11
|
Matsuda T, Kato H, Suzuki H, Mizugaki A, Ezaki T, Ogita F. Within-Day Amino Acid Intakes and Nitrogen Balance in Male Collegiate Swimmers during the General Preparation Phase. Nutrients 2018; 10:E1809. [PMID: 30463354 PMCID: PMC6266158 DOI: 10.3390/nu10111809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 11/16/2022] Open
Abstract
A higher protein intake is recommended for athletes compared to healthy non-exercising individuals. Additionally, the distribution and quality (i.e., leucine content) of the proteins consumed throughout the day should be optimized. This study aimed to determine the nitrogen balance and distribution of protein and amino acid intakes in competitive swimmers during the general preparation phase. Thirteen swimmers (age: 19.7 ± 1.0 years; VO₂max: 63.9 ± 3.7 mL·kg-1·min-1, mean ± standard deviation) participated in a five-day experimental training period. Nutrient intakes were assessed using dietary records. Nitrogen balance was calculated from the daily protein intake and urinary nitrogen excretion. The intake amounts of amino acids and protein at seven eating occasions were determined. The average and population-safe intakes for zero nitrogen balance were estimated at 1.43 and 1.92 g·kg-1·day-1, respectively. The intake amounts of protein and leucine at breakfast, lunch, and dinner satisfied current guidelines for the maximization of muscle protein synthesis, but not in the other four occasions. The population-safe protein intake level in competitive swimmers was in the upper range (i.e., 1.2⁻2.0 g·kg-1·day-1) of the current recommendations for athletes. The protein intake distribution and quality throughout the day may be suboptimal for the maximization of the skeletal muscle adaptive response to training.
Collapse
Affiliation(s)
- Takeshi Matsuda
- Department of Sports and Life Sciences, National Institute of Fitness and Sports, 1 Shiromizu-cho, Kanoya, Kagoshima 891-2393, Japan.
| | - Hiroyuki Kato
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa 210-8681, Japan.
- Olympic and Paralympic Promotional Office, Ajinomoto Co., Inc., 1-15-1 Kyobashi, Tokyo 210-8681, Japan.
| | - Haruka Suzuki
- Olympic and Paralympic Promotional Office, Ajinomoto Co., Inc., 1-15-1 Kyobashi, Tokyo 210-8681, Japan.
| | - Ami Mizugaki
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa 210-8681, Japan.
- Olympic and Paralympic Promotional Office, Ajinomoto Co., Inc., 1-15-1 Kyobashi, Tokyo 210-8681, Japan.
| | - Takahiko Ezaki
- Olympic and Paralympic Promotional Office, Ajinomoto Co., Inc., 1-15-1 Kyobashi, Tokyo 210-8681, Japan.
| | - Futoshi Ogita
- Department of Sports and Life Sciences, National Institute of Fitness and Sports, 1 Shiromizu-cho, Kanoya, Kagoshima 891-2393, Japan.
| |
Collapse
|
12
|
Takeuchi I, Yoshimura Y, Shimazu S, Jeong S, Yamaga M, Koga H. Effects of branched-chain amino acids and vitamin D supplementation on physical function, muscle mass and strength, and nutritional status in sarcopenic older adults undergoing hospital-based rehabilitation: A multicenter randomized controlled trial. Geriatr Gerontol Int 2018; 19:12-17. [PMID: 30358032 DOI: 10.1111/ggi.13547] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/05/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
AIM To investigate the effects of branched-chain amino acids and vitamin D supplementation on physical function, muscle strength, muscle mass, and nutritional status in sarcopenic older adults undergoing hospital-based rehabilitation. METHODS We carried out an 8-week, multicenter, randomized, controlled, blinded outcome, two-cohort parallel group intervention trial of sarcopenic older adults undergoing in-hospital rehabilitation. The eligibility criteria included older adults (aged ≥65 years) with low muscle strength (handgrip strength) and low muscle mass (calf circumference) according to the cut-off values for older Asians. The intervention group received branched-chain amino acids and vitamin D supplementation, whereas the control group did not. Both groups underwent low-intensity resistance training in addition to the post-acute rehabilitation program. The primary outcome of physical function (Functional Independence Measure-motor scores), and the secondary outcomes of muscle strength (handgrip strength), muscle mass (calf circumference) and nutritional status (body mass index) were measured at baseline and at the end of the intervention. RESULTS Finally, a total of 68 patients were analyzed (intention-to-treat analysis): 35 in the intervention group and 33 in the control group. Functional Independence Measure-motor scores increased significantly in both groups over time (P < 0.05). However, no treatment-by-time effects were observed (median estimated difference 2.4, 95% confidence interval -1.2 to 7.1). Handgrip strength, calf circumference and body mass index increased significantly in both groups over time (P < 0.05), with significantly greater improvements in the intervention group (P = 0.041, 0.033 and 0.035, respectively). CONCLUSIONS We showed that an 8-week intervention of branched-chain amino acids and vitamin D supplementation with low-intensity resistance training improves muscle-related outcomes in sarcopenic older adults undergoing hospital-based rehabilitation (UMIN000006238). Geriatr Gerontol Int 2019; 19: 12-17.
Collapse
Affiliation(s)
- Izumi Takeuchi
- Department of Rehabilitation, Heisei Tohya Hospital, Kumamoto, Japan.,Department of Rehabilitation, Suizenji Tohya Hospital, Kumamoto, Japan
| | - Yoshihiro Yoshimura
- Department of Rehabilitation Medicine, Kumamoto Rehabilitation Hospital, Kumamoto, Japan.,Department of Rehabilitation Medicine, Sakurajyuji Hospital, Kumamoto, Japan
| | - Sayuri Shimazu
- Department of nutritional management, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| | - Seungwon Jeong
- Department of Social Science, National Center for Geriatrics and Gerontology, Morioka, Japan
| | - Makio Yamaga
- Department of Rehabilitation Medicine, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| | - Hiroaki Koga
- Department of Rehabilitation Medicine, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| |
Collapse
|
13
|
Yoshimura Y, Bise T, Shimazu S, Tanoue M, Tomioka Y, Araki M, Nishino T, Kuzuhara A, Takatsuki F. Effects of a leucine-enriched amino acid supplement on muscle mass, muscle strength, and physical function in post-stroke patients with sarcopenia: A randomized controlled trial. Nutrition 2018; 58:1-6. [PMID: 30273819 DOI: 10.1016/j.nut.2018.05.028] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 03/01/2018] [Accepted: 05/11/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the effects of a leucine-enriched amino acid supplement on muscle mass, muscle strength, and physical function in post-stroke patients with sarcopenia. METHODS We conducted an eight-wk, two-parallel group intervention, randomized controlled, blinded outcome assessment among 44 post-stroke older patients with sarcopenia. Sarcopenia was defined as a loss of skeletal muscle mass and decreased muscle strength according to the Asian Working Group for Sarcopenia criteria. The intervention group (n = 21) received a leucine-enriched amino acid supplement; the control group (n = 23) did not. Both groups performed low-intensity resistance training in addition to a post-stroke rehabilitation program. A primary outcome of physical function by using the motor domain of Functional Independence Measure (FIM), and secondary outcomes of appendicular muscle mass (skeletal muscle mass index [SMI]) measured via bioelectrical impedance analysis and muscle strength as handgrip strength were measured at baseline and at the end of the intervention. RESULTS The FIM score increased significantly in both groups over time (P < 0.01), with significantly greater improvement in the intervention group than in the control group (P < 0.045). Handgrip strength also increased significantly over time (P <0.05), with significantly greater improvement in the intervention group (P < 0.01). The SMI increased significantly in the intervention group but not in the control group over time, with significantly greater improvement in the intervention group (median estimated difference, 0.50 kg/m2; 95% confidence interval, 0.01-2.11). CONCLUSIONS We demonstrated that an eight-wk intervention consisting of a leucine-enriched amino acid supplementation and low-intensity resistance training increased muscle mass, strength, and physical function in post-stroke patients with sarcopenia.
Collapse
Affiliation(s)
- Yoshihiro Yoshimura
- Department of Rehabilitation Medicine, Kumamoto Rehabilitation Hospital, Kumamoto, Japan.
| | - Takahiro Bise
- Department of Rehabilitation, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| | - Sayuri Shimazu
- Department of Nutritional Management, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| | - Maiko Tanoue
- Department of Rehabilitation, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| | - Yuko Tomioka
- Department of Rehabilitation, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| | - Mai Araki
- Department of Rehabilitation, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| | - Takafumi Nishino
- Department of Rehabilitation, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| | - Aomi Kuzuhara
- Department of Rehabilitation, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| | - Fumihiko Takatsuki
- Department of Consumer Foods & Seasonings, Food Products Division, Ajinomoto Co., Inc., Tokyo, Japan
| |
Collapse
|
14
|
Takegaki J, Ogasawara R, Tamura Y, Takagi R, Arihara Y, Tsutaki A, Nakazato K, Ishii N. Repeated bouts of resistance exercise with short recovery periods activates mTOR signaling, but not protein synthesis, in mouse skeletal muscle. Physiol Rep 2018; 5:5/22/e13515. [PMID: 29180484 PMCID: PMC5704086 DOI: 10.14814/phy2.13515] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 11/24/2022] Open
Abstract
The recovery period between bouts of exercise is one of the major factors influencing the effects of resistance exercise, in addition to exercise intensity and volume. However, the effects of shortening the recovery time between bouts of resistance exercise on subsequent protein synthesis remain unclear. In this study, we investigated the consequences of shortening the recovery time between bouts of resistance exercise on protein synthesis and related processes in mouse skeletal muscles. Eighteen male C57BL/6J mice were randomly subjected to three bouts of resistance exercise with 72 (72H), 24 (24H), or 8 h (8H) of recovery periods between bouts. Resistance exercise, consisting of five sets of 3 s × 10 isometric contractions with 3 min rest between sets, was elicited on the right tibialis anterior muscle via percutaneous electrical stimulation on the deep peroneal nerve under isoflurane anesthesia. The left muscle served as an internal control. Six hours after the third bout of exercise, protein synthesis was found to be activated in the 72H and 24H groups, but not in the 8H group. Phosphorylation of p70S6K at Thr 389, a marker of mammalian target of rapamycin (mTOR) signaling, was increased in all groups, with the 8H group showing the highest magnitude. In contrast, protein carbonylation was observed only in mice in the 8H group. These results suggest that repeated bouts of resistance exercise with 8 h of recovery periods do not effectively increase the levels of muscle protein synthesis despite activation of the mTOR signaling pathway, which likely involves oxidative stress.
Collapse
Affiliation(s)
- Junya Takegaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Yuki Tamura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Ryo Takagi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Arihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Arata Tsutaki
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Naokata Ishii
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Wada Y, Takeda Y, Kuwahata M. Potential Role of Amino Acid/Protein Nutrition and Exercise in Serum Albumin Redox State. Nutrients 2017; 10:nu10010017. [PMID: 29295548 PMCID: PMC5793245 DOI: 10.3390/nu10010017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 01/09/2023] Open
Abstract
Albumin is the major protein in the serum of mammals. It is synthesized exclusively in the liver, before being secreted into the circulation. Similar to skeletal muscle protein, albumin synthesis is stimulated by dietary amino acids and proteins as well as exercise. Albumin has three isoforms based on the redox states of the free cysteine residue at position 34. The redox state of serum albumin has long been extensively investigated in terms of oxidative stress-related chronic diseases, with the redox state of serum albumin having been regarded as a marker of systemic oxidative stress. However, according to recent animal studies, the redox state of serum albumin is modulated by albumin turnover and may also reflect amino acid/protein nutritional status. Furthermore, as the redox state of serum albumin is modulated by exercise training, measuring the pre- and post-exercise redox states of serum albumin in athletes may be useful in assessing amino acid/protein nutritional status and exercise-induced oxidative stress, which are closely associated with skeletal muscle adaptive responses. This article extensively reviews serum albumin and the redox state of albumin in the context of amino acid/protein nutritional status and exercise training.
Collapse
Affiliation(s)
- Yasuaki Wada
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., 51-83 Higashihara, Zama, Kanagawa-Pref. 252-8583, Japan.
| | - Yasuhiro Takeda
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., 51-83 Higashihara, Zama, Kanagawa-Pref. 252-8583, Japan.
| | - Masashi Kuwahata
- Departments of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamo-hangi-cho, Sakyo, Kyoto 606-8522, Japan.
| |
Collapse
|
16
|
Kato H, Miura K, Suzuki K, Bannai M. Leucine-Enriched Essential Amino Acids Augment Muscle Glycogen Content in Rats Seven Days after Eccentric Contraction. Nutrients 2017; 9:nu9101159. [PMID: 29065533 PMCID: PMC5691775 DOI: 10.3390/nu9101159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022] Open
Abstract
Eccentric contractions induce muscle damage, which impairs recovery of glycogen and adenosine tri-phosphate (ATP) content over several days. Leucine-enriched essential amino acids (LEAAs) enhance the recovery in muscles that are damaged after eccentric contractions. However, the role of LEAAs in this process remains unclear. We evaluated the content in glycogen and high energy phosphates molecules (phosphocreatine (PCr), adenosine di-phosphate (ADP) and ATP) in rats that were following electrically stimulated eccentric contractions. Muscle glycogen content decreased immediately after the contraction and remained low for the first three days after the stimulation, but increased seven days after the eccentric contraction. LEAAs administration did not change muscle glycogen content during the first three days after the contraction. Interestingly, however, it induced a further increase in muscle glycogen seven days after the stimulation. Contrarily, ATP content decreased immediately after the eccentric contraction, and remained lower for up to seven days after. Additionally, LEAAs administration did not affect the ATP content over the experimental period. Finally, ADP and PCr levels did not significantly change after the contractions or LEAA administration. LEAAs modulate the recovery of glycogen content in muscle after damage-inducing exercise.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan.
| | - Kyoko Miura
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan.
| | - Katsuya Suzuki
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan.
| | - Makoto Bannai
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan.
| |
Collapse
|
17
|
Ogasawara R, Arihara Y, Takegaki J, Nakazato K, Ishii N. Relationship between exercise volume and muscle protein synthesis in a rat model of resistance exercise. J Appl Physiol (1985) 2017; 123:710-716. [DOI: 10.1152/japplphysiol.01009.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 01/17/2023] Open
Abstract
Resistance exercise (RE) volume is recognized as an important factor that stimulates muscle protein synthesis (MPS) and is considered, at least in part, to be involved in the mammalian target of rapamycin complex 1 (mTORC1)-associated signaling. However, the effects of relatively high-volume RE on mTORC1 and MPS remain unclear. In the present study, we used an animal model of RE to investigate the relationship between RE volume and MPS. Male Sprague-Dawley rats were subjected to RE, and muscle samples were obtained 6 h after performing 1, 3, 5, 10, or 20 sets of RE. Although 1 set of RE did not increase MPS [measured by the surface sensing of translation (SUnSET) method], multiple sets (3, 5, 10, and 20 sets) significantly increased MPS. However, the increase in MPS reached a plateau after 3 or 5 sets of RE, and no further increase in MPS was observed with additional RE sets. In contrast to the MPS response, we observed that p70S6K phosphorylation at Thr389, a marker of mTORC1 activity, and Ser240/244 phosphorylation of rpS6, a downstream target of p70S6K, gradually increased with higher RE volume. The above results suggest that the relationship between RE volume and MPS was not linear. Thus the increase in MPS with increasing RE volume saturates before p70S6K phosphorylation, suggesting a threshold effect for the relationship between p70S6K activation and MPS. NEW & NOTEWORTHY The aim of this study was to investigate the relationship between resistance exercise (RE) volume and muscle protein synthesis. We found that the relationship between RE volume and p70S6K phosphorylation was almost linear, but the increase in muscle protein synthesis began to plateau after approximately five sets of RE.
Collapse
Affiliation(s)
- Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan; and
| | - Yuki Arihara
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan; and
| | - Junya Takegaki
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan; and
| | - Koichi Nakazato
- Department of Exercise Physiology, Nippon Sport Science University, Tokyo, Japan
| | - Naokata Ishii
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan; and
| |
Collapse
|
18
|
West DWD, Abou Sawan S, Mazzulla M, Williamson E, Moore DR. Whey Protein Supplementation Enhances Whole Body Protein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study. Nutrients 2017; 9:E735. [PMID: 28696380 PMCID: PMC5537849 DOI: 10.3390/nu9070735] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 11/29/2022] Open
Abstract
No study has concurrently measured changes in free-living whole body protein metabolism and exercise performance during recovery from an acute bout of resistance exercise. We aimed to determine if whey protein ingestion enhances whole body net protein balance and recovery of exercise performance during overnight (10 h) and 24 h recovery after whole body resistance exercise in trained men. In a double-blind crossover design, 12 trained men (76 ± 8 kg, 24 ± 4 years old, 14% ± 5% body fat; means ± standard deviation (SD)) performed resistance exercise in the evening prior to consuming either 25 g of whey protein (PRO; MuscleTech 100% Whey) or an energy-matched placebo (CHO) immediately post-exercise (0 h), and again the following morning (~10 h of recovery). A third randomized trial, completed by the same participants, involving no exercise and no supplement served as a rested control trial (Rest). Participants ingested [15N]glycine to determine whole body protein kinetics and net protein balance over 10 and 24 h of recovery. Performance was assessed pre-exercise and at 0, 10, and 24 h of recovery using a battery of tests. Net protein balance tended to improve in PRO (P = 0.064; effect size (ES) = 0.61, PRO vs. CHO) during overnight recovery. Over 24 h, net balance was enhanced in PRO (P = 0.036) but not in CHO (P = 0.84; ES = 0.69, PRO vs. CHO), which was mediated primarily by a reduction in protein breakdown (PRO < CHO; P < 0.01. Exercise decreased repetitions to failure (REP), maximal strength (MVC), peak and mean power, and countermovement jump performance (CMJ) at 0 h (all P < 0.05 vs. Pre). At 10 h, there were small-to-moderate effects for enhanced recovery of the MVC (ES = 0.56), mean power (ES = 0.49), and CMJ variables (ES: 0.27-0.49) in PRO. At 24 h, protein supplementation improved MVC (ES = 0.76), REP (ES = 0.44), and peak power (ES = 0.55). In conclusion, whey protein supplementation enhances whole body anabolism, and may improve acute recovery of exercise performance after a strenuous bout of resistance exercise.
Collapse
Affiliation(s)
- Daniel W D West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Michael Mazzulla
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Eric Williamson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Daniel R Moore
- Kinesiology and Physical Education University of Toronto 100 Devonshire Place, Toronto, ON M5S 2C9, Canada.
| |
Collapse
|
19
|
Ives SJ, Bloom S, Matias A, Morrow N, Martins N, Roh Y, Ebenstein D, O'Brien G, Escudero D, Brito K, Glickman L, Connelly S, Arciero PJ. Effects of a combined protein and antioxidant supplement on recovery of muscle function and soreness following eccentric exercise. J Int Soc Sports Nutr 2017; 14:21. [PMID: 28680370 PMCID: PMC5496333 DOI: 10.1186/s12970-017-0179-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND An acute bout of eccentric contractions (ECC) cause muscle fiber damage, inflammation, impaired muscle function (MF) and muscle soreness (MS). Individually, protein (PRO) and antioxidant (AO) supplementation may improve some aspects of recovery from ECC, though have yet to be combined. We sought to determine if combined PRO and AO supplementation (PRO + AO) improves MS and MF following damaging ECC over PRO alone. METHODS Sixty sedentary college-aged males participated in a randomized, single-blind, parallel design study of peak isometric torque (PIMT), peak isokinetic torque (PIKT), thigh circumference (TC), and muscle soreness (MS) of knee extensor muscles measured at baseline, immediately after and 1, 2, 6, and 24 h after completion of 100 maximal ECC. Immediately, 6 h, and 22 h post-ECC, participants consumed either: carbohydrate control (CHO; n = 14), PRO (n = 16), or PRO + AO (n = 17). RESULTS At baseline MS, TC, MF, macro- and micro-nutrient intakes, and total work during the ECC were not different between groups (p > 0.05). PIMT and PIKT (both -25%∆), TC (~1%∆) and MS (~35%∆) all changed with time (p < 0.05). We observed a group by time effect for PIKT (PRO + AO and PRO > CHO, p < 0.05). At 24 h post ECC, there was a trend towards improved relative PIMT (~11%) and PIKT (~17%) for PRO + AO (~17%) and PRO (~11%) compared to CHO. An interaction indicated PRO + AO had lowest MS over time (PRO + AO > PRO & CHO, p < 0.05). CONCLUSIONS Our results suggest PRO facilitates recovery of muscle function within 24 h following ECC, and addition of AO ameliorates MS more than PRO or CHO alone.
Collapse
Affiliation(s)
- Stephen J Ives
- Human Nutrition & Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Samuel Bloom
- Human Nutrition & Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Alexs Matias
- Human Nutrition & Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Noelle Morrow
- Human Nutrition & Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Natalya Martins
- Human Nutrition & Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Yookee Roh
- Human Nutrition & Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Daniel Ebenstein
- Human Nutrition & Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Gabriel O'Brien
- Human Nutrition & Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Daniela Escudero
- Human Nutrition & Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Kevin Brito
- Human Nutrition & Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Leah Glickman
- Human Nutrition & Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | | | - Paul J Arciero
- Human Nutrition & Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| |
Collapse
|
20
|
Kato H, Suzuki H, Inoue Y, Takimoto T, Suzuki K, Kobayashi H. Co-ingestion of carbohydrate with leucine-enriched essential amino acids does not augment acute postexercise muscle protein synthesis in a strenuous exercise-induced hypoinsulinemic state. SPRINGERPLUS 2016; 5:1299. [PMID: 27547673 PMCID: PMC4978655 DOI: 10.1186/s40064-016-2736-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/01/2016] [Indexed: 12/01/2022]
Abstract
Strenuous exercise following overnight fasting increases fat oxidation during exercise, which can modulate training adaptation. However, such exercise induces muscle protein catabolism by decreasing blood insulin concentrations and increasing amino acid oxidation during the exercise. Leucine-enriched essential amino acids (LEAAs) enhance muscle protein synthesis (MPS) at rest and after exercise. However, it remains to be clarified if the co-ingestion of carbohydrate with LEAAs induces an additional increase in MPS, particularly in a hypoinsulinemic state induced by strenuous exercise. Eight-week-old male Sprague–Dawley rats were made to perform strenuous jump exercise (height 35 cm, 200 jumps, 3-s intervals), after which they ingested distilled water and 1 g/kg LEAAs with or without 1 g/kg of glucose. The fractional synthesis rate was determined by measuring the incorporation of l-[ring-2H5]-phenylalanine into skeletal muscle protein. Immediately after the exercise, plasma insulin concentration was significantly lower than that at the basal level. Co-ingestion of glucose with LEAAs alleviated the reduction in plasma insulin concentration, while LEAA ingestion alone did not. LEAA administration with or without glucose led to a higher MPS compared with water administration (P < 0.05). However, the co-ingestion of glucose with LEAAs did not induce further increases in MPS compared with LEAA ingestion alone. Thus, the co-ingestion of glucose with LEAAs does not additionally increase MPS under a strenuous exercise–induced hypoinsulinemic state when glucose is co-ingested with a dose of LEAAs that maximally stimulates MPS.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc, Kawasaki, Kanagawa Japan
| | - Hiromi Suzuki
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc, Kawasaki, Kanagawa Japan
| | - Yoshiko Inoue
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc, Kawasaki, Kanagawa Japan
| | - Tetsuya Takimoto
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc, Kawasaki, Kanagawa Japan
| | - Katsuya Suzuki
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc, Kawasaki, Kanagawa Japan
| | - Hisamine Kobayashi
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc, Kawasaki, Kanagawa Japan
| |
Collapse
|
21
|
Kato H, Nakano S, Inoue Y, Takeda T, Miura K, Nakamura T, Suzuki K, Bannai M. Greater Amino Acid Intake Is Required to Maximize Whole-Body Protein Synthesis Immediately after Endurance Exercise Than at Rest in Endurance-Trained Rats, as Determined by an Indicator Amino Acid Oxidation Method. J Nutr 2016; 146:1546-51. [PMID: 27358420 DOI: 10.3945/jn.115.226373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/20/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The indicator amino acid oxidation (IAAO) method has contributed to establishing protein and amino acid (AA) requirements by determining the optimal protein and AA intake that maximizes whole-body protein synthesis. However, it has not been used with endurance-trained subjects. OBJECTIVE This study aimed to determine the optimal AA intake immediately after endurance exercise and at rest in endurance-trained rats by using the IAAO method. METHODS Four-week-old male Fischer rats were divided into a sedentary (SED) group and a trained (TR) group, which underwent treadmill training 5 d/wk for 6 wk at 26 m/min for 60 min/d. On the metabolic trial day, half of the TR group was provided with test diets after daily treadmill running (TR-PostEx). The other half of the TR group (TR-Rest) and all of the SED group were provided with test diets while at rest. The test diets contained different amounts of AAs (3.3-37.3 g ⋅ kg(-1) ⋅ d(-1)). Phenylalanine in the test diet was replaced with L-[1-(13)C]phenylalanine. The phenylalanine oxidation rate (PheOx) was determined with (13)CO2 enrichment in breath, CO2 excretion rate, and enrichment of phenylalanine in blood during the feeding period. The optimal AA intake was determined with biphasic mixed linear regression crossover analysis for PheOx, which identified a breakpoint at the minimal PheOx in response to graded amounts of AA intake. RESULTS The optimal AA intake in the TR-PostEx group (26.8 g ⋅ kg(-1) ⋅ d(-1); 95% CI: 21.5, 32.1 g ⋅ kg(-1) ⋅ d(-1)) was significantly higher than in the SED (15.1 g ⋅ kg(-1) ⋅ d(-1); 95% CI: 11.1, 19.1 g ⋅ kg(-1) ⋅ d(-1)) and TR-Rest (13.3 g ⋅ kg(-1) ⋅ d(-1); 95% CI: 10.9, 15.7 g ⋅ kg(-1) ⋅ d(-1)) groups, which did not differ. CONCLUSIONS Greater AA intake is required to maximize whole-body protein synthesis immediately after endurance exercise than at rest, but not at rest in endurance-trained rats.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Sayako Nakano
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Yoshiko Inoue
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Tomoko Takeda
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Kyoko Miura
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Taro Nakamura
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Katsuya Suzuki
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Makoto Bannai
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| |
Collapse
|
22
|
Kato H, Suzuki H, Inoue Y, Suzuki K, Kobayashi H. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running. Nutrients 2016; 8:nu8070399. [PMID: 27367725 PMCID: PMC4963875 DOI: 10.3390/nu8070399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 11/16/2022] Open
Abstract
Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d₃-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan.
| | - Hiromi Suzuki
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan.
| | - Yoshiko Inoue
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan.
| | - Katsuya Suzuki
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan.
| | - Hisamine Kobayashi
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan.
| |
Collapse
|
23
|
The Hip Functional Retrieval after Elective Surgery May Be Enhanced by Supplemented Essential Amino Acids. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9318329. [PMID: 27110573 PMCID: PMC4823478 DOI: 10.1155/2016/9318329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/22/2016] [Accepted: 03/06/2016] [Indexed: 11/25/2022]
Abstract
It is not known whether postsurgery systemic inflammation and plasma amino acid abnormalities are still present during rehabilitation of individuals after elective hip arthroplasty (EHA). Sixty subjects (36 females; age 66.58 ± 8.37 years) were randomized to receive 14-day oral EAAs (8 g/day) or a placebo (maltodextrin). At admission to and discharge from the rehabilitation center, serum C-reactive protein (CRP) and venous plasma amino acid concentrations were determined. Post-EHA hip function was evaluated by Harris hip score (HHS) test. Ten matched healthy subjects served as controls. At baseline, all patients had high CRP levels, considerable reduction in several amino acids, and severely reduced hip function (HHS 40.78 ± 2.70 scores). After treatment, inflammation decreased both in the EAA group and in the placebo group. Only EAA patients significantly improved their levels of glycine, alanine, tyrosine, and total amino acids. In addition, they enhanced the rate of hip function recovery (HHS) (from baseline 41.8 ± 1.15 to 76.37 ± 6.6 versus baseline 39.78 ± 4.89 to 70.0 ± 7.1 in placebo one; p = 0.006). The study documents the persistence of inflammation and plasma amino acid abnormalities in post-EHA rehabilitation phase. EAAs enhance hip function retrieval and improve plasma amino acid abnormalities.
Collapse
|