1
|
Santos HO, Cerqueira HS, Tinsley GM. The Effects of Dietary Supplements, Nutraceutical Agents, and Physical Exercise on Myostatin Levels: Hope or Hype? Metabolites 2022; 12:1146. [PMID: 36422286 PMCID: PMC9695935 DOI: 10.3390/metabo12111146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 09/12/2024] Open
Abstract
Myostatin, a secreted growth factor belonging to the transforming growth factor β (TGF-β) family, performs a role in hindering muscle growth by inhibiting protein kinase B (Akt) phosphorylation and the associated activation of hypertrophy pathways (e.g., IGF-1/PI3K/Akt/mTOR pathway). In addition to pharmacological agents, some supplements and nutraceutical agents have demonstrated modulatory effects on myostatin levels; however, the clinical magnitude must be appraised with skepticism before translating the mechanistic effects into muscle hypertrophy outcomes. Here, we review the effects of dietary supplements, nutraceutical agents, and physical exercise on myostatin levels, addressing the promise and pitfalls of relevant randomized clinical trials (RCTs) to draw clinical conclusions. RCTs involving both clinical and sports populations were considered, along with wasting muscle disorders (e.g., sarcopenia) and resistance training-induced muscle hypertrophy, irrespective of disease status. Animal models were considered only to expand the mechanisms of action, and observational data were consulted to elucidate potential cutoff values. Collectively, the effects of dietary supplements, nutraceutical agents, and physical exercise on myostatin mRNA expression in skeletal muscle and serum myostatin levels are not uniform, and there may be reductions, increases, or neutral effects. Large amounts of research using resistance protocols shows that supplements or functional foods do not clearly outperform placebo for modulating myostatin levels. Thus, despite some biological hope in using supplements or certain functional foods to decrease myostatin levels, caution must be exercised not to propagate the hope of the food supplement market, select health professionals, and laypeople.
Collapse
Affiliation(s)
- Heitor O. Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia 38408-100, Brazil
| | | | - Grant M. Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
2
|
Habibi M, Shili C, Sutton J, Goodarzi P, Maylem ER, Spicer L, Pezeshki A. Branched-chain amino acids partially recover the reduced growth of pigs fed with protein-restricted diets through both central and peripheral factors. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:868-882. [PMID: 34632118 PMCID: PMC8484988 DOI: 10.1016/j.aninu.2021.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/24/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
The objective of this study was to assess the growth efficiency of pigs fed with protein-restricted diets supplemented with branched-chain amino acids (BCAA) and limiting amino acids (LAA) above the recommended levels. Following 2 weeks of adaptation, 48 young barrows were weight matched and randomly assigned to 6 treatments (8 pigs/treatment) for 4 weeks: positive control (PC) with standard protein, negative control (NC) with very low protein containing LAA (i.e., Lys, Met, Thr and Trp) at recommended levels, and NC containing LAA 25% (L25), LAA 50% (L50), LAA+BCAA (i.e., Leu, Ile and Val) 25% (LB25) and LAA+BCAA 50% (LB50) more than recommendations. Feed intake (FI) and body weight (BW) were measured daily and weekly, respectively. At week 6, blood samples were collected, all pigs euthanized and tissue samples collected. The data were analyzed by univariate GLM or mixed procedure (SPSS) and the means were separated using paired Student's t-test followed by Benjamini-Hochberg correction. Relative to PC, NC had decreased FI, BW, unsupplemented plasma essential amino acids, serum insulin-like growth factor-I (IGF-I) and hypothalamic neuropeptide Y (NPY) (P < 0.01). Compared to NC, L25 or L50, LB50 had increased BW and serum IGF-I and decreased plasma serotonin and both LB25 and LB50 had higher FI, plasma BCAA, hypothalamic 5-hydroxytryptamine-receptor 2A and NPY and jejunal 5-hydroxytryptamine-receptor 7 (P < 0.01). Overall, supplementation of protein-restricted diets with increased levels of dietary BCAA partially recovered the negative effects of these diets on growth through improved IGF-I concentration and FI, which was associated with changed expression of serotonin receptors, blood AA and hypothalamic NPY.
Collapse
Affiliation(s)
- Mohammad Habibi
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Cedrick Shili
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Julia Sutton
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Parniyan Goodarzi
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Excel Rio Maylem
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Leon Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
3
|
Caputo M, Pigni S, Agosti E, Daffara T, Ferrero A, Filigheddu N, Prodam F. Regulation of GH and GH Signaling by Nutrients. Cells 2021; 10:1376. [PMID: 34199514 PMCID: PMC8227158 DOI: 10.3390/cells10061376] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Growth hormone (GH) and insulin-like growth factor-1 (IGF-I) are pleiotropic hormones with important roles in lifespan. They promote growth, anabolic actions, and body maintenance, and in conditions of energy deprivation, favor catabolic feedback mechanisms switching from carbohydrate oxidation to lipolysis, with the aim to preserve protein storages and survival. IGF-I/insulin signaling was also the first one identified in the regulation of lifespan in relation to the nutrient-sensing. Indeed, nutrients are crucial modifiers of the GH/IGF-I axis, and these hormones also regulate the complex orchestration of utilization of nutrients in cell and tissues. The aim of this review is to summarize current knowledge on the reciprocal feedback among the GH/IGF-I axis, macro and micronutrients, and dietary regimens, including caloric restriction. Expanding the depth of information on this topic could open perspectives in nutrition management, prevention, and treatment of GH/IGF-I deficiency or excess during life.
Collapse
Affiliation(s)
- Marina Caputo
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Stella Pigni
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
| | - Emanuela Agosti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Tommaso Daffara
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
| | - Alice Ferrero
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
| | - Nicoletta Filigheddu
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Flavia Prodam
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
4
|
Amino Acids in Health and Endocrine Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:97-109. [PMID: 32761572 DOI: 10.1007/978-3-030-45328-2_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Dietary amino acids play an important role in maintaining health. Branched chain amino acids can adversely increase blood pressure whereas arginine and citrulline can reduce it. D-amino acids play important roles in several cell types including testis, the nervous system and adrenal glands. Several amino acids also can have dramatic effects on diabetes; branched chain amino acids, phenylalanine and tyrosine have been implicated while others, namely arginine and citrulline can improve outcomes. Leucine has been shown to play important roles in muscle primarily through the mTOR pathway though this effect does not translate across every population. Glutamine, arginine and D-aspartate also exert their muscle effects through mTOR. Relationships between amino acids and endocrine function include that of glucocorticoids, thyroid function, glucagon-like peptide 1 (GLP-1), ghrelin, insulin-like growth factor-1 (IGF-1) and leptin. Leucine, for example, can alleviate the effect of dexamethasone on muscle protein accretion. Interestingly, amino acid transporters play an important role in thyroid function. Several amino acids have been shown to increase GLP-1 levels in non-diabetics when administered orally. Similarly, several amino acids increase ghrelin levels in different species while cysteine can decrease it in mice. There is evidence to suggest that the arginine/NO pathway may be involved in modulating some of the effects of ghrelin on cells. In regard to IGF-1, branched chain amino acids can increase levels in adults while tryptophan and phenylalanine have been shown to increase levels in infants. Finally, leptin levels can be elevated by branched chain amino acids while restricting leucine in high fat diets can increase leptin sensitivity.
Collapse
|
5
|
Church DD, Schwarz NA, Spillane MB, McKinley-Barnard SK, Andre TL, Ramirez AJ, Willoughby DS. l-Leucine Increases Skeletal Muscle IGF-1 but Does Not Differentially Increase Akt/mTORC1 Signaling and Serum IGF-1 Compared to Ursolic Acid in Response to Resistance Exercise in Resistance-Trained Men. J Am Coll Nutr 2016; 35:627-638. [PMID: 27331824 DOI: 10.1080/07315724.2015.1132019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Ursolic acid administration following resistance exercise increases mammalian target of rapamycin complex 1 (mTORC1) activity and skeletal muscle IGF-1 concentration in murines in a manner similar to l-leucine yet remains unexamined in humans. This study examined serum and skeletal muscle insulin-like growth factor-1 (IGF-1) and Akt/mTORC1 signaling activity following ingestion of either ursolic acid or l-leucine immediately after resistance exercise. METHODS Nine resistance-trained men performed 3 lower-body resistance exercise sessions involving 4 sets of 8-10 repetitions at 75%-80% one repetition maximum (1-RM) on the angled leg press and knee extension exercises. Immediately following each session, participants orally ingested 3 g cellulose placebo (PLC), l-leucine (LEU), or ursolic acid (UA). Blood samples were obtained pre-exercise and at 0.5, 2, and 6 hours postexercise. Muscle biopsies were obtained pre-exercise and at 2 and 6 hours postexercise. RESULTS Plasma leucine increased in LEU at 2 hours postexercise compared to PLC (p = 0.04). Plasma ursolic acid increased in UA at 2 h and 6 hours postexercise compared to PLC and LEU (p < 0.003). No significant differences were observed for serum insulin (p = 0.98) and IGF-1 (p = 0.99) or skeletal muscle IGF-1 receptor (IGF-1R; p = 0.84), Akt (p = 0.55), mTOR (p = 0.09), and p70S6K (p = 0.98). Skeletal muscle IGF-1 was significantly increased in LEU at 2 hours postexercise (p = 0.03) and 6 hours postexercise (p = 0.04) compared to PLC and UA. CONCLUSION Three grams of l-leucine and ursolic acid had no effect on Akt/mTORC1 signaling or serum insulin or IGF-1; however, l-leucine increased skeletal muscle IGF-1 concentration in resistance-trained men.
Collapse
Affiliation(s)
- David D Church
- a Exercise and Biochemical Nutrition Lab, Department of Health , Human Performance, and Recreation, College of Arts and Sciences, Baylor University , Waco , Texas
| | - Neil A Schwarz
- a Exercise and Biochemical Nutrition Lab, Department of Health , Human Performance, and Recreation, College of Arts and Sciences, Baylor University , Waco , Texas
| | - Mike B Spillane
- a Exercise and Biochemical Nutrition Lab, Department of Health , Human Performance, and Recreation, College of Arts and Sciences, Baylor University , Waco , Texas
| | - Sarah K McKinley-Barnard
- a Exercise and Biochemical Nutrition Lab, Department of Health , Human Performance, and Recreation, College of Arts and Sciences, Baylor University , Waco , Texas
| | - Tom L Andre
- a Exercise and Biochemical Nutrition Lab, Department of Health , Human Performance, and Recreation, College of Arts and Sciences, Baylor University , Waco , Texas
| | - Alejandro J Ramirez
- b Mass Spectrometry Center , College of Arts and Sciences, Baylor University , Waco , Texas
| | - Darryn S Willoughby
- a Exercise and Biochemical Nutrition Lab, Department of Health , Human Performance, and Recreation, College of Arts and Sciences, Baylor University , Waco , Texas
| |
Collapse
|