1
|
Wang M, Li H, Tang J, Xi Y, Chen S, Liu M. Effect of simvastatin on osteogenesis of the extremity bones in aging rats. Connect Tissue Res 2023; 64:64-74. [PMID: 35816110 DOI: 10.1080/03008207.2022.2094790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Simvastatin is a prodrug of the potent 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. The main purpose of the current study is to assess the accurate function of simvastatin on osteoporosis of extremity bones in aging rats. MATERIALS AND METHODS Fifty 15-month-old SD rats were divided into five groups (four simvastatin groups and one control group). The rats in four simvastatin groups were fed with different doses of simvastatin (5, 10, 20, and 40 mg/kg/d, respectively) for 3 months, whereas the rats in control group were fed the equal physiological saline. Calcium (Ca), phosphorus (P), and the lipid spectrum in serum were measured. Biochemical markers of bone metabolism, osteocalcin (OC), and tartrate-resistant acid phosphatase (Trap-5b), were analyzed using ELISA. The content of adipocytes in bone marrow was analyzed by histological staining. Finally, the bone quality of the femur and tibia were evaluated using dual-energy X-ray absorptiometry (DEXA), peri-quantity CT (pQCT), and the 3-point bending biomechanical test. RESULTS Simvastatin reduced serum triglycerides (TG), and 10 mg/kg/d of simvastatin significantly reduced the content of adipocytes in bone marrow compared to the control group. However, statistically significant differences between the simvastatin groups and the control group were not found in the CA, P, OC, Trap-5b, or the evaluation indexes of bone quality from DEXA, pQCT, and biomechanical tests. CONCLUSION Simvastatin could not prevent osteoporosis of the extremity bones in aging rats.
Collapse
Affiliation(s)
- Mengran Wang
- Department of Orthopedics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haowei Li
- Department of Orthopedics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaxin Tang
- Department of Orthopedics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yue Xi
- Department of Orthopedics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyi Chen
- Department of Orthopedics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ming Liu
- Department of Orthopedics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
de Sousa VC, Sousa FRN, Vasconcelos RF, Martins CS, Lopes AP, Alves NM, Viana D, Alves K, Leitão R, Brito GAC, Girão V, Goes P. Atorvastatin reduces zoledronic acid-induced osteonecrosis of the jaws of rats. Bone 2022; 164:116523. [PMID: 35985466 DOI: 10.1016/j.bone.2022.116523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Vanessa Costa de Sousa
- Post Graduation Program in Morphological Science, Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Raquel Felipe Vasconcelos
- Post Graduation Program in Morphological Science, Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Conceição S Martins
- Post Graduation Program in Morphological Science, Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Amanda Pimentel Lopes
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Nicholas Militão Alves
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Delane Viana
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Karuza Alves
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Renata Leitão
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Gerly A C Brito
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Virginia Girão
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Paula Goes
- Department of Pathology and Legal Medicine, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
3
|
de Carvalho RDP, Côrrea Viana Casarin R, Lima POD, Cogo-Müller K. STATINSWITH POTENTIAL TO CONTROL PERIODONTITIS: FROM BIOLOGICAL MECHANISMS TO CLINICAL STUDIES. J Oral Biosci 2021; 63:232-244. [PMID: 34146687 DOI: 10.1016/j.job.2021.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Statins are widely used for the treatment of hyperlipidemia. However, these drugs have pleiotropic effects that can be promising for the prevention and treatment of oral diseases, such as periodontitis. HIGHLIGHT This review aimed to identify preclinical, observational, and clinical studies that evaluate the effects and biological mechanisms of statins on oral cells and tissues and those using these drugs to treat periodontitis. A LITERATURE SURVEY HAS BEEN CONDUCTED IN PUBMED USING COMBINATIONS OF THE UNITERMS: "statins," "dentistry," "periodontal disease," and "periodontal treatment." In vitro findings showed positive statin results in cell lines related to alveolar bone metabolism by altering the signaling pathway Osteoprotegerin/Receptor Activator of Nuclear Factor Kappa B/Receptor Activator of Nuclear Factor Kappa B Ligand (OPG/RANK/RANKL), stimulating the production of alkaline phosphatase and osteocalcin, and reducing the production of matrix metalloproteinases (MMPs). Animal studies have shown a reduction in alveolar bone loss and osteoclastic activity, in addition to a reduction in inflammatory markers, such as IL-1, IL-6, and TNF-α, when statins were used prophylactically. Clinical trials showed a positive impact on clinical parameters, leading to a higher reduction in probing depth and gain in clinical attachment when a local statin was adjunctively associated with mechanical therapy. CONCLUSION Statins were shown to be promising for regenerating and stimulating bone activity, with great potential for treating chronic periodontitis. However, further studies are required to confirm its effectiveness.
Collapse
Affiliation(s)
| | | | | | - Karina Cogo-Müller
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
4
|
Menze ET, Ezzat H, Shawky S, Sami M, Selim EH, Ahmed S, Maged N, Nadeem N, Eldash S, Michel HE. Simvastatin mitigates depressive-like behavior in ovariectomized rats: Possible role of NLRP3 inflammasome and estrogen receptors' modulation. Int Immunopharmacol 2021; 95:107582. [PMID: 33774267 DOI: 10.1016/j.intimp.2021.107582] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 12/27/2022]
Abstract
It is well known that females are more vulnerable than males to stress-related psychiatric disorders, particularly during perimenopausal and postmenopausal periods. Hormone replacement therapy (HRT) has been widely used for the management of postmenopausal depression. However, HRT could be associated with severe adverse effects, including increased risk for coronary heart disease, breast cancer and endometrial cancer. Thus, there is a pressing demand for novel therapeutic options for postmenopausal depression without sacrificing uterine health. Simvastatin (SIM) was proven to have neuroprotective activities besides its hypocholesterolemic effect, the former can be attributed to its, antioxidant, anti-apoptotic and anti-inflammatory activities. Moreover, many reports highlighted that SIM has estrogenic activity and was able to induce the expression of estrogen receptors in rats. The present study showed that SIM (20 mg/kg, p.o.) markedly attenuated depressive-like behavior in ovariectomized (OVX) rats. Moreover, SIM prohibited hippocampal microglial activation, abrogated P2X7 receptor, TLR2 and TLR4 expression, inhibited NLRP3 inflammasome activation, with subsequent reduction in the levels of pro-inflammatory mediators; IL-1β and IL-18. Furthermore, a marked elevation in hippocampal expression of ERα and ERβ was noted in SIM-treated animals, without any significant effect on uterine relative weight or ERα expression. Taken together, SIM could provide a safer alternative for HRT for the management of postmenopausal depression, without any hyperplastic effect on the uterus.
Collapse
Affiliation(s)
- Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hager Ezzat
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Salma Shawky
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Marwa Sami
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Eman H Selim
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar Ahmed
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nouran Maged
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nancy Nadeem
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
5
|
Chuang SC, Chen CH, Chou YS, Ho ML, Chang JK. G Protein-Coupled Estrogen Receptor Mediates Cell Proliferation through the cAMP/PKA/CREB Pathway in Murine Bone Marrow Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:ijms21186490. [PMID: 32899453 PMCID: PMC7555423 DOI: 10.3390/ijms21186490] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/12/2023] Open
Abstract
Estrogen is an important hormone to regulate skeletal physiology via estrogen receptors. The traditional estrogen receptors are ascribed to two nuclear estrogen receptors (ERs), ERα and ERβ. Moreover, G protein-coupled estrogen receptor-1 (GPER-1) was reported as a membrane receptor for estrogen in recent years. However, whether GPER-1 regulated osteogenic cell biology on skeletal system is still unclear. GPER-1 is expressed in growth plate abundantly before puberty but decreased abruptly since the very late stage of puberty in humans. It indicates GPER-1 might play an important role in skeletal growth regulation. GPER-1 expression has been confirmed in osteoblasts, osteocytes and chondrocytes, but its expression in mesenchymal stem cells (MSCs) has not been confirmed. In this study, we hypothesized that GPER-1 is expressed in bone MSCs (BMSC) and enhances BMSC proliferation. The cultured tibiae of neonatal rat and murine BMSCs were tested in our study. GPER-1-specific agonist (G-1) and antagonist (G-15), and GPER-1 siRNA (siGPER-1) were used to evaluate the downstream signaling pathway and cell proliferation. Our results revealed BrdU-positive cell counts were higher in cultured tibiae in the G-1 group. The G-1 also enhanced the cell viability and proliferation, whereas G-15 and siGPER-1 reduced these activities. The cAMP and phosphorylation of CREB were enhanced by G-1 but inhibited by G-15. We further demonstrated that GPER-1 mediates BMSC proliferation via the cAMP/PKA/p-CREB pathway and subsequently upregulates cell cycle regulators, cyclin D1/cyclin-dependent kinase (CDK) 6 and cyclin E1/CDK2 complex. The present study is the first to report that GPER-1 mediates BMSC proliferation. This finding indicates that GPER-1 mediated signaling positively regulates BMSC proliferation and may provide novel insights into addressing estrogen-mediated bone development.
Collapse
Affiliation(s)
- Shu-Chun Chuang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-C.C.); (C.-H.C.); (Y.-S.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-C.C.); (C.-H.C.); (Y.-S.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 807, Taiwan
| | - Ya-Shuan Chou
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-C.C.); (C.-H.C.); (Y.-S.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mei-Ling Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-C.C.); (C.-H.C.); (Y.-S.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medicinal Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 807, Taiwan
- Correspondence: (M.-L.H.); (J.-K.C.); Tel.: +886-7-3121101-2553 (M.-L.H.&J.-K.C.); Fax: +886-7-3219452 (M.-L.H.&J.-K.C.)
| | - Je-Ken Chang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-C.C.); (C.-H.C.); (Y.-S.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (M.-L.H.); (J.-K.C.); Tel.: +886-7-3121101-2553 (M.-L.H.&J.-K.C.); Fax: +886-7-3219452 (M.-L.H.&J.-K.C.)
| |
Collapse
|
6
|
Wu S, Zhao F, Zhao J, Li H, Chen J, Xia Y, Wang J, Zhao B, Zhao S, Li N. Dioscin improves postmenopausal osteoporosis through inducing bone formation and inhibiting apoptosis in ovariectomized rats. Biosci Trends 2019; 13:394-401. [PMID: 31611520 DOI: 10.5582/bst.2019.01186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shan Wu
- The Second Hospital of Jilin University, Changchun, Jilin province, China
| | - Fan Zhao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin province, China
| | - Jing Zhao
- The Second Hospital of Jilin University, Changchun, Jilin province, China
| | - Hui Li
- Qian Wei Hospital of Jilin Province, Changchun, Jilin province, China
| | - Junyu Chen
- The Second Hospital of Jilin University, Changchun, Jilin province, China
| | - Yang Xia
- The Second Hospital of Jilin University, Changchun, Jilin province, China
| | - Junwei Wang
- The Second Hospital of Jilin University, Changchun, Jilin province, China
| | - Benzheng Zhao
- The Second Hospital of Jilin University, Changchun, Jilin province, China
| | - Shuhua Zhao
- The Second Hospital of Jilin University, Changchun, Jilin province, China
| | - Na Li
- Jilin Ginseng Academic, Changchun University of Chinese Medicine, Changchun, Jilin province, China
| |
Collapse
|
7
|
Shahrezaie M, Moshiri A, Shekarchi B, Oryan A, Maffulli N, Parvizi J. Effectiveness of tissue engineered three‐dimensional bioactive graft on bone healing and regeneration: an
in vivo
study with significant clinical value. J Tissue Eng Regen Med 2017; 12:936-960. [DOI: 10.1002/term.2510] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/03/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Mostafa Shahrezaie
- Department of Orthopedic Surgery, Faculty of MedicineAJA University of Medical Science Tehran Iran
| | - Ali Moshiri
- Department of Orthopedic Surgery, Faculty of MedicineAJA University of Medical Science Tehran Iran
- Department of Surgery and RadiologyDr. Moshiri Veterinary Clinic Tehran Iran
| | - Babak Shekarchi
- Department of Radiology, Faculty of MedicineAJA University of Medical Science Tehran Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary MedicineShiraz University Shiraz Iran
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and SurgeryUniversity of Salerno Salerno Italy
- Centre for Sports and Exercise MedicineQueen Mary University of London, Barts and the London School of Medicine and Dentistry, Mile End Hospital London UK
| | - Javad Parvizi
- Department of OrthopaedicsThe Rothman Institute at Thomas Jefferson University Hospital Philadelphia PA USA
| |
Collapse
|
8
|
Zhang D, Fong C, Jia Z, Cui L, Yao X, Yang M. Icariin Stimulates Differentiation and Suppresses Adipocytic Transdifferentiation of Primary Osteoblasts Through Estrogen Receptor-Mediated Pathway. Calcif Tissue Int 2016; 99:187-98. [PMID: 27061090 DOI: 10.1007/s00223-016-0138-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/26/2016] [Indexed: 10/22/2022]
Abstract
Icariin, the main constituent of Herba Epimedii, appears to be a promising alternative to classic drugs used to treat osteoporosis. However, the detailed molecular mechanisms of its action and the role of icariin in the cross-talk between osteoblasts and adipocytes remain unclear. The present study was designed to investigate the gene expression profile of primary osteoblasts in the presence of icariin, and the effects of icariin on the differentiation and adipogenic transdifferentiation of osteoblasts. Cellular and molecular markers expressed during osteoblastic differentiation were assessed by cytochemical analysis, real-time quantitative PCR, Western blotting, and cDNA microarray analysis. Results indicated that icariin up-regulated the expression of runt-related transcription factor 2 (Runx2), bone morphogenetic protein 2 (Bmp2), and collagen type 1 (Col1) genes, and down-regulated the expression of the peroxisome proliferator-activated receptor γ (Pparg) and CCAAT/enhancer-binding protein β (Cebpb) genes. These effects were blocked by ICI 182,780, suggesting that icariin may be acting via the estrogen receptor (ER). Results also demonstrated that the ratio of osteoprotegerin (Opg)/receptor activator of nuclear factor kappa B ligand (Rankl) expression was up-regulated following treatment with icariin. In total, osteoblastic gene expression profile analysis suggested that 33 genes were affected by icariin; these could be sub-divided into nine functional categories. It appears that icariin could stimulate the differentiation and mineralization of osteoblasts, regulate the differentiation of osteoclasts, and inhibit the adipogenic transdifferentiation of osteoblasts, therefore increasing the number of osteoblasts undergoing differentiation to mature osteoblasts, via an ER-mediated pathway. In summary, icariin may exhibit beneficial effects on bone health, especially for patients with osteoporosis and obesity.
Collapse
Affiliation(s)
- Dawei Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, People's Republic of China.
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China.
| | - Chichun Fong
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Zhenbin Jia
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, People's Republic of China
| | - Liao Cui
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China
| | - Xinsheng Yao
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
9
|
Oryan A, Kamali A, Moshiri A. Potential mechanisms and applications of statins on osteogenesis: Current modalities, conflicts and future directions. J Control Release 2015; 215:12-24. [DOI: 10.1016/j.jconrel.2015.07.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 12/15/2022]
|
10
|
Chuang SC, Chen CH, Fu YC, Tai IC, Li CJ, Chang LF, Ho ML, Chang JK. Estrogen receptor mediates simvastatin-stimulated osteogenic effects in bone marrow mesenchymal stem cells. Biochem Pharmacol 2015; 98:453-64. [PMID: 26410676 DOI: 10.1016/j.bcp.2015.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/22/2015] [Indexed: 11/18/2022]
Abstract
Simvastatin, an HMG-CoA reductase inhibitor, is known to promote osteogenic differentiation. However, the mechanism underlying simvastatin-induced osteogenesis is not well understood. In this study, we hypothesize that the estrogen receptor (ER) mediates simvastatin-induced osteogenic differentiation. ER antagonists and siRNA were used to determine the involvement of the ER in simvastatin-induced osteogenesis in mouse bone marrow mesenchymal stem cells (D1 cells). Osteogenesis was evaluated by mRNA expression, protein level/activity of osteogenic markers, and mineralization. The estrogen response element (ERE) promoter activity and the ER-simvastatin binding affinity were examined. Our results showed that the simvastatin-induced osteogenic effects were decreased by treatment with ERα antagonists and ERα siRNA but not by an antagonist specific for the G protein-coupled estrogen receptor (GPER-1). The simvastatin-induced osteogenic effects were further increased by E2 treatment and were reversed by ERα antagonists or siRNA treatment. Luciferase reporter gene assays demonstrated that simvastatin increase ERα-dependent transcriptional activity that was suppressed by ERα antagonists. Furthermore, the ERα-simvastatin binding assay showed that IC50 value of simvastatin is 7.85 μM and that of E2 is 32.8 nM, indicating that simvastatin is a weak ligand for ERα. These results suggest that simvastatin-stimulated osteogenesis is mediated by ERα but not GPER-1. Moreover, this is the first report to demonstrate that simvastatin acts as an ERα ligand and a co-activator to enhance ERα-dependent transcriptional activity and thus promotes osteogenesis. These results indicate that simvastatin-induced osteogenesis is mediated via an ERα-dependent pathway.
Collapse
Affiliation(s)
- Shu-Chun Chuang
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hwan Chen
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Chin Fu
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Chun Tai
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Ju Li
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Fu Chang
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ling Ho
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Je-Ken Chang
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Westberg-Rasmussen S, Starup-Linde J, Gregersen S, Vestergaard P. Predictors of mortality subsequent to a fracture in diabetes mellitus patients. Front Endocrinol (Lausanne) 2015; 6:46. [PMID: 25883588 PMCID: PMC4381711 DOI: 10.3389/fendo.2015.00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/16/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Type-1 and type-2 diabetes mellitus (DM) are associated with an increased fracture risk and possibly an increased risk of death following a fracture. AIM To investigate the association between diabetes-related drugs and mortality following a fracture. METHODS A nested case-control study was conducted. Cases were patients with DM who died following a fracture; controls were DM patients not dying after a fracture. We identified DM patients using the Danish National Hospital Discharge Register (1977-2011) and included information on date of DM diagnosis, date of fracture, and comorbidities. From the Danish Cause of Death Register, the date of death was collected (2008-2011). From the Central Region of Jutland, Denmark, medication use was collected (2008-2011). Analysis was performed by unconditional logistic regression. RESULTS Two thousand six hundred twenty one diabetes patients with a fracture following the diabetes diagnosis and with information on medication use were included. Of these, 229 died. In a multivariate analysis, statin use [n = 1,106 (42%) statin users, odds ratio (OR) = 0.60, 95% confidence interval, p = 0.012] decreased the risk of dying subsequent to a fracture. Male gender (OR = 1.57, p = 0.005), increasing age (OR = 1.08, p < 0.001), a diagnosis of retinopathy (OR = 2.12, p = 0.008), heart failure (OR = 1.68, p = 0.004), and use of glucocorticoids (OR = 2.22, p = 0.001) were associated with an increased risk of death. None of the antidiabetics: biguanides, glucagon-like receptor agonists, β-cell stimulants, glitazones, and insulin were associated with mortality. CONCLUSION Co-morbidity reflected by late onset complications, heart failure, and glucocorticoid use was associated with an increased risk of mortality subsequent to a fracture. Statin use may reduce mortality subsequent to a fracture in diabetes patients. Clinical trials are needed to determine whether diabetes patients with a fracture should initiate statin treatment.
Collapse
Affiliation(s)
| | - Jakob Starup-Linde
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University, Aalborg, Denmark
- *Correspondence: Jakob Starup-Linde, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage Hansens Gade 2, Aarhus C 8000, Denmark e-mail:
| | - Søren Gregersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Vestergaard
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
12
|
Zhang C, Peng J, Wu S, Jin Y, Xia F, Wang C, Liu K, Sun H, Liu M. Dioscin promotes osteoblastic proliferation and differentiation via Lrp5 and ER pathway in mouse and human osteoblast-like cell lines. J Biomed Sci 2014; 21:30. [PMID: 24742230 PMCID: PMC4014146 DOI: 10.1186/1423-0127-21-30] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/31/2014] [Indexed: 12/30/2022] Open
Abstract
Background Dioscin, a typical steroid saponin, is isolated from Dioscorea nipponica Makino and Dioscorea zingiberensis Wright. It has estrogenic activity and many studies have also reported that dioscorea plants have an effect in preventing and treating osteoporosis. However, the molecular mechanisms underlying their effect on osteoporosis treatment are poorly understood. Therefore, the present study aims to investigate the mechanism (s) by which dioscin promotes osteoblastic proliferation and differentiation in mouse pre-osteoblast like MC3T3-E1 cells and human osteoblast-like MG-63 cells. Results We found that dioscin (0.25 μg/ml, 0.5 μg/ml, and 1.0 μg/ml) promoted MC3T3-E1 cells and MG-63 cells proliferation and differentiation dose dependently. Western blot analysis results showed that estrogen receptor α (ER-α), estrogen receptor β (ER-β), β-catenin and Bcl-2 protein expression increased after MC3T3-E1 cells were treated with dioscin. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that dioscin could increase the ratio of osteoprotegerin (OPG)/receptor activator of NF-κB ligand (RANKL) and up-regulate the level of Lrp5 and β-catenin. And by RNA interference analysis, we proved that the effect of dioscin increasing the ratio of OPG/RANKL was dependent on Lrp5 pathway. In addition, we also found that these effects of dioscin were abolished by ICI 182, 780 (100 nM), an antagonist of ER, indicating that an ER signaling pathway was also involved. We also found that dioscin (0.25 μg/ml, 0.5 μg/ml, and 1.0 μg/ml) induced MG-63 cells proliferation and differentiation in a dose-dependent manner. Western blot analysis results indicated that ER-α, ER-β and β-catenin protein expression increased after MG-63 cells were treated with dioscin. Conclusions The current study is the first to reveal that dioscin can promote osteoblasts proliferation and differentiation via Lrp5 and ER pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.
| | | |
Collapse
|
13
|
Zhang Y, Bradley AD, Wang D, Reinhardt RA. Statins, bone metabolism and treatment of bone catabolic diseases. Pharmacol Res 2014; 88:53-61. [PMID: 24407282 DOI: 10.1016/j.phrs.2013.12.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/19/2013] [Accepted: 12/23/2013] [Indexed: 12/30/2022]
Abstract
The discovery that statins had bone anabolic properties initiated many investigations into their use for treatment of bone catabolic diseases, such as osteoporosis. This paper reviews the molecular basis of statin's role in bone metabolism, and animal and human studies on the impact of systemic statins on osteoporosis-induced bone fracture incidence and healing, and on bone density. Limitations of systemic statins are described along with alternative dosing strategies, including local applications and bone-targeting systemic preparations. The principal findings of this review are: (1) traditional oral dosing with statins results in minimal efficacy in the treatment of osteoporosis; (2) local applications of statins show promise in the treatment of accessible bony defects, such as periodontitis; and (3) systemically administered statins which can target bone or inflammation near bone may be the safest and most effective strategy in the treatment of osseous deficiencies.
Collapse
Affiliation(s)
- Yijia Zhang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center College of Pharmacy, Omaha, NE 68198, USA.
| | - Aaron D Bradley
- Department of Surgical Specialties, University of Nebraska Medical Center College of Dentistry, Lincoln, NE 68583, USA.
| | - Dong Wang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center College of Pharmacy, Omaha, NE 68198, USA.
| | - Richard A Reinhardt
- Department of Surgical Specialties, University of Nebraska Medical Center College of Dentistry, Lincoln, NE 68583, USA.
| |
Collapse
|
14
|
Yueyi C, Xiaoguang H, Jingying W, Quansheng S, Jie T, Xin F, Yingsheng X, Chunli S. Calvarial defect healing by recruitment of autogenous osteogenic stem cells using locally applied simvastatin. Biomaterials 2013; 34:9373-80. [PMID: 24016857 DOI: 10.1016/j.biomaterials.2013.08.060] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/19/2013] [Indexed: 12/22/2022]
Abstract
Local statins implant has been shown to promote bone healing, the underlying mechanisms are unclear. The purpose of this study was to test the effect of local simvastatin implant on bone defect healing; to evaluate the mobilization, migration, and homing of bone marrow-derived mesenchymal stem cells (BMSCs) and endothelial progenitor cells (EPCs) induced by simvastatin. We found that local simvastatin implant increased bone formation by 51.8% (week 6) and 64.8% (week 12) compared with polyglycolic acid controls (P < 0.01), as verified by X-ray, CT, and histology. Simvastatin increased migration capacity of BMSCs and EPCs in vitro (P < 0.05). Local simvastatin implant increased mobilization of EPCs to the peripheral blood by 127% revealed by FACS analysis (P < 0.01), and increased osteogenic BMSCs to the peripheral blood dramatically revealed by Alizarin Red-S staining for mineralized nodules formation. Pre-transplanted GFP-transfected BMSCs as a tracing cell and bioluminescence imaging revealed that local simvastatin implant recruited GFP-labeled BMSC. Also, local simvastatin implant induced the HIF-1α and BMP-2 expression. In conclusion, local simvastatin implantation promotes bone defect healing, where the underlying mechanism appears to involve the higher expression of HIF-1α and BMP-2, thus recruit autogenous osteogenic and angiogenetic stem cells to the bone defect area implanted with simvastatin.
Collapse
Affiliation(s)
- Cui Yueyi
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, PR China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Osteoporosis is a common disease in the elderly population. The progress of this disease results in the reduction of bone mass and can increase the incidence of fractures. Drugs presently used clinically can block the aggravation of this disease. However, these drugs cannot increase the bone mass and may result in certain side effects. Statins, also known as HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase inhibitors, have been widely prescribed for CVD (cardiovascular disease) for decades. Nonetheless, several studies have demonstrated that statins exert bone anabolic effect and may be helpful for the treatment of osteoporosis. Several experiments have analysed the mechanisms of bone anabolism regulated by statins. In the present paper, we review the mechanisms of promoting osteogenesis, suppressing osteoblast apoptosis and inhibiting osteoclastogenesis.
Collapse
|
16
|
Park JB. The effects of fulvestrant, an estrogen receptor antagonist, on the proliferation, differentiation and mineralization of osteoprecursor cells. Mol Med Rep 2012. [PMID: 23179494 DOI: 10.3892/mmr.2012.1200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fulvestrant is a novel type of endocrine treatment and is considered to be a potent inhibitor of breast cancer cell proliferation. Fulvestrant is reported to work by downregulating as well as degrading the estrogen receptor, leading to an inhibition of estrogen signaling through the estrogen receptor. The effects of various doses of fulvestrant for bone cells have not yet been fully investigated. In the present study, the effects of fulvestrant on osteoprecursor cells were evaluated. The effect on cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and protein measurement. Differentiation and mineralization were examined using an alkaline phosphatase activity (ALP) test and Alizarin red S staining. The protein expression of osteocalcin was evaluated using western blot analysis. Cultures grown in the presence of fulvestrant at concentrations of 0.1-10 µM did not show any significant change in cell proliferation. Cultures grown in the presence of fulvestrant showed a dose-dependent reduction in ALP activity, however, statistically significant differences were not achieved. Cultures grown in the presence of fulvestrant presented with a dose-dependent reduction in mineralization with a statistically significant difference at the 10 µM concentration. The use of fulvestrant may produce negative effects on the mineralization of osteoprecursor cells, while long-term use of fulvestrant may have detrimental effects on osteoblastic activity.
Collapse
Affiliation(s)
- Jun-Beom Park
- Department of Periodontics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea.
| |
Collapse
|
17
|
A study in vitro on differentiation of bone marrow mesenchymal stem cells into endometrial epithelial cells in mice. Eur J Obstet Gynecol Reprod Biol 2012; 160:185-90. [DOI: 10.1016/j.ejogrb.2011.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 09/10/2011] [Accepted: 10/19/2011] [Indexed: 11/18/2022]
|
18
|
Li X, Song QS, Wang JY, Leng HJ, Chen ZQ, Liu ZJ, Dang GT, Song CL. Simvastatin induces estrogen receptor-alpha expression in bone, restores bone loss, and decreases ERα expression and uterine wet weight in ovariectomized rats. J Bone Miner Metab 2011; 29:396-403. [PMID: 21063740 DOI: 10.1007/s00774-010-0231-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 09/14/2010] [Indexed: 10/18/2022]
Abstract
We previously reported that simvastatin induces estrogen receptor-alpha (ERα) in murine bone marrow stromal cells in vitro. In this study, we investigated the effect of simvastatin on ERα expression in bone and uterus in ovariectomized (OVX) rats and evaluated bone mass, bone strength, and uterine wet weight. Three-month-old Sprague-Dawley female rats received OVX or sham operation. Six weeks later, the rats were treated orally with simvastatin (5 or 10 mg/kg/day), or intraperitoneally with 17-β-estradiol (E(2)) or a combination of simvastatin and E(2) for 6 weeks. Uterine wet weight, bone mineral density (BMD) of lumbar vertebrae, biomechanics of lumbar vertebrae, and induction of ERα expression in the bone and uterus were analyzed. The 6-week simvastatin treatment improved lumbar vertebral BMD and boosted biomechanical performance of the vertebral body compared to the OVX control, suggesting that simvastatin can treat osteoporosis caused by estrogen deficiency. More interestingly, simvastatin could increase ERα expression and synergy with estradiol in bone while antagonizing estradiol in the uterus, along with uterus atrophy and uterine wet weight decreases. In conclusion, these data suggest that simvastatin exert opposing modulatory effects on ERα expression on bone and uterus in ovariectomized rats, inducing ERα expression and synergy with estrogen to perform anabolic effects on the bones while decreasing E2 efficacy and uterine wet weight. This finding may be helpful to explain the mechanism of statin treatment in osteoporosis caused by estrogen deficiency.
Collapse
Affiliation(s)
- Xu Li
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Egusa H, Saeki M, Doi M, Fukuyasu S, Matsumoto T, Kamisaki Y, Yatani H. A Small-molecule Approach to Bone Regenerative Medicine in Dentistry. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80039-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|