1
|
Faienza MF, Giardinelli S, Annicchiarico A, Chiarito M, Barile B, Corbo F, Brunetti G. Nutraceuticals and Functional Foods: A Comprehensive Review of Their Role in Bone Health. Int J Mol Sci 2024; 25:5873. [PMID: 38892062 PMCID: PMC11172758 DOI: 10.3390/ijms25115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Bone health is the result of a tightly regulated balance between bone modeling and bone remodeling, and alterations of these processes have been observed in several diseases both in adult and pediatric populations. The imbalance in bone remodeling can ultimately lead to osteoporosis, which is most often associated with aging, but contributing factors can already act during the developmental age, when over a third of bone mass is accumulated. The maintenance of an adequate bone mass is influenced by genetic and environmental factors, such as physical activity and diet, and particularly by an adequate intake of calcium and vitamin D. In addition, it has been claimed that the integration of specific nutraceuticals such as resveratrol, anthocyanins, isoflavones, lycopene, curcumin, lutein, and β-carotene and the intake of bioactive compounds from the diet such as honey, tea, dried plums, blueberry, and olive oil can be efficient strategies for bone loss prevention. Nutraceuticals and functional foods are largely used to provide medical or health benefits, but there is an urge to determine which products have adequate clinical evidence and a strong safety profile. The aim of this review is to explore the scientific and clinical evidence of the positive role of nutraceuticals and functional food in bone health, focusing both on molecular mechanisms and on real-world studies.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy; (M.F.F.)
| | - Silvia Giardinelli
- Department of Medical Sciences, Pediatrics, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| | - Mariangela Chiarito
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy; (M.F.F.)
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, 70125 Bari, Italy;
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| |
Collapse
|
2
|
Xia B, Dai X, Shi H, Yin J, Xu T, Liu T, Yue G, Guo H, Liang R, Liu Y, Gao J, Wang X, Chen X, Tang J, Wang L, Zhu R, Zhang D. Lycopene Promotes Osteogenesis and Reduces Adipogenesis through Regulating FoxO1/PPARγ Signaling in Ovariectomized Rats and Bone Marrow Mesenchymal Stem Cells. Nutrients 2024; 16:1443. [PMID: 38794681 PMCID: PMC11123960 DOI: 10.3390/nu16101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Recent interest in preventing the development of osteoporosis has focused on the regulation of redox homeostasis. However, the action of lycopene (LYC), a strong natural antioxidant compound, on osteoporotic bone loss remains largely unknown. Here, we show that oral administration of LYC to OVX rats for 12 weeks reduced body weight gain, improved lipid metabolism, and preserved bone quality. In addition, LYC treatment inhibited ROS overgeneration in serum and bone marrow in OVX rats, and in BMSCs upon H2O2 stimulation, leading to inhibiting adipogenesis and promoting osteogenesis during bone remodeling. At the molecular level, LYC improved bone quality via an increase in the expressions of FoxO1 and Runx2 and a decrease in the expressions of PPARγ and C/EBPα in OVX rats and BMSCs. Collectively, these findings suggest that LYC attenuates osteoporotic bone loss through promoting osteogenesis and inhibiting adipogenesis via regulation of the FoxO1/PPARγ pathway driven by oxidative stress, presenting a novel strategy for osteoporosis management.
Collapse
Affiliation(s)
- Bingke Xia
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Xuan Dai
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Hanfen Shi
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Jiyuan Yin
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Tianshu Xu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Tianyuan Liu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Gaiyue Yue
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Haochen Guo
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Ruiqiong Liang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Yage Liu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
- Food and Pharmacy College, Xuchang University, 88 Bayi Road, Xuchang 461000, China
| | - Junfeng Gao
- The Scientific Research Center, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China; (J.G.); (X.W.)
| | - Xinxiang Wang
- The Scientific Research Center, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China; (J.G.); (X.W.)
| | - Xiaofei Chen
- Department of Pharmacology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450003, China; (X.C.); (J.T.)
| | - Jinfa Tang
- Department of Pharmacology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450003, China; (X.C.); (J.T.)
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ruyuan Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dongwei Zhang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| |
Collapse
|
3
|
Kulczyński B, Sidor A, Brzozowska A, Gramza-Michałowska A. The role of carotenoids in bone health-A narrative review. Nutrition 2024; 119:112306. [PMID: 38211461 DOI: 10.1016/j.nut.2023.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
Osteoporosis constitutes a serious challenge for public health. Dietary patterns belong to important, modifiable risk factors of this disease. Therefore, what and in what quantities we consume on a daily basis are extremely relevant. It is commonly known that bone health is positively affected by vitamins (e.g., vitamin D and vitamin K) as well as mineral components (e.g., calcium and magnesium). However, the human diet consists of many other groups of compounds that exhibit a potential antiosteoporotic and supporting bone-building effect. These dietary components include carotenoids. This paper presents a broad review of studies on the influence of particular carotenoids (β-carotene, lutein, zeaxanthin, β-cryptoxanthin, and lycopene) on bones. The paper discusses up-to-date in vitro experiments and research on animal models and presents how the results translate into clinical effect in humans.
Collapse
Affiliation(s)
- Bartosz Kulczyński
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Andrzej Sidor
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Brzozowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
4
|
Wang S, Shao C, Zhao X, Guo Y, Song H, Shen L, Zhou Z, Li Z. Application of Three-Dimension Printing Nano-Carbonated-Hydroxylapatite to the Repair of Defects in Rabbit Bone. Int J Nanomedicine 2024; 19:1667-1681. [PMID: 38406604 PMCID: PMC10894707 DOI: 10.2147/ijn.s439775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Hydroxylapatite (HAp) is a biodegradable bone graft material with high biocompatibility. However, the clinical application of HAp has been limited due to the poor absorption rate in vivo. Methods In this study, carbonated hydroxylapatite (CHAp) with a chemical composition similar to natural bone was synthesized. HAp and CHAp scaffolds were fabricated by 3D printing. Each material was designed by two types of scaffold model with a maximum width of 8 mm and a thickness of 2 mm, ie, structure I (round shape) and structure II (grid shape). Then, the HAp scaffolds were loaded with lutein. These scaffolds were implanted into the 8 mm bone defect on the top of the rabbit skull within 3 hours in the morning. The curative effects of the scaffolds were assessed two months after implantation. Results The 3D printed scaffolds did not cause severe inflammation or rejection after implantation. It showed that the porous structures allow bone cells to enter into the scaffolds. Furthermore, CHAp scaffolds were more biocompatible than HAp scaffolds, and showed a higher level of degradation and new bone formation after implantation. Structure II scaffolds with a smaller mineral content degraded faster than structure I, while structure I had better osteoconductive properties than structure II. Besides, the addition of lutein significantly enhanced the rate of new bone formation. Discussion The uniqueness of this study lies in the synthesis of 3D printed CHAp scaffolds and the implantation of CHAp in rabbit bone defects. The incorporation of suitable carbonate and lutein into HAp can enhance the osteoinductivity of the graft, and CHAp has a faster degradation rate in vivo, all of which provide a new reference for the research and application of apatite-based composites.
Collapse
Affiliation(s)
- Shujie Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People’s Republic of China
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 311300, People’s Republic of China
| | - Chunyan Shao
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 311300, People’s Republic of China
| | - Xingkai Zhao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People’s Republic of China
| | - Yizhe Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People’s Republic of China
| | - Houhui Song
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 311300, People’s Republic of China
| | - Lida Shen
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, People’s Republic of China
| | - Zhenlei Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People’s Republic of China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People’s Republic of China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, Jiangsu, 210008, People’s Republic of China
| |
Collapse
|
5
|
Ricardo V, Sousa LGD, Regalo IH, Pitol DL, Bombonato-Prado KF, Regalo SCH, Siessere S. Lycopene enhances bone neoformation in calvaria bone defects of ovariectomized rats. Braz Dent J 2023; 34:50-56. [PMID: 37466525 PMCID: PMC10355266 DOI: 10.1590/0103-6440202304980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 01/05/2023] [Indexed: 07/20/2023] Open
Abstract
Osteoporosis can affect a significant part of the population and fractures are the most common complications associated with this disease, leading to high public health costs. Thus, the prevention of fractures is relevant to individuals with signs and symptoms as well as to the health system. Postmenopausal osteoporosis has been associated with oxidative stress, emphasizing the importance of an efficient defense system to maintain bone health. Lycopene is a carotenoid with antioxidant properties that may stimulate osteoblastogenesis and inhibit osteoclastogenesis. The purpose of this investigation was to analyze the influence of lycopene in the bone neoformation of calvaria defects in ovariectomized rats utilizing the concentration of 45 mg/kg. Wistar Hannover female rats were divided into ovariectomized and sham groups. The ovariectomized animals received 45 mg/kg lycopene (OvxL) or water (Ovx) by daily gavage the day after ovariectomy/sham surgery for 16 weeks. Twelve weeks after ovariectomy, there were performed 5-mm calvaria defects followed by euthanasia after 4 weeks. Samples of bone tissue were collected to perform morphological and morphometrical analysis of the neoformed bone area, and percentage with Software Image J. Morphological evaluation showed mature bone with more osteocytes in the group OVxL when compared to the other groups. The morphometrical analysis demonstrated a significant increase of bone neoformation in the group OvxL (p<0.05). The data obtained suggest that lycopene benefits bone repair in the absence of estrogenic hormones.
Collapse
Affiliation(s)
- Vitória Ricardo
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz Gustavo de Sousa
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isabela Hallak Regalo
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dimitrius Leonardo Pitol
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Simone Cecilio Hallak Regalo
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Selma Siessere
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
6
|
Marcucci G, Domazetovic V, Nediani C, Ruzzolini J, Favre C, Brandi ML. Oxidative Stress and Natural Antioxidants in Osteoporosis: Novel Preventive and Therapeutic Approaches. Antioxidants (Basel) 2023; 12:antiox12020373. [PMID: 36829932 PMCID: PMC9952369 DOI: 10.3390/antiox12020373] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
This review reports in detail the cellular and molecular mechanisms which regulate the bone remodeling process in relation to oxidative stress (OS), inflammatory factors, and estrogen deficiency. OS is considered an important pathogenic factor of osteoporosis, inducing osteocyte apoptosis and varying levels of specific factors, such as receptor activator κB ligand (RANKL), sclerostin, and, according to recent evidence, fibroblast growth factor 23, with consequent impairment of bone remodeling and high bone resorption. Bone loss increases the risk of fragility fractures, and the most commonly used treatments are antiresorptive drugs, followed by anabolic drugs or those with a double effect. In addition, recent data show that natural antioxidants contained in the diet are efficient in preventing and reducing the negative effects of OS on bone remodeling and osteocytes through the involvement of sirtuin type 1 enzyme. Indeed, osteocytes and some of their molecular factors are considered potential biological targets on which antioxidants can act to prevent and reduce bone loss, as well as to promote bone anabolic and regenerative processes by restoring physiological bone remodeling. Several data suggest including antioxidants in novel therapeutic approaches to develop better management strategies for the prevention and treatment of osteoporosis and OS-related bone diseases. In particular, anthocyanins, as well as resveratrol, lycopene, oleuropein, some vitamins, and thiol antioxidants, could have protective and therapeutic anti-osteoporotic effects.
Collapse
Affiliation(s)
- Gemma Marcucci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Vladana Domazetovic
- Department of Paediatric Haematology-Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
- Correspondence:
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Claudio Favre
- Department of Paediatric Haematology-Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | | |
Collapse
|
7
|
Semeghini MS, Scalize PH, Coelho MC, Fernandes RR, Pitol DL, Tavares MS, de Sousa LG, Coppi AA, Siessere S, Bombonato‐Prado KF. Lycopene prevents bone loss in ovariectomized rats and increases the number of osteocytes and osteoblasts. J Anat 2022; 241:729-740. [PMID: 35445391 PMCID: PMC9358754 DOI: 10.1111/joa.13672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis is a prevalent disease with a high incidence in women at the onset of menopause mainly because of hormonal changes, genetics, and lifestyle, leading to decreased bone mass and risk of fractures. Maintaining bone mass is a challenge for postmenopausal women, with calcium-rich food intake being essential for bone health. Nevertheless, other nutrients such as carotenoids may influence bone metabolism because of their high antioxidant properties. This study aimed to evaluate the effect of the carotenoid lycopene on bone cells and in the microarchitecture of ovariectomized rats employing in vitro and in vivo assays. After 8 weeks of ovariectomy, femurs were removed to isolate bone marrow mesenchymal cells to be cultured in osteogenic medium (sham and ovariectomized/OVX) or with 1 μmol/L lycopene (OVX/Lyc). There were performed assays for alkaline phosphatase activity and its in situ detection, mineralization nodules, and quantitative expression of genes associated with osteogenesis. Daily ingestion of 10 mg/kg of lycopene by oral gavage for 8 weeks after ovariectomy was conducted for stereological evaluation of the number and volume of osteoblasts, osteoclasts, and osteocytes of femur distal epiphysis and for microtomographic evaluation of the bone microarchitecture of the femoral proximal epiphysis. Data were normalized and analyzed by comparison among the groups using one-way ANOVA followed by post hoc tests with the significance level set out at 5%. Results showed that lycopene promoted an increase in ALP in situ detection as well as a significant increase in mineralized nodules deposition and expression of genes Runx2 and Bglap when compared with the OVX group. The administration by oral gavage of lycopene increased the total number of osteoblasts and osteocytes when compared to sham and ovariectomized groups. Additionally, it decreased the volume and number of osteoclasts and also reduced the volume of osteocytes compared to the sham group. These results suggest that lycopene improves bone cell metabolism and bone remodeling with the onset of osteoporosis. Future studies with different concentrations and periods of administration should be carried out to shed further light on it.
Collapse
Affiliation(s)
- Mayara Sgarbi Semeghini
- Bone Research LabDepartment of Basic and Oral BiologySchool of Dentistry of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
| | - Priscila Hakime Scalize
- Bone Research LabDepartment of Basic and Oral BiologySchool of Dentistry of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
| | - Maria Carolina Coelho
- Bone Research LabDepartment of Basic and Oral BiologySchool of Dentistry of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
| | - Roger Rodrigo Fernandes
- Department of Oral and Maxillofacial Surgery and PeriodontologySchool of Dentistry of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
| | - Dimitrius Leonardo Pitol
- Bone Research LabDepartment of Basic and Oral BiologySchool of Dentistry of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
| | - Milla Sproni Tavares
- Department of Oral and Maxillofacial Surgery and PeriodontologySchool of Dentistry of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
| | - Luiz Gustavo de Sousa
- Bone Research LabDepartment of Basic and Oral BiologySchool of Dentistry of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
| | | | - Selma Siessere
- Bone Research LabDepartment of Basic and Oral BiologySchool of Dentistry of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
| | - Karina Fittipaldi Bombonato‐Prado
- Bone Research LabDepartment of Basic and Oral BiologySchool of Dentistry of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
| |
Collapse
|
8
|
Camacho-Alonso F, Tudela-Mulero MR, Navarro JA, Buendía AJ, Mercado-Díaz AM. Use of buccal fat pad-derived stem cells cultured on bioceramics for repair of critical-sized mandibular defects in healthy and osteoporotic rats. Clin Oral Investig 2022; 26:5389-5408. [PMID: 35524820 PMCID: PMC9381637 DOI: 10.1007/s00784-022-04506-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To compare new bone formation in mandibular symphysis critical-sized bone defects (CSBDs) in healthy and osteoporotic rats filled with bioceramics (BCs) with or without buccal fat pad mesenchymal stem cells (BFPSCs). MATERIALS AND METHODS Thirty-two adult female Sprague-Dawley rats were randomized to two groups (n = 16 per group): group 1 healthy and group 2 osteoporotic (with bilateral ovariectomy). The central portion of the rat mandibular symphysis was used as a physiological CSBD. In each group, eight defects were filled with BC (hydroxyapatite 60% and β-tricalcium phosphate 40%) alone and eight with BFPSCs cultured on BC. The animals were sacrificed at 4 and 8 weeks, and the mandibles were processed for micro-computed tomography to analyze radiological union and bone mineral density (BMD); histological analysis of the bone union; and immunohistochemical analysis, which included immunoreactivity of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2). RESULTS In both groups, CSBDs filled with BC + BFPSCs showed greater radiological bone union, BMD and histological bone union, and more VEGF and BMP-2 positivity, compared with CSBDs treated with BC alone at 4 and 8 weeks. CONCLUSIONS The application of BFPSCs cultured on BCs improves bone regeneration in CSBDs compared with BCs alone in healthy and osteoporotic rats. CLINICAL RELEVANCE Our results may aid bone regeneration of maxillofacial CSBDs of both healthy and osteoporotic patients, but further studies are necessary.
Collapse
Affiliation(s)
- Fabio Camacho-Alonso
- Department of Oral Surgery, University of Murcia, Murcia, Spain.
- Oral Surgery Teaching Unit, University Dental Clinic, Morales Meseguer Hospital (2Nd Floor), Marqués de los Vélez s/n, 30008, Murcia, Spain.
| | | | - J A Navarro
- Department of Histology and Pathological Anatomy, University of Murcia, Murcia, Spain
| | - A J Buendía
- Department of Histology and Pathological Anatomy, University of Murcia, Murcia, Spain
| | | |
Collapse
|
9
|
Camacho-Alonso F, Tudela-Mulero MR, Buendía AJ, Navarro JA, Pérez-Sayáns M, Mercado-Díaz AM. Bone regeneration in critical-sized mandibular symphysis defects using bioceramics with or without bone marrow mesenchymal stem cells in healthy, diabetic, osteoporotic, and diabetic-osteoporotic rats. Dent Mater 2022; 38:1283-1300. [PMID: 35717229 DOI: 10.1016/j.dental.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/14/2022] [Accepted: 06/05/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To compare new bone formation in mandibular critical-sized bone defects (CSBDs) in healthy, diabetic, osteoporotic, and diabetic-osteoporotic rats filled with bioceramics (BCs) with or without bone marrow mesenchymal stem cells (BMSCs). METHODS A total of 64 adult female Sprague-Dawley rats were randomized into four groups (n = 16 per group): Group 1 healthy, Group 2 diabetic, Group 3 osteoporotic, and Group 4 diabetic-osteoporotic rats. Streptozotocin was used to induce type 1 diabetes in Group 2 and 4, while bilateral ovariectomy was used to induce osteoporosis in Group 3 and 4. The central portion of the rat mandibular symphysis was used as a physiological CSBD. In each group, eight defects were filled with BC (hydroxypatatite 60% and β-tricalcium phosphate 40%) alone and eight with BMSCs cultured on BC. The animals were sacrificed at 4 and 8 weeks, and the mandibles were processed for micro-computed tomography to analyze radiological union and bone mineral density (BMD); histological analysis of the bone union; and immunohistochemical analysis, which included immunoreactivity of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2). RESULTS In all groups (healthy, diabetics, osteoporotics, and diabetics-osteoporotics), the CSBDs filled with BC + BMSCs showed greater radiological bone union, BMD, histological bone union, and more VEGF and BMP-2 positivity, in comparison with CSBDs treated with BC alone (at 4 and 8 weeks). CONCLUSIONS Application of BMSCs cultured on BCs improves bone regeneration in CSBDs compared with application of BCs alone in healthy, diabetic, osteoporotic, and diabetic-osteoporotic rats.
Collapse
Affiliation(s)
- F Camacho-Alonso
- Department of Oral Surgery, University of Murcia, Murcia, Spain.
| | | | - A J Buendía
- Department of Histology and Pathological Anatomy, University of Murcia, Murcia, Spain
| | - J A Navarro
- Department of Histology and Pathological Anatomy, University of Murcia, Murcia, Spain
| | - M Pérez-Sayáns
- Department of Oral Medicine, Oral Surgery and Implantology, University of Santiago de Compostela, Spain. MedOralRes Group, Health Research Institute of Santiago de Compostela (IDIS). Santiago de Compostela, Spain
| | | |
Collapse
|
10
|
Photobiomodulation stimulates surrounding bone formation and increases stability of titanium alloy miniscrews in ovariectomized rats. Lasers Med Sci 2022; 37:2917-2924. [PMID: 35420398 DOI: 10.1007/s10103-022-03560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
The number of older individuals (> 60 years) treated in orthodontic dental practice is constantly growing, and osteoporosis is a common disease within this age range. Orthodontic treatment for this group tends to be challenging, often requiring the use of mini-implants. Mini-implants are important accessories in orthodontic treatment that provide solutions to complex cases. Despite the high level of success, these devices are prone to failure if insufficient bone stability is achieved. This study aimed to evaluate the effects of photobiomodulation on bone neoformation around mini-implants using fluorescence analysis in ovariectomized rats. A total of 12 female rats (Wistar) were ovariectomized and divided into three groups: two groups of low-level laser therapy irradiation in two different protocols, as follows: in the PBM1 group, applications were performed using 2 J, for 20 s each for 48 h, 6 irradiations in total, and in the PBM2 group, a single application of 4 J was performed for 40 s, and the third group represented the control group, and no laser therapy was applied. Each rat received two mini-implants placed immediately behind the upper incisors, and 0 g of force was applied using a NiTi spring. All rats received two bone markers, tetracycline (days 0-4) and alizarin (days 7-10), for 5 days each. Both markers were bound to calcium, allowing visualization of bone neoformation through fluorescence microscopy. After 12 days, euthanasia was performed; the results revealed that both irradiated groups showed significantly greater bone neoformation compared to the control group (p < 0.05). Mini-implant stability was measured in all animals using the Periotest device on day 0 and on the day of euthanasia. A significant increase in stability was observed in the group that received more laser application (p < 0.05). Photobiomodulation had a positive effect on bone neoformation around mini-implants in ovariectomized rats, with an increase in stability when more irradiation was performed.
Collapse
|
11
|
Bellavia D, Caradonna F, Dimarco E, Costa V, Carina V, De Luca A, Raimondi L, Gentile C, Alessandro R, Fini M, Giavaresi G. Terpenoid treatment in osteoporosis: this is where we have come in research. Trends Endocrinol Metab 2021; 32:846-861. [PMID: 34481733 DOI: 10.1016/j.tem.2021.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/30/2023]
Abstract
Lower bone resistance to load is due to the imbalance of bone homeostasis, where excessive bone resorption, compared with bone formation, determines a progressive osteopenia, leading to a high risk of fractures and consequent pain and functional limitations. Terpenoids, with their activities against bone resorption, have recently received increased attention from researchers. They are potentially more suitable for long-term use compared with traditional therapeutics. In this review of the literature of the past 5 years, we provide comprehensive information on terpenoids, with their anti-osteoporotic effects, highlighting molecular mechanisms that are often in epigenetic key and a possible pharmacological use in osteoporosis prevention and treatment.
Collapse
Affiliation(s)
- Daniele Bellavia
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy.
| | - Fabio Caradonna
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, Palermo, Italy
| | - Eufrosina Dimarco
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, Palermo, Italy
| | - Viviana Costa
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Valeria Carina
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Lavinia Raimondi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Carla Gentile
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, Palermo, Italy
| | - Riccardo Alessandro
- University of Palermo, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, Palermo, Italy; Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), Palermo, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| |
Collapse
|
12
|
Texturized P(VDF-TrFE)/BT membrane enhances bone neoformation in calvaria defects regardless of the association with photobiomodulation therapy in ovariectomized rats. Clin Oral Investig 2021; 26:1053-1065. [PMID: 34370100 DOI: 10.1007/s00784-021-04089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The purpose of this investigation was to evaluate in vivo the response of bone tissue to photobiomodulation when associated with texturized P(VDF-TrFE)/BT in calvaria defects of ovariectomized rats. MATERIALS AND METHODS Wistar Hannover rats were submitted to ovariectomy/control surgery. Calvaria bone defects of 5-mm diameter were performed after 90 days of ovariectomy. The animals were divided into OVX (without laser (L) and membrane), OVX + P(VDF-TrFE)/BT, OVX + P(VDF-TrFE)/BT + L, and OVX + PTFE + L. It was utilized a low-intensity gallium-aluminum-arsenide laser (GaAlAs) with 780-nm wavelength and 30-J/cm2 energy density in 12 sessions (120 s). Thirty days after the bone defect the animals were euthanized for histological, microtomographic, and molecular evaluation. Quantitative analysis was analyzed by statistical software for p < 0.05. RESULTS Histological parameters showed bone tissue formation at the borders of all group defects. The association of photobiomodulation and texturized P(VDF-TrFE)/BT was not synergistic and did not show significant changes in morphometric analysis and biomarkers gene expression. Nevertheless, texturized P(VDF-TrFE)/BT membrane enhanced bone repair regardless of the association with photobiomodulation therapy, with an increase of connectivity density when compared to the OVX + PTFE + L group. The association of photobiomodulation therapy and PTFE was synergistic, increasing the expression of Runx2, Alp, Bsp, Bglap, Sp7, and Rankl, even though not enough to reflect significance in the morphometric parameters. CONCLUSIONS The utilization of texturized P (VDF-TrFE)/BT, regardless of the association with photobiomodulation therapy, enhanced bone repair in an experimental model of osteoporosis.
Collapse
|
13
|
Lycopene ameliorates diabetic osteoporosis via anti-inflammatory, anti-oxidation, and increasing Osteoprotegerin/RANKL expression ratio. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
14
|
Arnold M, Rajagukguk YV, Gramza-Michałowska A. Functional Food for Elderly High in Antioxidant and Chicken Eggshell Calcium to Reduce the Risk of Osteoporosis-A Narrative Review. Foods 2021; 10:656. [PMID: 33808726 PMCID: PMC8003428 DOI: 10.3390/foods10030656] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
The elderly population is increasing globally and is predicted to reach 1.5 billion in 2050. The quality of life of the elderly must be concerned, for example, with developing functional food for the elderly. In this article, the development of functional food to reduce the risk of osteoporosis in the elderly is reviewed. Oxidative stress is one of the factors which accelerates osteoporosis. Various antioxidants, including vitamin C, vitamin E, polyphenols, or lycopene, have been proven by former studies to have antioxidant activity, therefore, could reduce the risk of osteoporosis. Additionally, the application of eggshell powder in various food products has been reported to improve calcium intake, and its usage is environmentally sustainable as this could contribute to reducing food waste. The application of both antioxidants and calcium could be a good combination, but the amount of some antioxidants must be concerned so it would not interfere with the bioavailability of calcium. Therefore, this review aims to explore the functional food for the elderly to reduce the risk of osteoporosis, particularly with antioxidants and calcium from chicken eggshells. The eating preference and dietary pattern of the elderly are also considered to determine the suitable form of functional food for the elderly. The results presented in the study may be the basis for the development of new calcium-enriched food products for the elderly.
Collapse
Affiliation(s)
| | | | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland; (M.A.); (Y.V.R.)
| |
Collapse
|
15
|
Souza ATP, Freitas GP, Lopes HB, Totoli GGC, Tarone AG, Marostica-Junior MR, Rosa AL, Beloti MM. Jabuticaba peel extract modulates adipocyte and osteoblast differentiation of MSCs from healthy and osteoporotic rats. J Bone Miner Metab 2021; 39:163-173. [PMID: 32889573 DOI: 10.1007/s00774-020-01152-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The jabuticaba peel extract (JPE) contains bioactive compounds that regulate fat metabolism. Because the negative correlation between fat accumulation and bone formation in bone marrow, we hypothesized that JPE inhibits adipocyte as well as favors osteoblast differentiation of mesenchymal stromal cells (MSCs) under healthy and osteoporotic conditions, a disease that display an imbalance between adipocyte and osteoblast differentiation resulting in reduced bone mass. MATERIAL AND METHODS To test these hypotheses, bone marrow MSCs were harvested from healthy and osteoporotic rats and cultured in adipogenic and osteogenic media with three concentrations of JPE, 0.25, 5 and 10 µg/ml, and vehicle (control). After selecting the most efficient concentrations of JPE, we used them to evaluate adipocyte and osteoblast differentiation of MSCs from both sources. RESULTS We observed that, in general, JPE inhibited adipocyte differentiation of MSCs with more pronounced effects in cells from healthy than osteoporotic rats. In addition, JPE increased osteoblast differentiation, exhibiting a slightly higher osteogenic potential on MSCs from osteoporotic compared to healthy condition. CONCLUSION Our results demonstrated that JPE drives MSCs to inhibit adipocyte differentiation and toward osteoblast differentiation under healthy and osteoporotic conditions. These findings pave the way for further translational studies to investigate the therapeutic possibilities of JPE in both prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Alann Thaffarell Portilho Souza
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av Do Café S/N, Ribeirão Preto, SP, 14040-904, Brazil
| | - Gileade Pereira Freitas
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av Do Café S/N, Ribeirão Preto, SP, 14040-904, Brazil
| | - Helena Bacha Lopes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av Do Café S/N, Ribeirão Preto, SP, 14040-904, Brazil
| | - Gabriela Guaraldo Campos Totoli
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av Do Café S/N, Ribeirão Preto, SP, 14040-904, Brazil
| | - Adriana Gadioli Tarone
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas, 13083-862, SP, Brazil
| | | | - Adalberto Luiz Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av Do Café S/N, Ribeirão Preto, SP, 14040-904, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av Do Café S/N, Ribeirão Preto, SP, 14040-904, Brazil.
| |
Collapse
|
16
|
Preadministration of yerba mate (Ilex paraguariensis) helps functional activity and morphology maintenance of MC3T3-E1 osteoblastic cells after in vitro exposition to hydrogen peroxide. Mol Biol Rep 2021; 48:13-20. [PMID: 33454904 DOI: 10.1007/s11033-020-06096-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
Natural substances with antioxidant effects may benefit prevention and treatment of people with or prone to bone diseases after menopause, such as osteoporosis. This study aimed to evaluate the in vitro effect of preadministration of yerba mate extract (YM) in the metabolism of MC3T3-E1 osteoblasts exposed to hydrogen peroxide (H2O2). The cells (MC3T3-E1) were cultured in 24-well plates with the concentration of 1 μg/mL yerba mate extract dissolved in culture medium throughout the culture period. Four hours before each experiment, 400 μmol/L H2O2 was added per well to simulate oxidative stress. There were evaluated cell adhesion and proliferation, in situ detection of alkaline phosphatase (ALP), mineralized nodules, and immunolocalization of osteocalcin (OCN), bone sialoprotein (BSP) and alkaline phosphatase (ALP) proteins. The results showed that YM preadministration to H2O2 exposition significatively increased cell adhesion after 3 days as well as proliferation and in situ ALP detection after 10 and 7 days respectively, when compared to H2O2 group. Besides, staining of OCN and BSP proteins was less intense and scattered in poor spread cells with cytoskeletal changes in H2O2 group when compared to control and YM H2O2 group. ALP staining was restrained to intracellular regions and similar in all experimental groups. Our results suggest that preadministration of yerba mate extract may prevent deleterious effects in the morphology and functional activity of osteoblasts exposed to H2O2, which could enable the maintenance of extracellular matrix in the presence of oxidative stress.
Collapse
|
17
|
Gao Q, Wang L, Zhang M, Wei Y, Lin W. Recent Advances on Feasible Strategies for Monoterpenoid Production in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2020; 8:609800. [PMID: 33335897 PMCID: PMC7736617 DOI: 10.3389/fbioe.2020.609800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Terpenoids are a large diverse group of natural products which play important roles in plant metabolic activities. Monoterpenoids are the main components of plant essential oils and the active components of some traditional Chinese medicinal herbs. Some monoterpenoids are widely used in medicine, cosmetics and other industries, and they are mainly obtained by plant biomass extraction methods. These plant extraction methods have some problems, such as low efficiency, unstable quality, and high cost. Moreover, the monoterpenoid production from plant cannot satisfy the growing monoterpenoids demand. The development of metabolic engineering, protein engineering and synthetic biology provides an opportunity to produce large amounts of monoterpenoids eco-friendly using microbial cell factories. This mini-review covers current monoterpenoids production using Saccharomyces cerevisiae. The monoterpenoids biosynthetic pathways, engineering of key monoterpenoids biosynthetic enzymes, and current monoterpenoids production using S. cerevisiae were summarized. In the future, metabolically engineered S. cerevisiae may provide one possible green and sustainable strategy for monoterpenoids supply.
Collapse
Affiliation(s)
- Qiyu Gao
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Luan Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Maosen Zhang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Lin
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| |
Collapse
|
18
|
Vargas-Sanchez PK, Fernandes RR, Furlaneto FAC, Sousa LGD, Siéssere S, Bombonato-Prado KF. Osteoporosis Affects Functional Activity and Gene Expression of Osteoblastic Cells Derived from Rat Alveolar Bone. Braz Dent J 2020; 31:617-622. [PMID: 33237233 DOI: 10.1590/0103-6440202003068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022] Open
Abstract
Recent studies suggest that osteoporosis, in addition to the damage caused in long bones, may cause deterioration in the jaws, especially in alveolar bone sites, with effects in the progress of periodontal disease as well as in bone healing. The aim of this study was to evaluate the effect of osteoporosis in the metabolism of rat alveolar bone osteoblasts. There were used 10 female rats divided in two experimental groups (Sham and OVX), which were ovariectomized and after 8 weeks euthanized to collect mandibular bone samples in order to isolate osteoblastic cells. The cells were cultured in 24-well plates to perform the in vitro experiments. After 7, 10 and 14 days, there were evaluated cell proliferation by MTT assay, in situ detection of alkaline phosphatase (ALP) as well as mineralized nodules and expression of genes associated to bone remodeling. Results showed that at 7, 10 and 14 days cell proliferation was lower for OVX group. In situ detection of ALP was higher at 7 days and lower at 10 and 14 days in OVX group. At 17 and 21 days, OVX group had a significative decrease of mineralization nodules. There was a downregulation in the expression of Alp, Bglap and Runx2 genes and an upregulation of Opg in OVX group, whereas Opn and Rankl modulation was similar between the evaluated groups. Our results suggest that osteoporosis has a deleterious effect on alveolar bone cells from ovariectomized rats, which might affect the treatment of diseases associated to the jaw bones.
Collapse
Affiliation(s)
- Paula Katherine Vargas-Sanchez
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry, USP - Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Roger Rodrigo Fernandes
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry, USP - Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Flávia Aparecida Chaves Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry, USP - Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz Gustavo de Sousa
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry, USP - Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Selma Siéssere
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry, USP - Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Karina Fittipaldi Bombonato-Prado
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry, USP - Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
19
|
A Multi-Omic Analysis for Low Bone Mineral Density in Postmenopausal Women Suggests a RELATIONSHIP between Diet, Metabolites, and Microbiota. Microorganisms 2020; 8:microorganisms8111630. [PMID: 33105628 PMCID: PMC7690388 DOI: 10.3390/microorganisms8111630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
The effect of microbiota composition and its health on bone tissue is a novel field for research. However, their associations with bone mineral density (BMD) have not been established in postmenopausal women. The present study investigates the relation of diet, the microbiota composition, and the serum metabolic profile in postmenopausal women with normal-BMD or with low-BMD. Ninety-two Mexican postmenopausal women were classified into normal-BMD (n = 34) and low-BMD (n = 58). The V4 hypervariable region was sequenced using the Miseq platform. Serum vitamin D was determined by chemiluminescence immunoassay. Serum concentrations of acyl-carnitines and amino acids were determined by electrospray tandem mass spectrometry. Diet was assessed by a food frequency questionnaire. The low-BMD group had fewer observed species, higher abundance of γ-Proteobacteria, lower consumption of lycopene, and lower concentrations of leucine, valine, and tyrosine compared with the normal-BMD group. These amino acids correlated positively with the abundance of Bacteroides. Lycopene consumption positively correlated with Oscillospira and negatively correlated with Pantoea genus abundance. Finally, the intestinal microbiota of women with vitamin D deficiency was related to Erysipelotrichaceae and Veillonellaceae abundance compared to the vitamin D non-deficient group. Associations mediated by the gut microbiota between diet and circulating metabolites with low-BMD were identified.
Collapse
|
20
|
Potential Role of Lycopene in the Prevention of Postmenopausal Bone Loss: Evidence from Molecular to Clinical Studies. Int J Mol Sci 2020; 21:ijms21197119. [PMID: 32992481 PMCID: PMC7582596 DOI: 10.3390/ijms21197119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is a metabolic bone disease characterized by reduced bone mineral density, which affects the quality of life of the aging population. Furthermore, disruption of bone microarchitecture and the alteration of non-collagenous protein in bones lead to higher fracture risk. This is most common in postmenopausal women. Certain medications are being used for the treatment of osteoporosis; however, these may be accompanied by undesirable side effects. Phytochemicals from fruits and vegetables are a source of micronutrients for the maintenance of bone health. Among them, lycopene has recently been shown to have a potential protective effect against bone loss. Lycopene is a lipid-soluble carotenoid that exists in both all-trans and cis-configurations in nature. Tomato and tomato products are rich sources of lycopene. Several human epidemiological studies, supplemented by in vivo and in vitro studies, have shown decreased bone loss following the consumption of lycopene/tomato. However, there are still limited studies that have evaluated the effect of lycopene on the prevention of bone loss in postmenopausal women. Therefore, the aim of this review is to summarize the relevant literature on the potential impact of lycopene on postmenopausal bone loss with molecular and clinical evidence, including an overview of bone biology and the pathophysiology of osteoporosis.
Collapse
|
21
|
Keirns BH, Lucas EA, Smith BJ. Phytochemicals affect T helper 17 and T regulatory cells and gut integrity: implications on the gut-bone axis. Nutr Res 2020; 83:30-48. [PMID: 33010588 DOI: 10.1016/j.nutres.2020.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
The pathology of osteoporosis is multifactorial, but a growing body of evidence supports an important role of the gut-bone axis, especially in bone loss associated with menopause, rheumatoid arthritis, and periodontal disease. Aberrant T cell responses favoring an increase in the ratio of T helper 17 cells to T regulatory cells play a critical role in the underlying etiology of this bone loss. Many of the dietary phytochemicals known to have osteoprotective activity such as flavonoids, organosulfur compounds, phenolic acids, as well as the oligosaccharides also improve gut barrier function and affect T cell differentiation and activation within gut-associated lymphoid tissues and at distal sites. Here, we examine the potential of these phytochemicals to act as prebiotics and immunomodulating agents, in part targeting the gut to mediate their effects on bone.
Collapse
Affiliation(s)
- Bryant H Keirns
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| |
Collapse
|
22
|
Russo C, Ferro Y, Maurotti S, Salvati MA, Mazza E, Pujia R, Terracciano R, Maggisano G, Mare R, Giannini S, Romeo S, Pujia A, Montalcini T. Lycopene and bone: an in vitro investigation and a pilot prospective clinical study. J Transl Med 2020; 18:43. [PMID: 31996227 PMCID: PMC6990577 DOI: 10.1186/s12967-020-02238-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background There are several effective therapies for osteoporosis but these agents might cause serious adverse events. Lycopene intake could prevent bone loss, however studies on its effects on bone are scarce. Our aim was to investigate the effects of lycopene on osteoblast cells as well as bone mineral density and bone turnover markers in postmenopausal women. Methods We investigated the effect of lycopene on the Wnt/β-catenin and ERK 1/2 pathways, RUNX2, alkaline phosphatase, RANKL and COL1A of Saos-2. We also carried out a pilot controlled clinical study to verify the feasibility of an approach for bone loss prevention through the intake of a lycopene-rich tomato sauce in 39 postmenopausal women. Results Lycopene 10 µM resulted in higher β-catenin and phERK1/2 protein Vs the vehicle (p = 0.04 and p = 0.006). RUNX2 and COL1A mRNA was induced by both 5 and 10 µM doses (p = 0.03; p = 0.03 and p = 0.03; p = 0.05) while RANKL mRNA was reduced (p < 0.05). A significant bone density loss was not detected in women taking the tomato sauce while the control group had bone loss (p = 0.002). Tomato sauce intake resulted in a greater bone alkaline phosphatase reduction than the control (18% vs 8.5%, p = 0.03). Conclusions Lycopene activates the WNT/β-catenin and ERK1/2 pathways, upregulates RUNX2, alkaline phosphatase, COL1A and downregulates RANKL Saos-2. These processes contributed to prevent bone loss in postmenopausal women.
Collapse
Affiliation(s)
- Cristina Russo
- Department of Clinical and Experimental Medicine, Nutrition Unit, University Magna Grecia, 88100, Catanzaro, Italy
| | - Yvelise Ferro
- Department of Health Science, University Magna Graecia, 88100, Catanzaro, Italy
| | - Samantha Maurotti
- Department of Medical and Surgical Science, University Magna Graecia, 88100, Catanzaro, Italy
| | | | - Elisa Mazza
- Department of Medical and Surgical Science, University Magna Graecia, 88100, Catanzaro, Italy
| | - Roberta Pujia
- Department of Medical and Surgical Science, University Magna Graecia, 88100, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Health Science, University Magna Graecia, 88100, Catanzaro, Italy
| | | | - Rosario Mare
- Department of Clinical and Experimental Medicine, Nutrition Unit, University Magna Grecia, 88100, Catanzaro, Italy
| | - Sandro Giannini
- Department of Medicine, Clinica Medica 1, University of Padova and Regional Centre for Osteoporosis, Padua, Italy
| | - Stefano Romeo
- Department of Medical and Surgical Science, University Magna Graecia, 88100, Catanzaro, Italy.,Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 42246, Göteborg, Sweden
| | - Arturo Pujia
- Department of Medical and Surgical Science, University Magna Graecia, 88100, Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, Nutrition Unit, University Magna Grecia, 88100, Catanzaro, Italy.
| |
Collapse
|
23
|
Camacho-Alonso F, Martínez-Ortiz C, Plazas-Buendía L, Mercado-Díaz AM, Vilaplana-Vivo C, Navarro JA, Buendía AJ, Merino JJ, Martínez-Beneyto Y. Bone union formation in the rat mandibular symphysis using hydroxyapatite with or without simvastatin: effects on healthy, diabetic, and osteoporotic rats. Clin Oral Investig 2020; 24:1479-1491. [PMID: 31925587 DOI: 10.1007/s00784-019-03180-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The objective is to compare new bone formation in critical defects in healthy, diabetic, and osteoporotic rats filled with hydroxyapatite (HA) alone and HA combined with simvastatin (SV). MATERIALS AND METHODS A total of 48 adult female Sprague-Dawley rats were randomized into three groups (n = 16 per group): Group, 1 healthy; Group 2, diabetics; and Group 3, osteoporotics. Streptozotocin was used to induce type 1 diabetes in Group 2, while bilateral ovariectomy was used to induce osteoporosis in Group 3. The central portion of the rat mandibular symphysis was used as a physiological critical bone defect. In each group, eight defects were filled with HA alone and eight with HA combined with SV. The animals were sacrificed at 4 and 8 weeks, and the mandibles were processed for micro-computed tomography to analyze radiological union and bone mineral density (BMD); histological analysis of the bone union; and immunohistochemical analysis, which included immunoreactivity of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2). RESULTS In all groups (healthy, diabetics, and osteoporotics), the defects filled with HA + SV presented greater radiological bone union, BMD, histological bone union, and more VEGF and BMP-2 positivity, in comparison with bone defects treated with HA alone. CONCLUSIONS Combined application of HA and SV improves bone regeneration in mandibular critical bone defects compared with application of HA alone in healthy, diabetic, and osteoporotic rats. CLINICAL RELEVANCE This study might help to patients with osteoporosis or uncontrolled diabetes type 1, but future studies should be done.
Collapse
Affiliation(s)
- F Camacho-Alonso
- Department of Oral Surgery, University of Murcia, Murcia, Spain.
| | | | | | | | | | - J A Navarro
- Department of Histology and Pathological Anatomy, University of Murcia, Murcia, Spain
| | - A J Buendía
- Department of Histology and Pathological Anatomy, University of Murcia, Murcia, Spain
| | - J J Merino
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Y Martínez-Beneyto
- Department of Preventive and Community Dentistry, University of Murcia, Murcia, Spain
| |
Collapse
|