1
|
Wu S, Fang R, Rietveld MH, Torremans JRG, Liu Y, Gu Z, Bouwes Bavinck JN, Vermeer MH, El Ghalbzouri A. Identification of Small-Molecule Inhibitors Targeting Different Signaling Pathways in Cancer-Associated Fibroblast Reprogramming under Tumor-Stroma Interaction. J Invest Dermatol 2025; 145:65-76.e13. [PMID: 38848988 DOI: 10.1016/j.jid.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 06/09/2024]
Abstract
Cancer-associated fibroblasts (CAFs) interact reciprocally with tumor cells through various signaling pathways in many cancer types, including cutaneous squamous cell carcinoma. Among normal fibroblast subtypes, papillary fibroblasts (PFs) and reticular fibroblasts (RFs) respond distinctly to tumor cell signaling, eventuating the differentiation of RFs rather than PFs into CAFs. The regulation of subtype differentiation in fibroblasts remains poorly explored. In this study, we assessed the differences between PFs, RFs, and CAFs and examined the effects of small-molecule inhibitors targeting the TGFβ, phosphoinositide 3-kinase/protein kinase B/mTOR, and NOTCH pathways on the tumor-promoting property of CAFs and CAF reprogramming in 2-dimensional and 3-dimensional cultures. Blocking TGFβ and phosphoinositide 3-kinase strongly deactivated and concurrently induced a PF phenotype in RFs and CAFs. Three-dimensional coculturing of a cutaneous squamous cell carcinoma cell line MET2 with RFs or CAFs led to enhanced tumor invasion, RF-CAF transition, and cytokine production, which were further repressed by blocking TGFβ and phosphoinositide 3-kinase/mTOR pathways but not NOTCH pathway. In conclusion, the study identified biomarkers for PFs, RFs, and CAFs and displayed different effects of blocking key signaling pathways in CAFs and tumor cell-CAF interplay. These findings prompted a CAF-to-PF therapeutic strategy and provided perspectives of using included inhibitors in CAF-based cancer therapy.
Collapse
Affiliation(s)
- Shidi Wu
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rui Fang
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research Center, Heidelberg, Germany
| | - Marion H Rietveld
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen R G Torremans
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yang Liu
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Zili Gu
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan N Bouwes Bavinck
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
2
|
Ajaykumar CB, Rajkumar S, Suresh B, Birappa G, Gowda DAA, Jayachandran A, Kim KS, Hong SH, Ramakrishna S. Advances in applications of the CRISPR/Cas9 system for respiratory diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:127-147. [PMID: 39824578 DOI: 10.1016/bs.pmbts.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Genetic and environmental factors can have an impact on lung and respiratory disorders which are associated with severe symptoms and have high mortality rates. Many respiratory diseases are significantly influenced by genetic or epigenetic factors. Gene therapy offers a powerful approach providing therapeutic treatment for lung diseases. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (CRISPR/Cas9) are promising gene modifying tool that can edit the genome. The utilization of CRISPR/Cas9 systems in the investigation of respiratory disorders has resulted in advancements such as the rectification of deleterious mutations in patient-derived cells and the alteration of genes in multiple mammalian lung disease models. New avenues of treatment for lung disorders have been opened up by advances in CRISPR/Cas9 research. In this chapter, we discuss the known genes and mutations that cause several common respiratory disorders such as COPD, asthma, IPF, and ARDS. We further review the current research using CRISPR/Cas9 in numerous respiratory disorders and possible therapeutic treatments.
Collapse
Affiliation(s)
- C Bindu Ajaykumar
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Sripriya Rajkumar
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Girish Birappa
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - D A Ayush Gowda
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Aparna Jayachandran
- Fiona Elsey Cancer Research Institute, VIC, Australia; Federation University, VIC, Australia
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; College of Medicine, Hanyang University, Seoul, Korea.
| | | | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; College of Medicine, Hanyang University, Seoul, Korea.
| |
Collapse
|
3
|
Younesi FS, Miller AE, Barker TH, Rossi FMV, Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol 2024; 25:617-638. [PMID: 38589640 DOI: 10.1038/s41580-024-00716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew E Miller
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Fabio M V Rossi
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada.
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Moreno SE, Enwerem-Lackland I, Dreaden K, Massee M, Koob TJ, Harper JR. Human amniotic membrane modulates collagen production and deposition in vitro. Sci Rep 2024; 14:15998. [PMID: 38987293 PMCID: PMC11237048 DOI: 10.1038/s41598-024-64364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Pathological fibrosis is a significant complication of surgical procedures resulting from the accumulation of excess collagen at the site of repair which can compromise the tissue architecture and severely impede the function of the affected tissue. Few prophylactic treatments exist to counteract this process; however, the use of amniotic membrane allografts has demonstrated promising clinical outcomes. This study aimed to identify the underlying mechanism of action by utilizing relevant models that accurately represent the pathophysiology of the disease state. This study employed a pro-fibrotic in vitro system using TGFβ1 stimulation and macromolecular crowding techniques to evaluate the mechanism by which amniotic membrane allografts regulate collagen biosynthesis and deposition. Following treatment with dehydrated human amnion chorion membrane (DHACM), subsequent RNA sequencing and functional enrichment with Reactome pathway analysis indicated that amniotic membranes are indeed capable of regulating genes associated with the composition and function of the extracellular matrix. Furthermore, macromolecular crowding was used in vitro to expand the evaluation to include both the effects of DHACM and a lyophilized human amnion/chorion membrane (LHACM). DHACM and LHACM regulate the TGFβ pathway and myofibroblast differentiation. Additionally, both DHACM and LHACM modulate the production, secretion, and deposition of collagen type I, a primary target for pathological fibrosis. These observations support the hypothesis that amniotic membranes may interrupt pathological fibrosis by regulating collagen biosynthesis and associated pathways.
Collapse
Affiliation(s)
- Sarah E Moreno
- MIMEDX Group, Inc., 1775 West Oak Commons Court NE, Marietta, GA, 30062, USA
| | | | | | - Michelle Massee
- MIMEDX Group, Inc., 1775 West Oak Commons Court NE, Marietta, GA, 30062, USA.
| | - Thomas J Koob
- MIMEDX Group, Inc., 1775 West Oak Commons Court NE, Marietta, GA, 30062, USA
| | - John R Harper
- MIMEDX Group, Inc., 1775 West Oak Commons Court NE, Marietta, GA, 30062, USA
| |
Collapse
|
5
|
Kadam AH, Schnitzer JE. Insights into Disease Progression of Translational Preclinical Rat Model of Interstitial Pulmonary Fibrosis through Endpoint Analysis. Cells 2024; 13:515. [PMID: 38534359 PMCID: PMC10969066 DOI: 10.3390/cells13060515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease characterized by the relentless deposition of extracellular matrix (ECM), causing lung distortions and dysfunction. Animal models of human IPF can provide great insight into the mechanistic pathways underlying disease progression and a means for evaluating novel therapeutic approaches. In this study, we describe the effect of bleomycin concentration on disease progression in the classical rat bleomycin model. In a dose-response study (1.5, 2, 2.5 U/kg i.t), we characterized lung fibrosis at day 14 after bleomycin challenge using endpoints including clinical signs, inflammatory cell infiltration, collagen content, and bronchoalveolar lavage fluid-soluble profibrotic mediators. Furthermore, we investigated fibrotic disease progression after 2 U/kg i.t. bleomycin administration at days 3, 7, and 14 by quantifying the expression of clinically relevant signaling molecules and pathways, epithelial mesenchymal transition (EMT) biomarkers, ECM components, and histopathology of the lung. A single bleomycin challenge resulted in a progressive fibrotic response in rat lung tissue over 14 days based on lung collagen content, histopathological changes, and modified Ashcroft score. The early fibrogenesis phase (days 3 to 7) is associated with an increase in profibrotic mediators including TGFβ1, IL6, TNFα, IL1β, CINC1, WISP1, VEGF, and TIMP1. In the mid and late fibrotic stages, the TGFβ/Smad and PDGF/AKT signaling pathways are involved, and clinically relevant proteins targeting galectin-3, LPA1, transglutaminase-2, and lysyl oxidase 2 are upregulated on days 7 and 14. Between days 7 and 14, the expressions of vimentin and α-SMA proteins increase, which is a sign of EMT activation. We confirmed ECM formation by increased expressions of procollagen-1Aα, procollagen-3Aα, fibronectin, and CTGF in the lung on days 7 and 14. Our data provide insights on a complex network of several soluble mediators, clinically relevant signaling pathways, and target proteins that contribute to drive the progressive fibrotic phenotype from the early to late phase (active) in the rat bleomycin model. The framework of endpoints of our study highlights the translational value for pharmacological interventions and mechanistic studies using this model.
Collapse
Affiliation(s)
| | - Jan E. Schnitzer
- Proteogenomics Research Institute for Systems Medicine (PRISM), 505 Coast Blvd. South, La Jolla, CA 92037, USA;
| |
Collapse
|
6
|
Lloyd SM, He Y. Exploring Extracellular Matrix Crosslinking as a Therapeutic Approach to Fibrosis. Cells 2024; 13:438. [PMID: 38474402 PMCID: PMC10931134 DOI: 10.3390/cells13050438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The extracellular matrix (ECM) provides structural support for tissues and regulatory signals for resident cells. ECM requires a careful balance between protein accumulation and degradation for homeostasis. Disruption of this balance can lead to pathological processes such as fibrosis in organs across the body. Post-translational crosslinking modifications to ECM proteins such as collagens alter ECM structure and function. Dysregulation of crosslinking enzymes as well as changes in crosslinking composition are prevalent in fibrosis. Because of the crucial roles these ECM crosslinking pathways play in disease, the enzymes that govern crosslinking events are being explored as therapeutic targets for fibrosis. Here, we review in depth the molecular mechanisms underlying ECM crosslinking, how ECM crosslinking contributes to fibrosis, and the therapeutic strategies being explored to target ECM crosslinking in fibrosis to restore normal tissue structure and function.
Collapse
Affiliation(s)
| | - Yupeng He
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, USA;
| |
Collapse
|
7
|
Wodtke R, Laube M, Hauser S, Meister S, Ludwig FA, Fischer S, Kopka K, Pietzsch J, Löser R. Preclinical evaluation of an 18F-labeled N ε-acryloyllysine piperazide for covalent targeting of transglutaminase 2. EJNMMI Radiopharm Chem 2024; 9:1. [PMID: 38165538 PMCID: PMC10761660 DOI: 10.1186/s41181-023-00231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Transglutaminase 2 (TGase 2) is a multifunctional protein and has a prominent role in various (patho)physiological processes. In particular, its transamidase activity, which is rather latent under physiological conditions, gains importance in malignant cells. Thus, there is a great need of theranostic probes for targeting tumor-associated TGase 2, and targeted covalent inhibitors appear to be particularly attractive as vector molecules. Such an inhibitor, equipped with a radionuclide suitable for noninvasive imaging, would be supportive for answering the general question on the possibility for functional characterization of tumor-associated TGase 2. For this purpose, the recently developed 18F-labeled Nε-acryloyllysine piperazide [18F]7b, which is a potent and selective irreversible inhibitor of TGase 2, was subject to a detailed radiopharmacological characterization herein. RESULTS An alternative radiosynthesis of [18F]7b is presented, which demands less than 300 µg of the respective trimethylammonio precursor per synthesis and provides [18F]7b in good radiochemical yields (17 ± 7%) and high (radio)chemical purities (≥ 99%). Ex vivo biodistribution studies in healthy mice at 5 and 60 min p.i. revealed no permanent enrichment of 18F-activity in tissues with the exception of the bone tissue. In vivo pretreatment with ketoconazole and in vitro murine liver microsome studies complemented by mass spectrometric analysis demonstrated that bone uptake originates from metabolically released [18F]fluoride. Further metabolic transformations of [18F]7b include mono-hydroxylation and glucuronidation. Based on blood sampling data and liver microsome experiments, pharmacokinetic parameters such as plasma and intrinsic clearance were derived, which substantiated the apparently rapid distribution of [18F]7b in and elimination from the organisms. A TGase 2-mediated uptake of [18F]7b in different tumor cell lines could not be proven. Moreover, evaluation of [18F]7b in melanoma tumor xenograft models based on A375-hS100A4 (TGase 2 +) and MeWo (TGase 2 -) cells by ex vivo biodistribution and PET imaging studies were not indicative for a specific targeting. CONCLUSION [18F]7b is a valuable radiometric tool to study TGase 2 in vitro under various conditions. However, its suitability for targeting tumor-associated TGase 2 is strongly limited due its unfavorable pharmacokinetic properties as demonstrated in rodents. Consequently, from a radiochemical perspective [18F]7b requires appropriate structural modifications to overcome these limitations.
Collapse
Affiliation(s)
- Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Sebastian Meister
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Friedrich-Alexander Ludwig
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Reik Löser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany.
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany.
| |
Collapse
|
8
|
Soltani F, Kaartinen MT. Transglutaminases in fibrosis-overview and recent advances. Am J Physiol Cell Physiol 2023; 325:C885-C894. [PMID: 37642242 DOI: 10.1152/ajpcell.00322.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Transglutaminases (TGs) are a family of protein cross-linking enzymes that are capable of stiffening and insolubilizing proteins and creating protein networks, and thereby altering biological functions of proteins. Their role in fibrosis progression has been widely investigated with a focus on kidney, lung, liver, and heart where activity is triggered by various stimuli including hypoxia, inflammation, and hyperglycemia. TG2 has been considered one of the key enzymes in the pathogenesis of fibrosis mainly through transforming growth factor beta (TGF-beta) signaling and matrix cross-linking mechanisms. Although TG2 has been most widely studied in this context, the involvement of other TGs, TG1 and Factor XIII-A (FXIII-A), is beginning to emerge. This mini-review highlights the major steps taken in the TG and fibrosis research and summarizes the most recent advances and contributions of TG2, TG1, and FXIII-A to the progression of fibrosis in various animal models. Also, their mechanisms of action as well as therapeutic prospects are discussed.
Collapse
Affiliation(s)
- Fatemeh Soltani
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Mari T Kaartinen
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences), McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Ezzo M, Hinz B. Novel approaches to target fibroblast mechanotransduction in fibroproliferative diseases. Pharmacol Ther 2023; 250:108528. [PMID: 37708995 DOI: 10.1016/j.pharmthera.2023.108528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The ability of cells to sense and respond to changes in mechanical environment is vital in conditions of organ injury when the architecture of normal tissues is disturbed or lost. Among the various cellular players that respond to injury, fibroblasts take center stage in re-establishing tissue integrity by secreting and organizing extracellular matrix into stabilizing scar tissue. Activation, activity, survival, and death of scar-forming fibroblasts are tightly controlled by mechanical environment and proper mechanotransduction ensures that fibroblast activities cease after completion of the tissue repair process. Conversely, dysregulated mechanotransduction often results in fibroblast over-activation or persistence beyond the state of normal repair. The resulting pathological accumulation of extracellular matrix is called fibrosis, a condition that has been associated with over 40% of all deaths in the industrialized countries. Consequently, elements in fibroblast mechanotransduction are scrutinized for their suitability as anti-fibrotic therapeutic targets. We review the current knowledge on mechanically relevant factors in the fibroblast extracellular environment, cell-matrix and cell-cell adhesion structures, stretch-activated membrane channels, stress-regulated cytoskeletal structures, and co-transcription factors. We critically discuss the targetability of these elements in therapeutic approaches and their progress in pre-clinical and/or clinical trials to treat organ fibrosis.
Collapse
Affiliation(s)
- Maya Ezzo
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Zhou X, Trinh-Minh T, Matei AE, Györfi AH, Hong X, Bergmann C, Schett G, Atkinson J, Bowcutt R, Patel J, Johnson TS, Distler JHW. Amelioration of Fibrotic Remodeling of Human 3-Dimensional Full-Thickness Skin by Transglutamase 2 Inhibition. Arthritis Rheumatol 2023; 75:1619-1627. [PMID: 37057394 DOI: 10.1002/art.42518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 02/09/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
OBJECTIVE Fibrotic tissues are characterized by excessive crosslinking between extracellular matrix (ECM) proteins, rendering them more resistant to degradation. Although increased crosslinking of ECM is thought to play an important role for progression of tissue fibrosis, enhanced ECM crosslinking has not yet been targeted therapeutically in systemic sclerosis (SSc). Here, we investigated the role of transglutaminase 2 (TG2), a central crosslinking enzyme, in the activation of SSc fibroblasts. METHODS We assessed TG2 expression and activity using TG2 staining, Western blotting, and TG2 activity assays. We inhibited TG2 in fibroblasts cultured under standard 2-dimensional conditions and in a 3-dimensional full-thickness equivalent skin model using monoclonal inhibitory anti-TG2 antibodies. RESULTS TG2 expression was increased in the skin of patients with SSc compared with healthy controls, with levels particularly high in patients with SSc-associated interstitial lung disease. TG2 expression and TG2 activity were also increased in SSc dermal fibroblasts. Moreover, the levels of circulating TG2 in the plasma samples from SSc patients were increased versus samples from healthy controls. Anti-TG2 antibodies did not show consistent antifibrotic effects across different fibroblast cell lines under 2-dimensional culture conditions; however, anti-TG2 antibodies effectively reduced transforming growth factor β-induced dermal thickening, myofibroblast differentiation, and collagen accumulation in the 3-dimensional full-thickness model of human skin. CONCLUSION We provide the first evidence, to our knowledge, that inhibition of TG2 might be a potential antifibrotic approach in SSc. Our findings have translational potential as anti-TG2 antibodies are currently evaluated in a phase II clinical trial in chronic allograft injury and would thus be available for clinical studies in SSc (ClinicalTrials.gov identifier: NCT04335578).
Collapse
Affiliation(s)
- Xiang Zhou
- Clinic for Rheumatology University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, and Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany
| | - Thuong Trinh-Minh
- Clinic for Rheumatology University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, and Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany
| | - Alexandru-Emil Matei
- Clinic for Rheumatology University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, and Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany
| | - Andrea-Hermina Györfi
- Clinic for Rheumatology University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, and Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany
| | - Xuezhi Hong
- Clinic for Rheumatology University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, and Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, and Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, and Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | | | | | | | | | - Jörg H W Distler
- Clinic for Rheumatology University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, and Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
11
|
Al-U'datt DGF, Tranchant CC, Alu'datt M, Abusara S, Al-Dwairi A, AlQudah M, Al-Shboul O, Hiram R, Altuntas Y, Jaradat S, Alzoubi KH. Inhibition of transglutaminase 2 (TG2) ameliorates ventricular fibrosis in isoproterenol-induced heart failure in rats. Life Sci 2023; 321:121564. [PMID: 36931499 DOI: 10.1016/j.lfs.2023.121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
AIMS Transglutaminase (TG) inhibitors represent promising therapeutic interventions in cardiac fibrosis and related dysfunctions. However, it remains unknown how TG inhibition, TG2 in particular, affects the signaling systems that drive pathological fibrosis. This study aimed to examine the effect TG inhibition by cystamine on the progression of isoproterenol (ISO)-induced cardiac fibrosis and dysfunction in rats. MATERIALS AND METHODS Cardiac fibrosis was established by intraperitoneal injection of ISO to rats (ISO group), followed by 6 weeks of cystamine injection (ISO + Cys group). The control groups were administered normal saline alone or with cystamine. Hemodynamics, lipid profile, liver enzymes, urea, and creatinine were assessed in conjunction with heart failure markers (serum NT-proANP and cTnI). Left ventricular (LV) and atrial (LA) fibrosis, total collagen content, and mRNA expression of profibrotic markers including TG2 were quantified by Masson's trichrome staining, LC-MS/MS and quantitative PCR, respectively. KEY FINDINGS Cystamine administration to ISO rats significantly decreased diastolic and mean arterial pressures, total cholesterol, triglycerides, LDL, liver enzymes, urea, and creatinine levels, while increasing HDL. NT-proANP and cTnI serum levels remained unchanged. In LV tissues, significant reductions in ISO-induced fibrosis and elevated total collagen content were achieved after cystamine treatment, together with a reduction in TG2 concentration. Reduced mRNA expression of several profibrotic genes (COL1A1, FN1, MMP-2, CTGF, periostin, CX43) was also evidenced in LV tissues of ISO rats upon cystamine administration, whereas TGF-β1 expression was depressed in LA tissues. Cystamine decreased TG2 mRNA expression in the LV of control rats, while LV expression of TG2 was relatively low in ISO rats irrespective of cystamine treatment. SIGNIFICANCE TG2 inhibition by cystamine in vivo exerted cardioprotective effects against ISO-induced cardiac fibrosis in rats decreasing the LV abundance of several profibrotic markers and the content of TG2 and collagen, suggesting that TG2 pharmacological inhibition could be beneficial to alleviate cardiac fibrosis.
Collapse
Affiliation(s)
- Doa'a G F Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Carole C Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, New Brunswick, Canada
| | - Muhammad Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Sara Abusara
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammad AlQudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; Physiology Department, Arabian Gulf University, Manama, Bahrain
| | - Othman Al-Shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Roddy Hiram
- Montreal Heart Institute and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Yasemin Altuntas
- Montreal Heart Institute and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Saied Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
12
|
The Impact of Nε-Acryloyllysine Piperazides on the Conformational Dynamics of Transglutaminase 2. Int J Mol Sci 2023; 24:ijms24021650. [PMID: 36675164 PMCID: PMC9865645 DOI: 10.3390/ijms24021650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
In addition to the classic functions of proteins, such as acting as a biocatalyst or binding partner, the conformational states of proteins and their remodeling upon stimulation need to be considered. A prominent example of a protein that undergoes comprehensive conformational remodeling is transglutaminase 2 (TGase 2), the distinct conformational states of which are closely related to particular functions. Its involvement in various pathophysiological processes, including fibrosis and cancer, motivates the development of theranostic agents, particularly based on inhibitors that are directed toward the transamidase activity. In this context, the ability of such inhibitors to control the conformational dynamics of TGase 2 emerges as an important parameter, and methods to assess this property are in great demand. Herein, we describe the application of the switchSENSE® principle to detect conformational changes caused by three irreversibly binding Nε-acryloyllysine piperazides, which are suitable radiotracer candidates of TGase 2. The switchSENSE® technique is based on DNA levers actuated by alternating electric fields. These levers are immobilized on gold electrodes with one end, and at the other end of the lever, the TGase 2 is covalently bound. A novel computational method is introduced for describing the resulting lever motion to quantify the extent of stimulated conformational TGase 2 changes. Moreover, as a complementary biophysical method, native polyacrylamide gel electrophoresis was performed under similar conditions to validate the results. Both methods prove the occurrence of an irreversible shift in the conformational equilibrium of TGase 2, caused by the binding of the three studied Nε-acryloyllysine piperazides.
Collapse
|
13
|
Inhibition of Transglutaminase 2 Reduces Peritoneal Injury in a Chlorhexidine-Induced Peritoneal Fibrosis Model. J Transl Med 2023; 103:100050. [PMID: 36870292 DOI: 10.1016/j.labinv.2022.100050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
Long-term peritoneal dialysis (PD) is often associated with peritoneal dysfunction leading to withdrawal from PD. The characteristic pathologic features of peritoneal dysfunction are widely attributed to peritoneal fibrosis and angiogenesis. The detailed mechanisms remain unclear, and treatment targets in clinical settings have yet to be identified. We investigated transglutaminase 2 (TG2) as a possible novel therapeutic target for peritoneal injury. TG2 and fibrosis, inflammation, and angiogenesis were investigated in a chlorhexidine gluconate (CG)-induced model of peritoneal inflammation and fibrosis, representing a noninfectious model of PD-related peritonitis. Transforming growth factor (TGF)-β type I receptor (TGFβR-I) inhibitor and TG2-knockout mice were used for TGF-β and TG2 inhibition studies, respectively. Double immunostaining was performed to identify cells expressing TG2 and endothelial-mesenchymal transition (EndMT). In the rat CG model of peritoneal fibrosis, in situ TG2 activity and protein expression increased during the development of peritoneal fibrosis, as well as increases in peritoneal thickness and numbers of blood vessels and macrophages. TGFβR-I inhibitor suppressed TG2 activity and protein expression, as well as peritoneal fibrosis and angiogenesis. TGF-β1 expression, peritoneal fibrosis, and angiogenesis were suppressed in TG2-knockout mice. TG2 activity was detected by α-smooth muscle actin-positive myofibroblasts, CD31-positive endothelial cells, and ED-1-positive macrophages. CD31-positive endothelial cells in the CG model were α-smooth muscle actin-positive, vimentin-positive, and vascular endothelial-cadherin-negative, suggesting EndMT. In the CG model, EndMT was suppressed in TG2-knockout mice. TG2 was involved in the interactive regulation of TGF-β. As inhibition of TG2 reduced peritoneal fibrosis, angiogenesis, and inflammation associated with TGF-β and vascular endothelial growth factor-A suppression, TG2 may provide a new therapeutic target for ameliorating peritoneal injuries in PD.
Collapse
|
14
|
Kolligundla LP, Gupta S, Lata S, Mulukala SKN, Killaka P, Akif M, Pasupulati AK. Identification of Novel GTP Analogs as Potent and Specific Reversible Inhibitors for Transglutaminase 2. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2123917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Lakshmi P. Kolligundla
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Samriddhi Gupta
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Surabhi Lata
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sandeep K. N. Mulukala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Praneeth Killaka
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Mohd Akif
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anil K. Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
15
|
Hauser S, Sommerfeld P, Wodtke J, Hauser C, Schlitterlau P, Pietzsch J, Löser R, Pietsch M, Wodtke R. Application of a Fluorescence Anisotropy-Based Assay to Quantify Transglutaminase 2 Activity in Cell Lysates. Int J Mol Sci 2022; 23:4475. [PMID: 35562866 PMCID: PMC9104438 DOI: 10.3390/ijms23094475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/05/2023] Open
Abstract
Transglutaminase 2 (TGase 2) is a multifunctional protein which is involved in various physiological and pathophysiological processes. The latter also include its participation in the development and progression of malignant neoplasms, which are often accompanied by increased protein synthesis. In addition to the elucidation of the molecular functions of TGase 2 in tumor cells, knowledge of its concentration that is available for targeting by theranostic agents is a valuable information. Herein, we describe the application of a recently developed fluorescence anisotropy (FA)-based assay for the quantitative expression profiling of TGase 2 by means of transamidase-active enzyme in cell lysates. This assay is based on the incorporation of rhodamine B-isonipecotyl-cadaverine (R-I-Cad) into N,N-dimethylated casein (DMC), which results in an increase in the FA signal over time. It was shown that this reaction is not only catalyzed by TGase 2 but also by TGases 1, 3, and 6 and factor XIIIa using recombinant proteins. Therefore, control measurements in the presence of a selective irreversible TGase 2 inhibitor were mandatory to ascertain the specific contribution of TGase 2 to the overall FA rate. To validate the assay regarding the quality of quantification, spike/recovery and linearity of dilution experiments were performed. A total of 25 cancer and 5 noncancer cell lines were characterized with this assay method in terms of their activatable TGase 2 concentration (fmol/µg protein lysate) and the results were compared to protein synthesis data obtained by Western blotting. Moreover, complementary protein quantification methods using a biotinylated irreversible TGase 2 inhibitor as an activity-based probe and a commercially available ELISA were applied to selected cell lines to further validate the results obtained by the FA-based assay. Overall, the present study demonstrates that the FA-based assay using the substrate pair R-I-Cad and DMC represents a facile, homogenous and continuous method for quantifying TGase 2 activity in cell lysates.
Collapse
Affiliation(s)
- Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (S.H.); (J.W.); (P.S.); (J.P.); (R.L.)
| | - Paul Sommerfeld
- Institute II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany; (P.S.); (C.H.)
| | - Johanna Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (S.H.); (J.W.); (P.S.); (J.P.); (R.L.)
| | - Christoph Hauser
- Institute II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany; (P.S.); (C.H.)
| | - Paul Schlitterlau
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (S.H.); (J.W.); (P.S.); (J.P.); (R.L.)
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (S.H.); (J.W.); (P.S.); (J.P.); (R.L.)
- Faculty of Chemistry and Food Chemistry, School of Science, Technische University Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Reik Löser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (S.H.); (J.W.); (P.S.); (J.P.); (R.L.)
- Faculty of Chemistry and Food Chemistry, School of Science, Technische University Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Markus Pietsch
- Institute II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany; (P.S.); (C.H.)
| | - Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (S.H.); (J.W.); (P.S.); (J.P.); (R.L.)
| |
Collapse
|
16
|
Weckerle J, Picart-Armada S, Klee S, Bretschneider T, Luippold AH, Rist W, Haslinger C, Schlüter H, Thomas MJ, Krawczyk B, Fernandez-Albert F, Kästle M, Veyel D. Mapping the metabolomic and lipidomic changes in the Bleomycin model of pulmonary fibrosis in young and aged mice. Dis Model Mech 2021; 15:274099. [PMID: 34845494 PMCID: PMC8807555 DOI: 10.1242/dmm.049105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/17/2021] [Indexed: 11/20/2022] Open
Abstract
Alterations in metabolic pathways were recently recognized as potential underlying drivers of idiopathic pulmonary fibrosis (IPF), translating into novel therapeutic targets. However, knowledge of metabolic and lipid regulation in fibrotic lungs is limited. To comprehensively characterize metabolic perturbations in the bleomycin mouse model of IPF, we analyzed the metabolome and lipidome by mass spectrometry. We identified increased tissue turnover and repair, evident by enhanced breakdown of proteins, nucleic acids and lipids and extracellular matrix turnover. Energy production was upregulated, including glycolysis, the tricarboxylic acid cycle, glutaminolysis, lactate production and fatty acid oxidation. Higher eicosanoid synthesis indicated inflammatory processes. Because the risk of IPF increases with age, we investigated how age influences metabolomic and lipidomic changes in the bleomycin-induced pulmonary fibrosis model. Surprisingly, except for cytidine, we did not detect any significantly differential metabolites or lipids between old and young bleomycin-treated lungs. Together, we identified metabolomic and lipidomic changes in fibrosis that reflect higher energy demand, proliferation, tissue remodeling, collagen deposition and inflammation, which might serve to improve diagnostic and therapeutic options for fibrotic lung diseases in the future. Editor's choice: Using bleomycin-induced lung injury as a mouse model for idiopathic pulmonary fibrosis, this study identifies metabolomic and lipidomic changes in fibrosis reflecting higher energy demand, proliferation, tissue remodeling, collagen deposition and inflammation.
Collapse
Affiliation(s)
- Jelena Weckerle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Immunology and Respiratory Disease research, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Sergio Picart-Armada
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Computational Biology and Digital Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Stephan Klee
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Immunology and Respiratory Disease research, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Tom Bretschneider
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Drug Discovery Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Andreas H Luippold
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Drug Discovery Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Wolfgang Rist
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Drug Discovery Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Christian Haslinger
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Computational Biology and Digital Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Holger Schlüter
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Immunology and Respiratory Disease research, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Matthew J Thomas
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Immunology and Respiratory Disease research, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Bartlomiej Krawczyk
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Drug Discovery Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Francesc Fernandez-Albert
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Computational Biology and Digital Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Marc Kästle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Immunology and Respiratory Disease research, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Daniel Veyel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Drug Discovery Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| |
Collapse
|
17
|
Keillor JW, Johnson GVW. Transglutaminase 2 as a therapeutic target for neurological conditions. Expert Opin Ther Targets 2021; 25:721-731. [PMID: 34607527 DOI: 10.1080/14728222.2021.1989410] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Transglutaminase 2 (TG2) has been implicated in numerous neurological conditions, including neurodegenerative diseases, multiple sclerosis, and CNS injury. Early studies on the role of TG2 in neurodegenerative conditions focused on its ability to 'crosslink' proteins into insoluble aggregates. However, more recent studies have suggested that this is unlikely to be the primary mechanism by which TG2 contributes to the pathogenic processes. Although the specific mechanisms by which TG2 is involved in neurological conditions have not been clearly defined, TG2 regulates numerous cellular processes through which it could contribute to a specific disease. Given the fact that TG2 is a stress-induced gene and elevated in disease or injury conditions, TG2 inhibitors may be useful neurotherapeutics. AREAS COVERED Overview of TG2 and different TG2 inhibitors. A brief review of TG2 in neurodegenerative diseases, multiple sclerosis and CNS injury and inhibitors that have been tested in different models. Database search: https://pubmed.ncbi.nlm.nih.gov prior to 1 July 2021. EXPERT OPINION Currently, it appears unlikely that inhibiting TG2 in the context of neurodegenerative diseases would be therapeutically advantageous. However, for multiple sclerosis and CNS injuries, TG2 inhibitors may have the potential to be therapeutically useful and thus there is rationale for their further development.
Collapse
Affiliation(s)
- Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Gail V W Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
18
|
Tatsukawa H, Hitomi K. Role of Transglutaminase 2 in Cell Death, Survival, and Fibrosis. Cells 2021; 10:cells10071842. [PMID: 34360011 PMCID: PMC8307792 DOI: 10.3390/cells10071842] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme catalyzing the crosslinking between Gln and Lys residues and involved in various pathophysiological events. Besides this crosslinking activity, TG2 functions as a deamidase, GTPase, isopeptidase, adapter/scaffold, protein disulfide isomerase, and kinase. It also plays a role in the regulation of hypusination and serotonylation. Through these activities, TG2 is involved in cell growth, differentiation, cell death, inflammation, tissue repair, and fibrosis. Depending on the cell type and stimulus, TG2 changes its subcellular localization and biological activity, leading to cell death or survival. In normal unstressed cells, intracellular TG2 exhibits a GTP-bound closed conformation, exerting prosurvival functions. However, upon cell stimulation with Ca2+ or other factors, TG2 adopts a Ca2+-bound open conformation, demonstrating a transamidase activity involved in cell death or survival. These functional discrepancies of TG2 open form might be caused by its multifunctional nature, the existence of splicing variants, the cell type and stimulus, and the genetic backgrounds and variations of the mouse models used. TG2 is also involved in the phagocytosis of dead cells by macrophages and in fibrosis during tissue repair. Here, we summarize and discuss the multifunctional and controversial roles of TG2, focusing on cell death/survival and fibrosis.
Collapse
|
19
|
Implant Fibrosis and the Underappreciated Role of Myofibroblasts in the Foreign Body Reaction. Cells 2021; 10:cells10071794. [PMID: 34359963 PMCID: PMC8304203 DOI: 10.3390/cells10071794] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Body implants and implantable medical devices have dramatically improved and prolonged the life of countless patients. However, our body repair mechanisms have evolved to isolate, reject, or destroy any object that is recognized as foreign to the organism and inevitably mounts a foreign body reaction (FBR). Depending on its severity and chronicity, the FBR can impair implant performance or create severe clinical complications that will require surgical removal and/or replacement of the faulty device. The number of review articles discussing the FBR seems to be proportional to the number of different implant materials and clinical applications and one wonders, what else is there to tell? We will here take the position of a fibrosis researcher (which, coincidentally, we are) to elaborate similarities and differences between the FBR, normal wound healing, and chronic healing conditions that result in the development of peri-implant fibrosis. After giving credit to macrophages in the inflammatory phase of the FBR, we will mainly focus on the activation of fibroblastic cells into matrix-producing and highly contractile myofibroblasts. While fibrosis has been discussed to be a consequence of the disturbed and chronic inflammatory milieu in the FBR, direct activation of myofibroblasts at the implant surface is less commonly considered. Thus, we will provide a perspective how physical properties of the implant surface control myofibroblast actions and accumulation of stiff scar tissue. Because formation of scar tissue at the surface and around implant materials is a major reason for device failure and extraction surgeries, providing implant surfaces with myofibroblast-suppressing features is a first step to enhance implant acceptance and functional lifetime. Alternative therapeutic targets are elements of the myofibroblast mechanotransduction and contractile machinery and we will end with a brief overview on such targets that are considered for the treatment of other organ fibroses.
Collapse
|
20
|
Tempest R, Guarnerio S, Maani R, Cooper J, Peake N. The Biological and Biomechanical Role of Transglutaminase-2 in the Tumour Microenvironment. Cancers (Basel) 2021; 13:cancers13112788. [PMID: 34205140 PMCID: PMC8199963 DOI: 10.3390/cancers13112788] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Transglutaminase-2 (TG2) is the most highly and ubiquitously expressed member of the transglutaminase enzyme family and is primarily involved in protein cross-linking. TG2 has been implicated in the development and progression of numerous cancers, with a direct role in multiple cellular processes and pathways linked to apoptosis, chemoresistance, epithelial-mesenchymal transition, and stem cell phenotype. The tumour microenvironment (TME) is critical in the formation, progression, and eventual metastasis of cancer, and increasing evidence points to a role for TG2 in matrix remodelling, modulation of biomechanical properties, cell adhesion, motility, and invasion. There is growing interest in targeting the TME therapeutically in response to advances in the understanding of its critical role in disease progression, and a number of approaches targeting biophysical properties and biomechanical signalling are beginning to show clinical promise. In this review we aim to highlight the wide array of processes in which TG2 influences the TME, focussing on its potential role in the dynamic tissue remodelling and biomechanical events increasingly linked to invasive and aggressive behaviour. Drug development efforts have yielded a range of TG2 inhibitors, and ongoing clinical trials may inform strategies for targeting the biomolecular and biomechanical function of TG2 in the TME.
Collapse
|