1
|
Tolgyesi A, Huang C, Akens M, Kiss A, Hardisty M, Whyne CM. Treatment affects load to failure and microdamage accumulation in healthy and osteolytic rat vertebrae. J Mech Behav Biomed Mater 2024; 151:106382. [PMID: 38211499 DOI: 10.1016/j.jmbbm.2024.106382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Bone turnover and microdamage are impacted by the presence of skeletal metastases which can contribute to increased fracture risk. Treatments for metastatic disease may further impact bone quality. This exploratory study aimed to establish an initial understanding of microdamage accumulation and load to failure in healthy and osteolytic rat vertebrae following focal and systemic cancer treatment (docetaxel (DTX), stereotactic body radiotherapy (SBRT), or zoledronic acid (ZA)). Osteolytic spine metastases were developed in 6-week-old athymic female rats via intracardiac injection of HeLa human cervical cancer cells (day 0). Additional rats served as healthy controls. Rats were either untreated, received SBRT to the T10-L6 vertebrae on day 14 (15 Gy, two fractions), DTX on day 7 or 14, or ZA on day 7. Rats were euthanized on day 21. Tumor burden was assessed with bioluminescence images acquired on day 14 and 21, histology of the excised T11 and L5 vertebrae, and ex-vivo μCT images of the T13-L4. Microstructural parameters (bone volume/total volume, trabecular number, spacing, thickness, and bone mineral density) were measured from L2 vertebrae. Load to failure was measured with axial compressive loading of the L1-L3 motion segments. Microdamage accumulation was labeled in T13 vertebrae with BaSO4 staining and was visualized with high resolution μCT imaging. Microdamage volume fraction was defined as the ratio of BaSO4 to bone volume. DTX administered on day 7 reduced tumor growth significantly (p < 0.05). Microdamage accumulation was found to be increased by the presence of metastases but was reduced by all treatments with ZA showing the largest improvement in HeLa cell injected rats. Load to failure was decreased in untreated and SBRT HeLa cell injected rats compared to healthy controls (p < 0.01). There was a moderate negative correlation between load to failure and microdamage volume fraction in vertebrae from rats injected with HeLa cells (R = -0.35, p = 0.031). Strong correlations were also found between microstructural parameters and load to failure and microdamage accumulation. Several factors, including the presence of osteolytic lesions and use of cancer therapies, influence microdamage accumulation and load to failure in rat vertebrae. Understanding the impact of these treatments on fracture risk of metastatic vertebrae is important to improve management of patients with spinal metastases.
Collapse
Affiliation(s)
- Allison Tolgyesi
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada; Institute of Biomedical Engineering, Faculty of Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada.
| | - Christine Huang
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada; Division of Engineering Science, Faculty of Engineering, University of Toronto, 42 St George Street, Toronto, ON, M5S 2E4, Canada
| | - Margarete Akens
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, 149 College Street, Toronto, ON, M5T 1P5, Canada; Techna Institute, University Health Network, 190 Elizabeth Street, Toronto, ON, M5G 2C4, Canada; Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Alex Kiss
- Department of Research Design and Biostatistics, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Michael Hardisty
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada; Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, 149 College Street, Toronto, ON, M5T 1P5, Canada
| | - Cari M Whyne
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada; Institute of Biomedical Engineering, Faculty of Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada; Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, 149 College Street, Toronto, ON, M5T 1P5, Canada
| |
Collapse
|
2
|
Robinson T, Escara-Wilke J, Dai J, Zimmermann J, Keller ET. A CXCR4 inhibitor (balixafortide) enhances docetaxel-mediated antitumor activity in a murine model of prostate cancer bone metastasis. Prostate 2023; 83:1247-1254. [PMID: 37244751 PMCID: PMC10576997 DOI: 10.1002/pros.24584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Prostate cancer (PCa) bone metastases have been shown to be more resistant to docetaxel than soft tissue metastases. The proinflammatory chemokine receptor CXCR4 has been shown to confer resistance to docetaxel (DOC) in PCa cells. Balixafortide (BLX) is a protein epitope mimetic inhibitor of CXCR4. Accordingly, we hypothesized that BLX would enhance DOC-mediated antitumor activity in PCa bone metastases. METHODS PC-3 luciferase-labeled cells were injected into the tibia of mice to model bone metastases. Four treatment groups were created: vehicle, DOC (5 mg/kg), BLX (20 mg/kg), and combo (receiving both DOC and BLX). Mice were injected twice daily subcutaneously with either vehicle or BLX starting on Day 1 and weekly intraperitoneally with DOC starting on Day 1. Tumor burden was measured weekly via bioluminescent imaging. At end of study (29 days), radiographs were taken of the tibiae and blood was collected. Serum levels of TRAcP, IL-2, and IFNγ levels were measured using ELISA. Harvested tibiae were decalcified and stained for Ki67, cleaved caspase-3, and CD34 positive cells or microvessels were quantified. RESULTS Tumor burden was lower in the combo group compared to the DOC alone group. Treatment with the combination had no impact on the number of mice with osteolytic lesions, however the area of osteolytic lesions was lower in the combo group compared to the vehicle and BLX groups, but not the DOC group. Serum TRAcP levels were lower in the combo compared to vehicle group, but not the other groups. No significant difference in Ki67 staining was found among the groups; whereas, cleaved caspase-3 staining was lowest in the Combo group and highest in the BLX group. The DOC and combo groups had more CD34+ microvessels than the control and BLX groups. There was no difference between the treatment groups for IL-2, but the combo group had increased levels of IFNγ compared to the DOC group. CONCLUSIONS Our data demonstrate that a combination of BAL and DOC has greater antitumor activity in a model of PCa bone metastases than either drug alone. These data support further evaluation of this combination in metastatic PCa.
Collapse
Affiliation(s)
- Tyler Robinson
- Department of Urology, University of Michigan, Ann Arbor, MI 48109
| | | | - Jinlu Dai
- Department of Urology, University of Michigan, Ann Arbor, MI 48109
| | | | - Evan T Keller
- Department of Urology, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
- Single Cell Spatial Analysis Program, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
3
|
Peng BQ, Wu J, Tian S, Qu XQ, Liang XY, Feng JH, Chen YL, She RL, Ma CY, Song JY, Li ZX, Jiang ZY, Wu KN, Kong LQ. Effect of chemotherapy and different chemotherapy regimens on bone health among Chinese breast cancer women in different menstrual status: a self-control study. Support Care Cancer 2023; 31:540. [PMID: 37642751 DOI: 10.1007/s00520-023-07960-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/20/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Although the therapy-related bone loss attracts increasing attention nowadays, the differences in chemotherapy-induced bone loss and bone metabolism indexes change among breast cancer (BC) women with different menstrual statuses or chemotherapy regimens are unknown. The aim of the study is to explore the effects of different regimens of chemotherapy on bone health. METHOD The self-control study enrolled 118 initially diagnosed BC women without distant metastasis who underwent dual-energy X-ray absorptiometry (DXA) bone mineral density (BMD) screening and (or) bone metabolism index monitoring during chemotherapy at Chongqing Breast Cancer Center. Mann-Whitney U test, Cochran's Q test, and Wilcoxon sign rank test were performed. RESULTS After chemotherapy, the BMD in the lumbar 1-4 and whole lumbar statistically decreased (- 1.8%/per 6 months), leading to a significantly increased proportion of osteoporosis (27.1% vs. 20.5%, P < 0.05), which were mainly seen in the premenopausal group (- 7.0%/per 6 months). Of the chemotherapeutic regimens of EC (epirubicin + cyclophosphamide), TC (docetaxel + cyclophosphamide), TEC (docetaxel + epirubicin + cyclophosphamide), and EC-T(H) [epirubicin + cyclophosphamide-docetaxel and/or trastuzumab], EC regimen had the least adverse impact on BMD, while the EC-TH regimen reduced BMD most (P < 0.05) inspite of the non-statistical difference between EC-T regimen, which was mainly seen in the postmenopausal group. Chemotherapy-induced amenorrhea (estradiol 94 pg/ml vs, 22 pg/ml; FSH 9.33 mIU/ml vs. 61.27 mIU/ml) was proved in premenopausal subgroup (P < 0.001). Except the postmenopausal population with calcium/VitD supplement, the albumin-adjusted calcium increased significantly (2.21 mmol/l vs. 2.33 mmol/l, P < 0.05) after chemotherapy. In postmenopausal group with calcium/VitD supplement, β-CTX decreased significantly (0.56 ng/ml vs. 0.39 ng/ml, P < 0.05) and BMD were not affected by chemotherapy (P > 0. 05). In premenopausal group with calcium/VitD supplement, PTH decreased significantly (52.90 pg/ml vs. 28.80 pg/ml, P = 0. 008) and hip BMD increased after chemotherapy (0.845 g/m2 vs. 0.952 g/m2, P = 0. 006). As for both postmenopausal and premenopausal group without calcium/VitD supplement, there was a significant decrease in bone mass in hip and lumbar vertebrae after chemotherapy (0.831 g/m2 vs. 0.776 g/m2; 0.895 g/m2 vs. 0.870 g/m2, P < 0.05). CONCLUSION Chemotherapy might induce lumbar vertebrae BMD loss and spine osteoporosis with regimen differences among Chinese BC patients. Calcium/VitD supplementation could improve bone turnover markers, bone metabolism indicators, and bone mineral density. Early interventions on bone health are needed for BC patients during chemotherapy.
Collapse
Affiliation(s)
- Bai-Qing Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Juan Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shen Tian
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiu-Quan Qu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xin-Yu Liang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jun-Han Feng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu-Ling Chen
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Rui-Ling She
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chen-Yu Ma
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jing-Yu Song
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhao-Xing Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhi-Yu Jiang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Kai-Nan Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ling-Quan Kong
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Pagnotti GM, Trivedi T, Mohammad KS. Translational Strategies to Target Metastatic Bone Disease. Cells 2022; 11:1309. [PMID: 35455987 PMCID: PMC9030480 DOI: 10.3390/cells11081309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Metastatic bone disease is a common and devastating complication to cancer, confounding treatments and recovery efforts and presenting a significant barrier to de-escalating the adverse outcomes associated with disease progression. Despite significant advances in the field, bone metastases remain presently incurable and contribute heavily to cancer-associated morbidity and mortality. Mechanisms associated with metastatic bone disease perpetuation and paralleled disruption of bone remodeling are highlighted to convey how they provide the foundation for therapeutic targets to stem disease escalation. The focus of this review aims to describe the preclinical modeling and diagnostic evaluation of metastatic bone disease as well as discuss the range of therapeutic modalities used clinically and how they may impact skeletal tissue.
Collapse
Affiliation(s)
- Gabriel M. Pagnotti
- Department of Endocrine, Neoplasia and Hormonal Disorders, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA; (G.M.P.); (T.T.)
| | - Trupti Trivedi
- Department of Endocrine, Neoplasia and Hormonal Disorders, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA; (G.M.P.); (T.T.)
| | - Khalid S. Mohammad
- Department of Anatomy and Genetics, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
5
|
Nisha Y, Dubashi B, Bobby Z, Sahoo JP, Kayal S. Effect of cytotoxic chemotherapy on bone health among breast cancer patients. Does it require intervention? Support Care Cancer 2021; 29:6957-6972. [PMID: 33954821 DOI: 10.1007/s00520-021-06231-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/16/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Breast cancer (BC) is one of the most common malignancies worldwide. Although the burden and mechanisms of endocrine therapy-related bone loss are known, the evidence is scanty regarding the impact of cytotoxic chemotherapy on bone health. We have attempted to summarize the effect of cytotoxic chemotherapy on bone health in BC patients. METHODS A comprehensive literature search was performed via MEDLINE and Cochrane library databases to evaluate the effect of chemotherapy on bone health among women with BC. We included articles related to skeletal-related events, bone mineral density, bone turnover markers, osteoporosis-specific quality of life, bisphosphonate, and other bone-directed therapy. We excluded articles that included patients with metastatic breast cancer and patients receiving hormonal therapy. DISCUSSION Bone microenvironment in cancer is directly or indirectly influenced by clinical, hormonal, nutritional, and treatment factors. Calcitonin, parathyroid hormone, calcitriol, and estrogen are the major hormonal regulators. Bone turnover markers, namely bone formation and resorption markers, have been used to predict bone loss, fracture risk, and monitoring treatment response. Chemotherapeutic drugs such as anthracyclines and taxanes synergistically affect BMD and quality of life. Calcium, vitamin D, bisphosphonates, and denosumab are supplemented to prevent excess bone resorption. Bone-targeted anti-resorptive agents have been studied as potential anticancer agents in the adjuvant treatment of breast cancer. CONCLUSION This review summarizes the negative effect of chemotherapy on bone health of BC patients and the importance of preventing or treating bone loss.
Collapse
Affiliation(s)
- Yadav Nisha
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - Biswajit Dubashi
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India.
| | - Zachariah Bobby
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - Jaya Prakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - Smita Kayal
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| |
Collapse
|
6
|
Messer JG, Castillo EJ, Abraham AM, Jiron JM, Israel R, Yarrow JF, Thomas S, Reynolds MC, Wnek RD, Jorgensen M, Wanionok N, Van Poznak C, Bhattacharyya I, Kimmel DB, Aguirre JI. Anti-vascular endothelial growth factor antibody monotherapy causes destructive advanced periodontitis in rice rats (Oryzomys palustris). Bone 2020; 130:115141. [PMID: 31707108 PMCID: PMC6941430 DOI: 10.1016/j.bone.2019.115141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Angiogenesis inhibitors (AgI) are commonly used in combination chemotherapy protocols to treat cancer, and have been linked to osteonecrosis of the jaw (ONJ). However, it is unknown if AgI therapy alone is sufficient to induce ONJ. We have previously established an ONJ model in rice rats with localized periodontitis that receive zoledronic acid (ZOL). The purpose of this study was to use this model to determine the role of anti-vascular endothelial growth factor A (anti-VEGF) antibody treatment of rice rats with localized maxillary periodontitis. We hypothesized that rice rats with localized maxillary periodontitis given anti-VEGF monotherapy will develop oral lesions that resemble ONJ, defined by exposed, necrotic alveolar bone. METHODS At age 4 weeks, 45 male rice rats were randomized into three groups (n = 15): 1) VEH (saline), 2) ZOL (80 μg/kg body weight, intravenously once monthly), and 3) anti-VEGF (5 mg B20-4.1.1/kg body weight, subcutaneously twice weekly). After 24 weeks, rats were euthanized, jaws were excised and a high-resolution photograph of each quadrant was taken to assign a severity grade based on gross appearance. Jaws were then fixed, scanned by MicroCT, decalcified and sectioned for histopathologic and immunohistochemical analyses. RESULTS 40-80% of the rats in the three groups developed gross oral lesions. 50% of ZOL rats developed ONJ. In contrast, 80% of the anti-VEGF rats developed destructive advanced periodontitis that was characterized by extreme alveolar bone loss and fibrosis. Anti-VEGF rats never developed exposed, necrotic bone. Furthermore, only anti-VEGF rats developed mild to severe mandibular periodontitis. Compared to VEH rats, more T-cells were found in periodontal lesions of anti-VEGF rats and more cells of the monocyte lineage were found in ONJ lesions of ZOL rats. CONCLUSIONS Anti-VEGF monotherapy administered to a validated rodent model of ONJ caused a destructive advanced form of periodontitis that differed significantly from ONJ.
Collapse
Affiliation(s)
- J G Messer
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - E J Castillo
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - A M Abraham
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - J M Jiron
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - R Israel
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - J F Yarrow
- Research Service, VA Medical Center, Gainesville, FL, United States of America; Division of Endocrinology, Diabetes, and Metabolism, University of Florida College of Medicine, Gainesville, FL, United States of America.
| | - S Thomas
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - M C Reynolds
- Research Service, VA Medical Center, Gainesville, FL, United States of America
| | - R D Wnek
- Research Service, VA Medical Center, Gainesville, FL, United States of America
| | - M Jorgensen
- Department of Pediatrics, College of Medicine, UF, United States of America.
| | - N Wanionok
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America
| | - C Van Poznak
- University of Michigan, Ann Arbor, MI, United States of America.
| | - I Bhattacharyya
- Department of Oral & Maxillofacial Diagnostic Sciences, College of Dentistry, UF, United States of America.
| | - D B Kimmel
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - J I Aguirre
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| |
Collapse
|
7
|
Lo CH, Lynch CC. Multifaceted Roles for Macrophages in Prostate Cancer Skeletal Metastasis. Front Endocrinol (Lausanne) 2018; 9:247. [PMID: 29867776 PMCID: PMC5968094 DOI: 10.3389/fendo.2018.00247] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
Bone-metastatic prostate cancer is common in men with recurrent castrate-resistant disease. To date, therapeutic focus has largely revolved around androgen deprivation therapy (ADT) and chemotherapy. While second-generation ADTs and combination ADT/chemotherapy approaches have been successful in extending overall survival, the disease remains incurable. It is clear that molecular and cellular components of the cancer-bone microenvironment contribute to the disease progression and potentially to the emergence of therapy resistance. In bone, metastatic prostate cancer cells manipulate bone-forming osteoblasts and bone-resorbing osteoclasts to produce growth and survival factors. While osteoclast-targeted therapies such as bisphosphonates have improved quality of life, emerging data have defined important roles for additional cells of the bone microenvironment, including macrophages and T cells. Disappointingly, early clinical trials with checkpoint blockade inhibitors geared at promoting cytotoxic T cell response have not proved as promising for prostate cancer compared to other solid malignancies. Macrophages, including bone-resident osteomacs, are a major component of the bone marrow and play key roles in coordinating normal bone remodeling and injury repair. The role for anti-inflammatory macrophages in the progression of primary prostate cancer is well established yet relatively little is known about macrophages in the context of bone-metastatic prostate cancer. The focus of the current review is to summarize our knowledge of macrophage contribution to normal bone remodeling and prostate-to-bone metastasis, while also considering the impact of standard of care and targeted therapies on macrophage behavior in the tumor-bone microenvironment.
Collapse
Affiliation(s)
- Chen Hao Lo
- Cancer Biology Program, University of South Florida, Tampa, FL, United States
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Conor C. Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
8
|
Ross MH, Esser AK, Fox GC, Schmieder AH, Yang X, Hu G, Pan D, Su X, Xu Y, Novack DV, Walsh T, Colditz GA, Lukaszewicz GH, Cordell E, Novack J, Fitzpatrick JAJ, Waning DL, Mohammad KS, Guise TA, Lanza GM, Weilbaecher KN. Bone-Induced Expression of Integrin β3 Enables Targeted Nanotherapy of Breast Cancer Metastases. Cancer Res 2017; 77:6299-6312. [PMID: 28855208 DOI: 10.1158/0008-5472.can-17-1225] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/26/2017] [Accepted: 08/24/2017] [Indexed: 11/16/2022]
Abstract
Bone metastases occur in approximately 70% of metastatic breast cancer patients, often leading to skeletal injuries. Current treatments are mainly palliative and underscore the unmet clinical need for improved therapies. In this study, we provide preclinical evidence for an antimetastatic therapy based on targeting integrin β3 (β3), which is selectively induced on breast cancer cells in bone by the local bone microenvironment. In a preclinical model of breast cancer, β3 was strongly expressed on bone metastatic cancer cells, but not primary mammary tumors or visceral metastases. In tumor tissue from breast cancer patients, β3 was significantly elevated on bone metastases relative to primary tumors from the same patient (n = 42). Mechanistic investigations revealed that TGFβ signaling through SMAD2/SMAD3 was necessary for breast cancer induction of β3 within the bone. Using a micelle-based nanoparticle therapy that recognizes integrin αvβ3 (αvβ3-MPs of ∼12.5 nm), we demonstrated specific localization to breast cancer bone metastases in mice. Using this system for targeted delivery of the chemotherapeutic docetaxel, we showed that bone tumor burden could be reduced significantly with less bone destruction and less hepatotoxicity compared with equimolar doses of free docetaxel. Furthermore, mice treated with αvβ3-MP-docetaxel exhibited a significant decrease in bone-residing tumor cell proliferation compared with free docetaxel. Taken together, our results offer preclinical proof of concept for a method to enhance delivery of chemotherapeutics to breast cancer cells within the bone by exploiting their selective expression of integrin αvβ3 at that metastatic site. Cancer Res; 77(22); 6299-312. ©2017 AACR.
Collapse
Affiliation(s)
- Michael H Ross
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Alison K Esser
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Gregory C Fox
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Anne H Schmieder
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri
| | - Xiaoxia Yang
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri
| | - Grace Hu
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Xinming Su
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Yalin Xu
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Deborah V Novack
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri
| | - Thomas Walsh
- Department of Surgery, Division of Public Health Sciences, St. Louis Breast Tissue Registry, Washington University School of Medicine, St. Louis, Missouri
| | - Graham A Colditz
- Department of Surgery, Division of Public Health Sciences, St. Louis Breast Tissue Registry, Washington University School of Medicine, St. Louis, Missouri
| | - Gabriel H Lukaszewicz
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Elizabeth Cordell
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua Novack
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - James A J Fitzpatrick
- Departments of Cell Biology & Physiology and Neuroscience, Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, Missouri
| | - David L Waning
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Khalid S Mohammad
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Theresa A Guise
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gregory M Lanza
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri
| | - Katherine N Weilbaecher
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
9
|
Geng D, Mao H, Wang J, Zhu X, Huang C, Chen L, Yang H, Xu Y. Protective effects of COX-2 inhibitor on titanium-particle-induced inflammatory osteolysis via the down-regulation of RANK/RANKL. Acta Biomater 2011; 7:3216-21. [PMID: 21601661 DOI: 10.1016/j.actbio.2011.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 05/04/2011] [Accepted: 05/06/2011] [Indexed: 11/16/2022]
Abstract
Particle-wear-induced inflammatory osteolysis remains a major problem for the long-term success of total joint arthroplasty. Previous studies have demonstrated that cyclooxygenase-2 (COX-2) is expressed abundantly in the tissue around a failed implant. However, the role of COX-2 in the development of particle-wear-induced osteoclastogenesis remains unclear. The aim of the study was to test the hypothesis that Dynastat, a COX-2 inhibitor, ameliorates particle-wear-induced inflammatory osteoclastogenesis through the down-regulation of the receptor activators of nuclear factor-κB (RANK) and nuclear factor-κB ligand (RANKL) expression in a murine osteolysis model. Titanium (Ti) particles were introduced into established air pouches in BALB/c mice, followed by the implantation of calvaria bone from syngeneic littermates. Dynastat was given to mice intraperitoneally 2 days before the introduction of Ti particles and maintained until the mice were sacrificed. Pouch tissues were collected 14 days after Ti inoculation for molecular and histological analysis. The results showed that Dynastat has more impact on Ti-particle-induced prostaglandin E(2) expression and less on the expression of interleukin-1β and tumor necrosis factor-α. Dynastat inhibited Ti-particle-induced osteoclastogenesis by reducing the gene activation of RANK and RANKL, and diminishing the RANKL expression in Ti-particle-charged pouches. Dynastat markedly reduced the number of tartrate-resistant acid-phosphatase-positive cells in pouch tissues stimulated by Ti particles. In conclusion, this study provides evidence that Dynastat can markedly inhibit Ti-particle-induced osteoclastogenesis by the down-regulation of RANK/RANKL in a murine air pouch model, and is a promising therapeutic candidate for the treatment of inflammatory osteolysis induced by wear particles.
Collapse
Affiliation(s)
- Dechun Geng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | | | | | | | | | | | | | | |
Collapse
|