1
|
Liu H, Zheng H, Zhou S, Lin Q. Investigation of the anti-skin aging effects of taurine through mendelian randomization analysis of its relationship with immune cells. J Cosmet Dermatol 2024; 23:4295-4302. [PMID: 39161299 PMCID: PMC11626342 DOI: 10.1111/jocd.16515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Aging skin, exacerbated by external factors like UV radiation and pollutants, is a major cosmetic concern. Taurine, renowned for its antioxidant and anti-inflammatory properties, may combat skin aging. We performed mendelian randomization (MR) analysis to investigate the causal link between taurine and immune cells linked to skin aging. OBJECTIVES To investigate the association between taurine and immune cells using mendelian randomization, to thereby explore the mechanism through which taurine exerts anti-aging effects on the skin via immune modulation. METHODS A MR approach was employed using taurine-level data from the Ieu Open GWAS Project and immunocyte traits from a large European cohort. MR-Egger regression, weighted median estimation, and inverse variance weighting all provided statistical insights into causality. Sensitivity analyses assessed the heterogeneity and pleiotropy among the genetic instruments used. RESULTS MR analysis identified a causal relationship between taurine levels and 10 immunocyte phenotypes, with taurine found to be negatively and positively associated with three and seven phenotypes, respectively. Sensitivity analysis revealed no significant heterogeneity or pleiotropy, suggesting reliable MR findings. CONCLUSION This study provides insights into the immunological pathways by which taurine contributes to skin anti-aging effects, suggesting that increasing taurine levels could offer a novel strategy for anti-aging skincare.
Collapse
Affiliation(s)
| | | | - Siyuan Zhou
- The Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Quan Lin
- The People's Hospital of LaibinLaibinChina
| |
Collapse
|
2
|
Tian S, Mei J, Zhang L, Wang S, Yuan Y, Li J, Liu H, Zhu W, Xu D. Multifunctional Hydrogel Microneedle Patches Modulating Oxi-inflamm-aging for Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407340. [PMID: 39360460 DOI: 10.1002/smll.202407340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/21/2024] [Indexed: 10/04/2024]
Abstract
Oxidative stress, chronic inflammation, and immune senescence are important pathologic factors in diabetic wound nonhealing. This study loads taurine (Tau) into cerium dioxide (CeO2) to develop CeO2@Tau nanoparticles with excellent antioxidant, anti-inflammatory, and anti-aging properties. To enhance the drug penetration efficiency in wounds, CeO2@Tau is encapsulated in gelatin methacryloyl (GelMA) hydrogel to prepare CeO2@Tau@Hydrogel@Microneedle (CTH@MN) patch system. Microneedle technology achieves precise and efficient delivery of CeO2@Tau, ensuring their deep penetration into the wound tissue for optimal efficacy. Rigorous in vitro and in vivo tests have confirmed the satisfactory therapeutic effect of CTH@MN patch on diabetic wound healing. Mechanistically, CTH@MN attenuates oxidative damage and inflammatory responses in macrophages by inhibiting the ROS/NF-κB signaling pathway. Meanwhile, CTH@MN activated autophagy-mediated anti-aging activity, creating a favorable immune microenvironment for tissue repair. Notably, in a diabetic mouse wound model, the multifunctional CTH@MN patch significantly promotes wound healing by systematically regulating the oxidation-inflammation-aging (oxi-inflamm-aging) pathological axis. In conclusion, the in-depth exploration of the CTH@MN system in this study provides new strategies and perspectives for treating diabetic non-healing wounds.
Collapse
Affiliation(s)
- Shen Tian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Jiawei Mei
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, P. R. China
| | - Lisha Zhang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Senyan Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yuhui Yuan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Jia Li
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Wanbo Zhu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Dongdong Xu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| |
Collapse
|
3
|
Lee S, Shin JY, Kwon OS, Jun SH, Kang NG. Taurine and Polyphenol Complex Repaired Epidermal Keratinocyte Wounds by Regulating IL8 and TIMP2 Expression. Curr Issues Mol Biol 2024; 46:8685-8698. [PMID: 39194729 DOI: 10.3390/cimb46080512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
The healing process after acne lesion extraction provides a miniature model to study skin wound repair mechanisms. In this study, we aimed to identify solutions for acne scars that frequently occur on our faces. We performed acne scar cytokine profiling and found that Interleukin 8 (IL8) and Tissue inhibitor of metalloproteinases 2 (TIMP2) were significant factors at the wounded site. The effect of chlorogenic acid and taurine on human epidermal cells and irritated human skin was investigated. Chlorogenic acid and taurine regulated IL8 and TIMP2 expression and accelerated keratinocyte proliferation. Moreover, tight junction protein expression was upregulated by chlorogenic acid and taurine synergistically. Further, these compounds modulated the expression of several inflammatory cytokines (IL1α, IL1β, and IL6) and skin hydration related factor (hyaluronan synthase 3; HAS3). Thus, chlorogenic acid and taurine may exert their effects during the late stages of wound healing rather than the initial phase. In vivo experiments using SLS-induced wounds demonstrated the efficacy of chlorogenic acid and taurine treatment compared to natural healing, reduced erythema, and restored barrier function. Skin ultrasound analysis revealed their potential to promote denser skin recovery. Therefore, the wound-restoring effect of chlorogenic acid and taurine was exerted by suppression of inflammatory cytokines, and induction of cell proliferation, tight junction expression, and remodeling factors.
Collapse
Affiliation(s)
- Sooyeon Lee
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| | - Jae Young Shin
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| | - Oh Sun Kwon
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| | - Seung-Hyun Jun
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| | - Nae-Gyu Kang
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| |
Collapse
|
4
|
Bernasocchi T, Mostoslavsky R. Subcellular one carbon metabolism in cancer, aging and epigenetics. FRONTIERS IN EPIGENETICS AND EPIGENOMICS 2024; 2:1451971. [PMID: 39239102 PMCID: PMC11375787 DOI: 10.3389/freae.2024.1451971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The crosstalk between metabolism and epigenetics is an emerging field that is gaining importance in different areas such as cancer and aging, where changes in metabolism significantly impacts the cellular epigenome, in turn dictating changes in chromatin as an adaptive mechanism to bring back metabolic homeostasis. A key metabolic pathway influencing an organism's epigenetic state is one-carbon metabolism (OCM), which includes the folate and methionine cycles. Together, these cycles generate S-adenosylmethionine (SAM), the universal methyl donor essential for DNA and histone methylation. SAM serves as the sole methyl group donor for DNA and histone methyltransferases, making it a crucial metabolite for chromatin modifications. In this review, we will discuss how SAM and its byproduct, S-adenosylhomocysteine (SAH), along with the enzymes and cofactors involved in OCM, may function in the different cellular compartments, particularly in the nucleus, to directly regulate the epigenome in aging and cancer.
Collapse
Affiliation(s)
- Tiziano Bernasocchi
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
- The Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Raul Mostoslavsky
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
- The Broad Institute of Harvard and MIT, Cambridge, MA, United States
| |
Collapse
|
5
|
Ito T, Murakami S. Taurine deficiency associated with dilated cardiomyopathy and aging. J Pharmacol Sci 2024; 154:175-181. [PMID: 38395518 DOI: 10.1016/j.jphs.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 02/25/2024] Open
Abstract
Taurine (2-aminoethanesulfonic acid) is a free amino acid found ubiquitously and abundantly in mammalian tissues. Taurine content in the heart is approximately 20 mM, which is approximately 100 times higher than plasma concentration. The high intracellular concentration of taurine is maintained by the taurine transporter (TauT; Slc6a6). Taurine plays various roles, including the regulation of intracellular ion dynamics, calcium handling, and acting as an antioxidant in the heart. Some species, such as cats and foxes, have low taurine biosynthetic capacity, and dietary taurine deficiency can lead to disorders such as dilated cardiomyopathy and blindness. In humans, the relationship between dietary taurine deficiency and cardiomyopathy is not yet clear, but a genetic mutation related to the taurine transporter has been reported to be associated with dilated cardiomyopathy. On the other hand, many studies have shown an association between dietary taurine intake and age-related diseases. Notably, it has recently been reported that taurine declines with age and is associated with lifespan in worms and mice, as well as healthspan in mice and monkeys. In this review, we summarize the role of dietary and genetic taurine deficiency in the development of cardiomyopathy and aging.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjojima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan.
| | - Shigeru Murakami
- Department of Nursing Science, Fukui Prefectural University, 4-1-1 Matsuokakenjojima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan
| |
Collapse
|
6
|
Connolly ED, Wu G. Functions and Metabolism of Amino Acids in the Hair and Skin of Dogs and Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:135-154. [PMID: 38625527 DOI: 10.1007/978-3-031-54192-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The hair and skin of domestic cats or dogs account for 2% and 12-24% of their body weight, respectively, depending on breed and age. These connective tissues contain protein as the major constituent and provide the first line of defense against external pathogens and toxins. Maintenance of the skin and hair in smooth and elastic states requires special nutritional support, particularly an adequate provision of amino acids (AAs). Keratin (rich in cysteine, serine and glycine) is the major protein both in the epidermis of the skin and in the hair. Filaggrin [rich in some AAs (e.g., serine, glutamate, glutamine, glycine, arginine, and histidine)] is another physiologically important protein in the epidermis of the skin. Collagen and elastin (rich in glycine and proline plus 4-hydroxyproline) are the predominant proteins in the dermis and hypodermis of the skin. Taurine and 4-hydroxyproline are abundant free AAs in the skin of dogs and cats, and 4-hydroxyproline is also an abundant free AA in their hair. The epidermis of the skin synthesizes melanin (the pigment in the skin and hair) from tyrosine and produces trans-urocanate from histidine. Qualitative requirements for proteinogenic AAs are similar between cats and dogs but not identical. Both animal species require the same AAs to nourish the hair and skin but the amounts differ. Other factors (e.g., breeds, coat color, and age) may affect the requirements of cats or dogs for nutrients. The development of a healthy coat, especially a black coat, as well as healthy skin critically depends on AAs [particularly arginine, glycine, histidine, proline, 4-hydroxyproline, and serine, sulfur AAs (methionine, cysteine, and taurine), phenylalanine, and tyrosine] and creatine. Although there are a myriad of studies on AA nutrition in cats and dogs, there is still much to learn about how each AA affects the growth, development and maintenance of the hair and skin. Animal-sourced foodstuffs (e.g., feather meal and poultry by-product meal) are excellent sources of the AAs that are crucial to maintain the normal structure and health of the skin and hair in dogs and cats.
Collapse
Affiliation(s)
- Erin D Connolly
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
7
|
Yoshimura T, Manabe C, Nagumo JI, Nagahama T, Sato T, Murakami S. Taurine accelerates the synthesis of ceramides and hyaluronic acid in cultured epidermis and dermal fibroblasts. Exp Ther Med 2023; 26:512. [PMID: 37840567 PMCID: PMC10570761 DOI: 10.3892/etm.2023.12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/20/2023] [Indexed: 10/17/2023] Open
Abstract
Taurine is a sulfur-containing amino acid derivative that can be found in the majority of mammalian tissues. Taurine is also present in the skin and is involved in maintaining skin homeostasis by exerting osmoregulatory and antioxidant effects. Previous studies have indicated that taurine treatment is effective against age-, ultraviolet- or detergent-induced skin dysfunction. To determine the mechanism responsible for the beneficial actions of taurine in the skin, the present study aimed to evaluate the effects of taurine on epidermal components (ceramides and filaggrin) and on the dermal extracellular matrix, in three-dimensionally (3D) cultured epidermis and dermal fibroblasts, respectively. These cells were cultured in the presence of 3-50 mM taurine, and cells or culture medium were collected for analysis. The effects of taurine on transepidermal water loss (TEWL) in the skin and the expression of inflammatory cytokines, including IL-1α, IL-1β and IL-1 receptor antagonist, were investigated in acetone-treated 3D-cultured epidermis using a Tewameter and reverse transcription-quantitative PCR (RT-qPCR), respectively. The mRNA expression levels of MMP-1 and hyaluronic acid (HA) production were measured in skin dermal fibroblasts using RT-qPCR and ELISA, respectively. Taurine was found to suppress acetone-induced elevation in TEWL in 3D-cultured epidermis. Taurine also stimulated the mRNA expression of ceramide synthase 4 and filaggrin, a major structural protein in the stratum corneum, in 3D-cultured epidermis. In skin dermal fibroblasts, taurine inhibited the IL-1α-stimulated mRNA and protein expression of MMP-1. In addition, taurine treatment increased HA synthase-2 mRNA expression and in turn HA production. Results from the present study suggest that the protective effect of taurine on the skin is associated with the enhancement of epidermal barrier component expression and modulation of dermal extracellular matrix metabolism.
Collapse
Affiliation(s)
- Tomohisa Yoshimura
- R&D Laboratories, Department of Self-Medication, Taisho Pharmaceutical Co., Ltd., Saitama, Saitama 331-9530, Japan
| | - Chika Manabe
- R&D Laboratories, Department of Self-Medication, Taisho Pharmaceutical Co., Ltd., Saitama, Saitama 331-9530, Japan
| | - Jun-Ichiro Nagumo
- R&D Laboratories, Department of Self-Medication, Taisho Pharmaceutical Co., Ltd., Saitama, Saitama 331-9530, Japan
| | - Tohru Nagahama
- R&D Laboratories, Department of Self-Medication, Taisho Pharmaceutical Co., Ltd., Saitama, Saitama 331-9530, Japan
| | - Takashi Sato
- Department of Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Shigeru Murakami
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui 910-1195, Japan
| |
Collapse
|
8
|
Singh P, Gollapalli K, Mangiola S, Schranner D, Yusuf MA, Chamoli M, Shi SL, Bastos BL, Nair T, Riermeier A, Vayndorf EM, Wu JZ, Nilakhe A, Nguyen CQ, Muir M, Kiflezghi MG, Foulger A, Junker A, Devine J, Sharan K, Chinta SJ, Rajput S, Rane A, Baumert P, Schönfelder M, Iavarone F, Lorenzo GD, Kumari S, Gupta A, Sarkar R, Khyriem C, Chawla AS, Sharma A, Sarper N, Chattopadhyay N, Biswal BK, Settembre C, Nagarajan P, Targoff KL, Picard M, Gupta S, Velagapudi V, Papenfuss AT, Kaya A, Ferreira MG, Kennedy BK, Andersen JK, Lithgow GJ, Ali AM, Mukhopadhyay A, Palotie A, Kastenmüller G, Kaeberlein M, Wackerhage H, Pal B, Yadav VK. Taurine deficiency as a driver of aging. Science 2023; 380:eabn9257. [PMID: 37289866 PMCID: PMC10630957 DOI: 10.1126/science.abn9257] [Citation(s) in RCA: 141] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/14/2023] [Indexed: 06/10/2023]
Abstract
Aging is associated with changes in circulating levels of various molecules, some of which remain undefined. We find that concentrations of circulating taurine decline with aging in mice, monkeys, and humans. A reversal of this decline through taurine supplementation increased the health span (the period of healthy living) and life span in mice and health span in monkeys. Mechanistically, taurine reduced cellular senescence, protected against telomerase deficiency, suppressed mitochondrial dysfunction, decreased DNA damage, and attenuated inflammaging. In humans, lower taurine concentrations correlated with several age-related diseases and taurine concentrations increased after acute endurance exercise. Thus, taurine deficiency may be a driver of aging because its reversal increases health span in worms, rodents, and primates and life span in worms and rodents. Clinical trials in humans seem warranted to test whether taurine deficiency might drive aging in humans.
Collapse
Affiliation(s)
- Parminder Singh
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Kishore Gollapalli
- Vagelos College of Physicians and Surgeons, Columbia University; New York, USA
| | - Stefano Mangiola
- Department of Medical Biology, University of Melbourne; Melbourne, Australia
- School of Cancer Medicine, La Trobe University; Bundoora, Australia
- Olivia Newton-John Cancer Research Institute; Heidelberg, Australia
| | - Daniela Schranner
- Exercise Biology Group, Technical University of Munich; Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München; Neuherberg, Germany
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University; Lucknow, India
| | - Manish Chamoli
- Buck Institute of Age Research, 8001 Redwood Blvd; California, USA
| | - Sting L. Shi
- Vagelos College of Physicians and Surgeons, Columbia University; New York, USA
| | - Bruno Lopes Bastos
- Institute for Research on Cancer and Aging of Nice (IRCAN); Nice, France
| | - Tripti Nair
- Molecular Aging Laboratory, National Institute of Immunology; New Delhi, India
| | - Annett Riermeier
- Exercise Biology Group, Technical University of Munich; Munich, Germany
| | - Elena M. Vayndorf
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Judy Z. Wu
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Aishwarya Nilakhe
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Christina Q. Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Michael Muir
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Michael G. Kiflezghi
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Anna Foulger
- Buck Institute of Age Research, 8001 Redwood Blvd; California, USA
| | - Alex Junker
- Department of Neurology, Columbia University; New York, USA
| | - Jack Devine
- Department of Neurology, Columbia University; New York, USA
| | - Kunal Sharan
- Mouse Genetics Project, Wellcome Sanger Institute; Cambridge, UK
| | | | - Swati Rajput
- Division of Endocrinology, CSIR-Central Drug Research Institute; Lucknow, India
| | - Anand Rane
- Buck Institute of Age Research, 8001 Redwood Blvd; California, USA
| | - Philipp Baumert
- Exercise Biology Group, Technical University of Munich; Munich, Germany
| | | | | | | | - Swati Kumari
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Alka Gupta
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Rajesh Sarkar
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Costerwell Khyriem
- Harry Perkins Institute of Medical Research; Perth, Australia
- Curtin Medical School, Curtin University; Perth, Australia
| | - Amanpreet S. Chawla
- Immunobiology Laboratory, National Institute of Immunology; New Delhi, India
- MRC-Protein Phosphorylation and Ubiquitination Unit, University of Dundee; Dundee, UK
| | - Ankur Sharma
- Harry Perkins Institute of Medical Research; Perth, Australia
- Curtin Medical School, Curtin University; Perth, Australia
| | - Nazan Sarper
- Pediatrics and Pediatric Hematology, Kocaeli University Hospital; Kocaeli, Turkey
| | | | - Bichitra K. Biswal
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM); Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University; Naples, Italy
| | - Perumal Nagarajan
- Primate Research Facility, National Institute of Immunology; New Delhi, India
- Small Animal Research Facility, National Institute of Immunology; New Delhi, India
| | - Kimara L. Targoff
- Division of Cardiology, Department of Pediatrics, Columbia University; New York, USA
| | - Martin Picard
- Department of Neurology, Columbia University; New York, USA
| | - Sarika Gupta
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Vidya Velagapudi
- Institute for Molecular Medicine Finland FIMM, University of Helsinki; Helsinki, Finland
| | | | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University; Virginia, USA
| | | | - Brian K. Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore; Singapore, Singapore
- Centre for Healthy Longevity, National University Health System; Singapore, Singapore
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore; Singapore, Singapore
| | | | | | - Abdullah Mahmood Ali
- Department of Medicine, Columbia University Irving Medical Center; New York, USA
| | - Arnab Mukhopadhyay
- Molecular Aging Laboratory, National Institute of Immunology; New Delhi, India
| | - Aarno Palotie
- Institute for Molecular Medicine Finland FIMM, University of Helsinki; Helsinki, Finland
- Broad Institute of Harvard and MIT; Cambridge, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital; Boston, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München; Neuherberg, Germany
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | | | - Bhupinder Pal
- Department of Medical Biology, University of Melbourne; Melbourne, Australia
- School of Cancer Medicine, La Trobe University; Bundoora, Australia
| | - Vijay K. Yadav
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
- Vagelos College of Physicians and Surgeons, Columbia University; New York, USA
- Mouse Genetics Project, Wellcome Sanger Institute; Cambridge, UK
- Department of Genetics and Development, Columbia University; New York, USA
| |
Collapse
|
9
|
Sarnobat D, Moffett RC, Ma J, Flatt PR, McClenaghan NH, Tarasov AI. Taurine rescues pancreatic β-cell stress by stimulating α-cell transdifferentiation. Biofactors 2023. [PMID: 36714992 DOI: 10.1002/biof.1938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023]
Abstract
The semi-essential ubiquitous amino acid taurine has been shown to alleviate obesity and hyperglycemia in humans; however, the pathways underlying the antidiabetic actions have not been characterized. We explored the effect of chronic taurine exposure on cell biology of pancreatic islets, in degenerative type 1-like diabetes. The latter was modeled by small dose of streptozotocin (STZ) injection for 5 days in mice, followed by a 10-day administration of taurine (2% w/v, orally) in the drinking water. Taurine treatment opposed the detrimental changes in islet morphology and β-/α-cell ratio, induced by STZ diabetes, coincidentally with a significant 3.9 ± 0.7-fold enhancement of proliferation and 40 ± 5% reduction of apoptosis in β-cells. In line with these findings, the treatment counteracted an upregulation of antioxidant (Sod1, Sod2, Cat, Gpx1) and downregulation of islet expansion (Ngn3, Itgb1) genes induced by STZ, in a pancreatic β-cell line. At the same time, taurine enhanced the transdifferentiation of α-cells into β-cells by 2.3 ± 0.8-fold, echoed in strong non-metabolic elevation of cytosolic Ca2+ levels in pancreatic α-cells. Our data suggest a bimodal effect of dietary taurine on islet β-cell biology, which combines the augmentation of α-/β-cell transdifferentiation with downregulation of apoptosis. The dualism of action, stemming presumably from the intra- and extracellular modality of the signal, is likely to explain the antidiabetic potential of taurine supplementation.
Collapse
Affiliation(s)
- Dipak Sarnobat
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | | | - Jinfang Ma
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Neville H McClenaghan
- School of Biomedical Sciences, Ulster University, Coleraine, UK
- Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | | |
Collapse
|
10
|
The Disease-Modifying Role of Taurine and Its Therapeutic Potential in Coronavirus Disease 2019 (COVID-19). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:3-21. [DOI: 10.1007/978-3-030-93337-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Zhou Y, Zhan N, Zhang M, Wang S. Optimization of extraction process of taurine from mussel meat with pulsed electric field assisted enzymatic hydrolysis. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yajun Zhou
- College of Food Science and Engineering Jilin University Changchun China
| | - Ni Zhan
- College of Food Science and Engineering Jilin University Changchun China
| | - Mingdi Zhang
- College of Food Science and Engineering Jilin University Changchun China
| | - Shujie Wang
- College of Food Science and Engineering Jilin University Changchun China
| |
Collapse
|
12
|
Yoshimura T, Manabe C, Inokuchi Y, Mutou C, Nagahama T, Murakami S. Protective effect of taurine on UVB-induced skin aging in hairless mice. Biomed Pharmacother 2021; 141:111898. [PMID: 34246188 DOI: 10.1016/j.biopha.2021.111898] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/14/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Taurine, a sulfur-containing amino acid derivative, exists at a high concentration in the skin and is considered to play an important role in maintaining moisture homeostasis. This study investigated the effects of oral taurine supplementation on epidermal moisture content and wrinkle formation, as well as skin taurine content, using ultraviolet B (UVB)-irradiated hairless mice. Wrinkles were induced by exposing hairless mice to UVB radiation (70-100 mJ/cm2). Taurine was dissolved in drinking water at a concentration of 0.3 or 3% (w/v) and given to the mice ad libitum for 2-10 weeks. Taurine was then extracted from the dorsal skin, and the skin taurine content was determined using high-performance liquid chromatography (HPLC). The wrinkles were evaluated using a wrinkle score and the quantitative wrinkle area ratio. The exposure of the mice to UVB radiation for 4 weeks resulted in a decreased moisture content and increased transepidermal water loss (TEWL) in the skin, while taurine supplementation suppressed these changes. Oral supplementation with taurine for 8 weeks ameliorated the development of UVB-induced wrinkle formation. Furthermore, oral taurine supplementation for 4 weeks decreased pre-stablished wrinkles in a dose-dependent manner. Although the UVB radiation reduced the epidermal taurine content, oral taurine supplementation partly restored the taurine content in the epidermis. The present study showed that oral taurine supplementation is able to suppress UVB-induced wrinkle formation, which may be associated with the regulation of moisture content in the epidermis. The beneficial effects of taurine on skin aging may be attributed to its osmoregulatory role.
Collapse
Affiliation(s)
- Tomohisa Yoshimura
- R&D Laboratories, Self-Medication, Taisho Pharmaceutical Co. Ltd., 331-9530 Saitama, Japan
| | - Chika Manabe
- R&D Laboratories, Self-Medication, Taisho Pharmaceutical Co. Ltd., 331-9530 Saitama, Japan
| | - Yuki Inokuchi
- R&D Laboratories, Self-Medication, Taisho Pharmaceutical Co. Ltd., 331-9530 Saitama, Japan
| | - Chikako Mutou
- R&D Laboratories, Self-Medication, Taisho Pharmaceutical Co. Ltd., 331-9530 Saitama, Japan
| | - Tohru Nagahama
- R&D Laboratories, Self-Medication, Taisho Pharmaceutical Co. Ltd., 331-9530 Saitama, Japan
| | - Shigeru Murakami
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 910-1195 Fukui, Japan.
| |
Collapse
|