1
|
Bontempo P, Capasso L, De Masi L, Nebbioso A, Rigano D. Therapeutic Potential of Natural Compounds Acting through Epigenetic Mechanisms in Cardiovascular Diseases: Current Findings and Future Directions. Nutrients 2024; 16:2399. [PMID: 39125279 PMCID: PMC11314203 DOI: 10.3390/nu16152399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain a leading global cause of morbidity and mortality. These diseases have a multifaceted nature being influenced by a multitude of biochemical, genetic, environmental, and behavioral factors. Epigenetic modifications have a crucial role in the onset and progression of CVD. Epigenetics, which regulates gene activity without altering the DNA's primary structure, can modulate cardiovascular homeostasis through DNA methylation, histone modification, and non-coding RNA regulation. The effects of environmental stimuli on CVD are mediated by epigenetic changes, which can be reversible and, hence, are susceptible to pharmacological interventions. This represents an opportunity to prevent diseases by targeting harmful epigenetic modifications. Factors such as high-fat diets or nutrient deficiencies can influence epigenetic enzymes, affecting fetal growth, metabolism, oxidative stress, inflammation, and atherosclerosis. Recent studies have shown that plant-derived bioactive compounds can modulate epigenetic regulators and inflammatory responses, contributing to the cardioprotective effects of diets. Understanding these nutriepigenetic effects and their reversibility is crucial for developing effective interventions to combat CVD. This review delves into the general mechanisms of epigenetics, its regulatory roles in CVD, and the potential of epigenetics as a CVD therapeutic strategy. It also examines the role of epigenetic natural compounds (ENCs) in CVD and their potential as intervention tools for prevention and therapy.
Collapse
Affiliation(s)
- Paola Bontempo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and BioResources (IBBR), Via Università 133, 80055 Portici, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Daniela Rigano
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy;
| |
Collapse
|
2
|
Wang X, Wang Z, He J. Similarities and Differences of Vascular Calcification in Diabetes and Chronic Kidney Disease. Diabetes Metab Syndr Obes 2024; 17:165-192. [PMID: 38222032 PMCID: PMC10788067 DOI: 10.2147/dmso.s438618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
Presently, the mechanism of occurrence and development of vascular calcification (VC) is not fully understood; a range of evidence suggests a positive association between diabetes mellitus (DM) and VC. Furthermore, the increasing burden of central vascular disease in patients with chronic kidney disease (CKD) may be due, at least in part, to VC. In this review, we will review recent advances in the mechanisms of VC in the context of CKD and diabetes. The study further unveiled that VC is induced through the stimulation of pro-inflammatory factors, which in turn impairs endothelial function and triggers similar mechanisms in both disease contexts. Notably, hyperglycemia was identified as the distinctive mechanism driving calcification in DM. Conversely, in CKD, calcification is facilitated by mechanisms including mineral metabolism imbalance and the presence of uremic toxins. Additionally, we underscore the significance of investigating vascular alterations and newly identified molecular pathways as potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiabo Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Jianqiang He
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| |
Collapse
|
3
|
Zhou Z, Li Y, Jiang W, Wang Z. Molecular Mechanism of Calycosin Inhibited Vascular Calcification. Nutrients 2023; 16:99. [PMID: 38201929 PMCID: PMC10781010 DOI: 10.3390/nu16010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Vascular calcification (VC) is a pathological condition frequently observed in cardiovascular diseases. Primary factors contributing to VC are osteogenic differentiation of vascular smooth muscle and hydroxyapatite deposition. Targeted autophagy (a lysosome-mediated mechanism for degradation/recycling of unnecessary cellular components) is a useful approach for inhibiting VC and promoting vascular cell health. Calycosin has been shown to alleviate atherosclerosis by enhancing macrophage autophagy, but its therapeutic effect on VC has not been demonstrated. Using an in vitro model (rat thoracic aortic smooth muscle cell line A7r5), we demonstrated effective inhibition of VC using calycosin (the primary flavonoid component of astragalus), based on the enhancement of autophagic flux. Calycosin treatment activated AMPK/mTOR signaling to induce initiation of autophagy and restored mTORC1-dependent autophagosome-lysosome fusion in late-stage autophagy by promoting soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex formation, thereby preventing stoppage of autophagy in calcified cells. Calycosin substantially reduced degrees of both osteogenic differentiation and calcium deposition in our VC cell model by enhancing autophagy. The present findings clarify the mechanism whereby calycosin mitigates autophagy stoppage in calcified smooth muscle cells and provide a basis for effective VC treatment via autophagy enhancement.
Collapse
Affiliation(s)
- Zekun Zhou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.Z.); (Y.L.)
| | - Yi Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.Z.); (Y.L.)
| | - Wei Jiang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| | - Zengli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.Z.); (Y.L.)
| |
Collapse
|
4
|
Gong Y, Zhong Q, Xia Y, Wen Y, Gan H. Long non-coding RNA MALAT1 sponges miR-30c to promote the calcification of human vascular smooth muscle cells by regulating Runx2. Ren Fail 2023; 45:2204953. [PMID: 37125614 PMCID: PMC10134953 DOI: 10.1080/0886022x.2023.2204953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
OBJECTIVES Recent evidence suggested that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play critical roles in the pathogenesis of vascular calcification (VC). In this study, we tried to explore the expression and role of a lncRNA, i.e., metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), and a miRNA, i.e., miR-30c, in VC. METHODS In vitro VC model was induced in human vascular smooth muscle cells (VSMCs) after 10 days culture in calcifying medium containing 2 mM Na2HPO4. Alizarin red S staining, calcium assay and western blot analysis of runt-related transcription factor 2 (Runx2) and alpha smooth muscle actin (α-SMA) were performed to evaluate VC. Knockdown of MALAT1 and up-regulation of MALAT1, miR-30c and Runx2 was performed to determine the impact of these molecules on VSMCs calcification. Dual-luciferase report assay was performed to confirm the relationship between MALAT1 and miR-30c or miR-30c and Runx2. In addition, quantitative reverse transcription PCR and western blot were used to determine gene and protein expression. RESULTS MALAT1 was increased, while miR-30c was decreased in calcified VSMCs. Knockdown of MALAT1 suppressed VSMCs calcification; on the contrary, up-regulation of MALAT1 promoted VSMCs calcification. The effect of MALAT1 over-expression on VSMCs calcification was reversed by upregulation of miR-30c, which was reversed again by upregulation of Runx2. Dual-luciferase report assay confirmed that there is a direct interaction between MALAT1 and miR-30c, and Runx2 is a direct target of miR-30c. CONCLUSION MALAT1 over-expression promoted VSMCs calcification, which was at least partially through regulating the miR-30c/Runx2 axis.
Collapse
Affiliation(s)
- Ying Gong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Zhong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfeng Xia
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Wen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Gan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Shen J, Zhang C, Liu Y, Zhao M, Wang Q, Li P, Liu R, Wai Wong VK, Zhang C, Sun X. L-type calcium ion channel-mediated activation of autophagy in vascular smooth muscle cells via thonningianin A (TA) alleviates vascular calcification in type 2 diabetes mellitus. Eur J Pharmacol 2023; 959:176084. [PMID: 37806540 DOI: 10.1016/j.ejphar.2023.176084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Vascular calcification (VC) is associated with increased morbidity and mortality, especially among people with type 2 diabetes mellitus (T2DM). The pathogenesis of vascular calcification is incompletely understood, and until now, there have been no effective therapeutics for vascular calcification. The L-type calcium ion channel in the cell membrane is vital for Ca2+ influx. The effect of L-type calcium ion channels on autophagy remains to be elucidated. Here, the natural compound thonningianin A (TA) was found to ameliorate vascular calcification in T2DM via the activation of L-type calcium ion channels. The results showed that TA had a concentration-dependent ability to decrease the transcriptional and translational expression of the calcification-related proteins runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2) and osteopontin (OPN) (P < 0.01) via ATG7-dependent autophagy in β-glycerophosphate (β-GP)- and high glucose (HG)-stimulated primary mouse aortic smooth muscle cells (MASMCs) and alleviate aortic vascular calcification in VitD3-stimulated T2DM mice. However, nifedipine, an inhibitor of L-type calcium ion channels, reversed TA-induced autophagy and Ca2+ influx in MASMCs. Molecular docking analysis revealed that TA was located in the hydrophobic pocket of Cav1.2 α1C and was mainly composed of the residues Ile, Phe, Ala and Met, which confirmed the efficacy of TA in targeting the L-type calcium channel of Cav1.2 on the cell membrane. Moreover, in an in vivo model of vascular calcification in T2DM mice, nifedipine reversed the protective effects of TA on aortic calcification and the expression of the calcification-related proteins RUNX2, BMP2 and OPN (P < 0.01). Collectively, the present results reveal that the activation of cell membrane L-type calcium ion channels can induce autophagy and ameliorate vascular calcification in T2DM. Thonningianin A (TA) can target and act as a potent activator of L-type calcium ion channels. Thus, this research revealed a novel mechanism for autophagy induction via L-type calcium ion channels and provided a potential therapeutic for vascular calcification in T2DM.
Collapse
Affiliation(s)
- Jialing Shen
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Department of Vascular Surgery, The First People's Hospital of Yibin, Yibin, 644000, China
| | - Cheng Zhang
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yong Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ming Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, PR China
| | - Qianqian Wang
- Medical College, Dalian University, Dalian, 116622, China
| | - Pengyun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Runyu Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chunxiang Zhang
- Laboratory of Nucleic Acids in Medicine for National High-level Talents, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Xiaolei Sun
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Department of Interventional Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Laboratory of Nucleic Acids in Medicine for National High-level Talents, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China; Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, 646000, China; School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, Faculty of Life Science and Medicine, King's College London, London, SE5 9NU, United Kingdom.
| |
Collapse
|
6
|
Liu C, Ma K, Zhang Y, He X, Song L, Chi M, Han Z, Li G, Zhang Q, Liu C. Kidney diseases and long non-coding RNAs in the limelight. Front Physiol 2022; 13:932693. [PMID: 36299256 PMCID: PMC9589442 DOI: 10.3389/fphys.2022.932693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The most extensively and well-investigated sequences in the human genome are protein-coding genes, while large numbers of non-coding sequences exist in the human body and are even more diverse with more potential roles than coding sequences. With the unveiling of non-coding RNA research, long-stranded non-coding RNAs (lncRNAs), a class of transcripts >200 nucleotides in length primarily expressed in the nucleus and rarely in the cytoplasm, have drawn our attention. LncRNAs are involved in various levels of gene regulatory processes, including but not limited to promoter activity, epigenetics, translation and transcription efficiency, and intracellular transport. They are also dysregulated in various pathophysiological processes, especially in diseases and cancers involving genomic imprinting. In recent years, numerous studies have linked lncRNAs to the pathophysiology of various kidney diseases. This review summarizes the molecular mechanisms involved in lncRNAs, their impact on kidney diseases, and associated complications, as well as the value of lncRNAs as emerging biomarkers for the prevention and prognosis of kidney diseases, suggesting their potential as new therapeutic tools.
Collapse
Affiliation(s)
- Chenxin Liu
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yunchao Zhang
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing He
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Linjiang Song
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Zhongyu Han
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanhua Li
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| | - Qinxiu Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| |
Collapse
|
7
|
Dutta P, Sengupta A, Chakraborty S. Epigenetics: a new warrior against cardiovascular calcification, a forerunner in modern lifestyle diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62093-62110. [PMID: 34601672 DOI: 10.1007/s11356-021-15718-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Arterial and aortic valve calcifications are the most prevalent pathophysiological conditions among all the reported cases of cardiovascular calcifications. It increases with several risk factors like age, hypertension, external stimuli, mechanical forces, lipid deposition, malfunction of genes and signaling pathways, enhancement of naturally occurring calcium inhibitors, and many others. Modern-day lifestyle is affected by numerous environmental factors and harmful toxins that impair our health rather than providing benefits. Applying the combinatorial approach or targeting the exact mechanism could be a new strategy for drug designing or attenuating the severity of calcification. Most of the non-communicable diseases are life-threatening; thus, altering the phenotype and not the genotype may reveal the gateway for fighting with upcoming hurdles. Overall, this review summarizes the reason behind the generation of arterial and aortic valve calcification and its related signaling pathways and also the detrimental effects of calcification. In addition, the individual process of epigenetics and how the implementation of this process becomes a novel approach for diminishing the harmful effect of calcification are discussed. Noteworthy, as epigenetics is linked with genetics and environmental factors necessitates further clinical trials for complete and in-depth understanding and application of this strategy in a more specific and prudent manner.
Collapse
Affiliation(s)
- Parna Dutta
- Department of Life Sciences, Presidency University, 86/1, College Street, Baker building, 2nd floor, Kolkata, West Bengal, 700073, India
| | - Arunima Sengupta
- Department of Life science & Bio-technology, Jadavpur University, Kolkata, 700032, India
| | - Santanu Chakraborty
- Department of Life Sciences, Presidency University, 86/1, College Street, Baker building, 2nd floor, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
8
|
Functions of the bone morphogenetic protein signaling pathway through non-coding RNAs. Noncoding RNA Res 2022; 7:178-183. [PMID: 35892126 PMCID: PMC9287601 DOI: 10.1016/j.ncrna.2022.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 01/15/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are proteins of the transforming growth factor-β (TGF-β) family, which plays an important role in the formation of skeletal and cartilage tissue and their regeneration. BMPs play a key role in the formation of new blood vessels and promote the migration, proliferation, and differentiation of mesenchymal stem cells (MSCs) into chondroblasts and osteoblasts. It is known that malfunction of BMPs signaling can cause a disease state. Epigenetic regulation of expression plays a key role in the control of many cellular processes. Important participants in this regulation are non-coding RNAs (ncRNAs), which are RNA molecules that are not translated into proteins. The best known of these are microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). In addition, the results of many studies make it possible to establish an unambiguous functional relationship between these ncRNAs. Being involved in the regulation of a large number of target genes responsible for the life of the cell, miRNAs, lncRNAs, and circRNAs are essential for the normal development and functioning of the body, and the violation of their functions accompanies the development of many pathophysiological processes including oncogenesis. In the present review, we discuss different insights into the regulation of BMPs signaling pathway by miRNAs, lncRNAs and circRNAs governed.
Collapse
|
9
|
Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2022; 7:200. [PMID: 35752619 PMCID: PMC9233709 DOI: 10.1038/s41392-022-01055-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Abstract
Epigenetics is closely related to cardiovascular diseases. Genome-wide linkage and association analyses and candidate gene approaches illustrate the multigenic complexity of cardiovascular disease. Several epigenetic mechanisms, such as DNA methylation, histone modification, and noncoding RNA, which are of importance for cardiovascular disease development and regression. Targeting epigenetic key enzymes, especially the DNA methyltransferases, histone methyltransferases, histone acetylases, histone deacetylases and their regulated target genes, could represent an attractive new route for the diagnosis and treatment of cardiovascular diseases. Herein, we summarize the knowledge on epigenetic history and essential regulatory mechanisms in cardiovascular diseases. Furthermore, we discuss the preclinical studies and drugs that are targeted these epigenetic key enzymes for cardiovascular diseases therapy. Finally, we conclude the clinical trials that are going to target some of these processes.
Collapse
|
10
|
Liu Q, Qi H, Yao L. A long non-coding RNA H19/microRNA-138/TLR3 network is involved in high phosphorus-mediated vascular calcification and chronic kidney disease. Cell Cycle 2022; 21:1667-1683. [PMID: 35435133 PMCID: PMC9302514 DOI: 10.1080/15384101.2022.2064957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Vascular calcification, characterized by the accumulation of calcium-phosphate crystals in blood vessels, is a major cause of cardiovascular complications and chronic kidney disease (CKD)-related death. This work focuses on the molecules involved in high-phosphorus-mediated vascular calcification in CKD. A rat model of CKD was established by 5/6 nephrectomy, and the rats were given normal phosphorus diet (NPD) or high phosphorus diet (HPD). HPD decreased kidney function, increased the concentration of calcium ion and damaged vascular structure in the thoracic aorta of diseased rats. A high phosphorus condition enhanced calcium deposition in vascular smooth muscle cells (VSMCs). High phosphorus also increased the expression of RUNX2 whereas reduced the expression of α-SM actin in the aortic tissues and VSMCs. Long non-coding RNA (lncRNA) H19 was upregulated in the aortic tissues after HPD treatment. H19 bound to microRNA (miR)-138 to block its inhibitory effect on TLR3 mRNA and activated the NF-κB signaling pathway. Downregulation of H19 or TLR3 alleviated, whereas downregulation of miR-138 aggravated the calcification and vascular damage in model rats and VSMCs. In conclusion, this study demonstrates that the H19/miR-138/TLR3 axis is involved in high phosphorus-mediated vascular calcification in rats with CKD.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Nephrology, Fuyang Hospital of Anhui Medical University, Fuyang Anhui, P.R. China
| | - Huimeng Qi
- Department of General Practice, Fuyang Hospital of Anhui Medical University, Fuyang Anhui, P.R. China
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang Liaoning, P.R. China
| |
Collapse
|
11
|
Wang M, Gu J, Zhang X, Yang J, Zhang X, Fang X. Long Non-coding RNA DANCR in Cancer: Roles, Mechanisms, and Implications. Front Cell Dev Biol 2021; 9:753706. [PMID: 34722539 PMCID: PMC8554091 DOI: 10.3389/fcell.2021.753706] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNA (lncRNA) DANCR (also known as ANCR)—differentiation antagonizing non-protein coding RNA, was first reported in 2012 to suppress differentiation of epithelial cells. Emerging evidence demonstrates that DANCR is a cancer-associated lncRNA abnormally expressed in many cancers (e.g., lung cancer, gastric cancer, breast cancer, hepatocellular carcinoma). Increasing studies suggest that the dysregulation of DANCR plays critical roles in cancer cell proliferation, apoptosis, migration, invasion, and chemoresistance in vitro and tumor growth and metastasis in vivo. Mechanistic analyses show that DANCR can serve as miRNA sponges, stabilize mRNAs, and interact with proteins. Recent research reveals that DANCR can be detected in many body fluids such as serum, plasma, and exosomes, providing a quick and convenient method for cancer monitor. Thus DANCR can be used as a promising diagnostic and prognostic biomarker and therapeutic target for various types of cancer. This review focuses on the role and mechanism of DANCR in cancer progression with an emphasis on the clinical significance of DANCR in human cancers.
Collapse
Affiliation(s)
- Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital, Nantong, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianping Yang
- Department of Orthopedics, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Xiaoxin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinjian Fang
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| |
Collapse
|
12
|
Abstract
Background Vascular calcification is a closely linked to cardiovascular diseases, such as atherosclerosis, chronic kidney disease, diabetes, hypertension and aging. The extent of vascular calcification is closely correlate with adverse clinical events and cardiovascular all-cause mortality. The role of autophagy in vascular calcification is complex with many mechanistic unknowns.
Methods In this review, we analyze the current known mechanisms of autophagy in vascular calcification and discuss the theoretical advantages of targeting autophagy as an intervention against vascular calcification. Results Here we summarize the functional link between vascular calcification and autophagy in both animal models of and human cardiovascular disease. Firstly, autophagy can reduce calcification by inhibiting the osteogenic differentiation of VSMCs related to ANCR, ERα, β-catenin, HIF-1a/PDK4, p62, miR-30b, BECN1, mTOR, SOX9, GHSR/ERK, and AMPK signaling. Conversely, autophagy can induce osteoblast differentiation and calcification as mediated by CREB, degradation of elastin, and lncRNA H19 and DUSP5 mediated ERK signaling. Secondly, autophagy also links apoptosis and vascular calcification through AMPK/mTOR/ULK1, Wnt/β-catenin and GAS6/AXL synthesis, as apoptotic cells become the nidus for calcium-phosphate crystal deposition. The failure of mitophagy can activate Drp1, BNIP3, and NR4A1/DNA‑PKcs/p53 mediated intrinsic apoptotic pathways, which have been closely linked to the formation of vascular calcification. Additionally, autophagy also plays a role in osteogenesis by regulating vascular calcification, which in turn regulates expression of proteins related to bone development, such as osteocalcin, osteonectin, etc. and regulated by mTOR, EphrinB2 and RhoA. Furthermore, autophagy also promotes vitamin K2-induced MC3T3 E1 osteoblast differentiation and FGFR4/FGF18- and JNK/complex VPS34–beclin-1-related bone mineralization via vascular calcification. Conclusion The interaction between autophagy and vascular calcification are complicated, with their interaction affected by the disease process, anatomical location, and the surrounding microenvironment. Autophagy activation in existent cellular damage is considered protective, while defective autophagy in normal cells result in apoptotic activation. Identifying and maintaining cells at the delicate line between these two states may hold the key to reducing vascular calcification, in which autophagy associated clinical strategy could be developed.
Collapse
|
13
|
Neutel CHG, Hendrickx JO, Martinet W, De Meyer GRY, Guns PJ. The Protective Effects of the Autophagic and Lysosomal Machinery in Vascular and Valvular Calcification: A Systematic Review. Int J Mol Sci 2020; 21:E8933. [PMID: 33255685 PMCID: PMC7728070 DOI: 10.3390/ijms21238933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Autophagy is a highly conserved catabolic homeostatic process, crucial for cell survival. It has been shown that autophagy can modulate different cardiovascular pathologies, including vascular calcification (VCN). OBJECTIVE To assess how modulation of autophagy, either through induction or inhibition, affects vascular and valvular calcification and to determine the therapeutic applicability of inducing autophagy. DATA SOURCES A systematic review of English language articles using MEDLINE/PubMed, Web of Science (WoS) and the Cochrane library. The search terms included autophagy, autolysosome, mitophagy, endoplasmic reticulum (ER)-phagy, lysosomal, calcification and calcinosis. Study characteristics: Thirty-seven articles were selected based on pre-defined eligibility criteria. Thirty-three studies (89%) studied vascular smooth muscle cell (VSMC) calcification of which 27 (82%) studies investigated autophagy and six (18%) studies lysosomal function in VCN. Four studies (11%) studied aortic valve calcification (AVCN). Thirty-four studies were published in the time period 2015-2020 (92%). CONCLUSION There is compelling evidence that both autophagy and lysosomal function are critical regulators of VCN, which opens new perspectives for treatment strategies. However, there are still challenges to overcome, such as the development of more selective pharmacological agents and standardization of methods to measure autophagic flux.
Collapse
Affiliation(s)
| | | | | | | | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Antwerp, Belgium; (C.H.G.N.); (J.O.H.); (W.M.); (G.R.Y.D.M.)
| |
Collapse
|
14
|
Chang Z, Yan G, Zheng J, Liu Z. The lncRNA GAS5 Inhibits the Osteogenic Differentiation and Calcification of Human Vascular Smooth Muscle Cells. Calcif Tissue Int 2020; 107:86-95. [PMID: 32347320 DOI: 10.1007/s00223-020-00696-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Vascular calcification (VC), which is associated with high cardiovascular morbidity and mortality in patients with chronic kidney disease, is promoted by the osteoblastic differentiation of vascular smooth muscle cells (VSMCs). The present study explored the functional roles and molecular mechanisms of the long noncoding RNA growth arrest-specific transcript 5 (GAS5) in VC. Our results indicated that GAS5 was clearly downregulated in calcified human aortic vascular smooth muscle cells (HASMCs). Functionally, we found that overexpression of GAS5 significantly attenuated the osteogenic differentiation and calcification of HASMCs induced by high levels of phosphorus. Moreover, miR-26-5p was identified to potentially bind to GAS5, and phosphatase and tensin homolog (PTEN) was determined to be a direct target of miR-26b-5p in HASMCs. Mechanistically, enforced expression of miR-26-5p significantly attenuated PTEN protein expression in HASMCs. Rescue experiments demonstrated that cotransfection of HASMCs with miR-26-5p mimics reduced the inhibition of Lv-GAS5 on osteogenic differentiation and calcification. As a result, GAS5 was confirmed to be an miR-26b-5p sponge and to thereby increase the expression of PTEN in HASMCs. In ex vivo models, GAS5 was significantly downregulated and its expression inversely related to the expression of miR-26b-5 and positively associated with the expression of PTEN in calcified aortic rings induced by high levels of phosphorus. Together, these results suggest that the GAS5/miR-26-5p/PTEN axis could serve as a potential therapeutic target for VC in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Zhihui Chang
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping Area, Shenyang, People's Republic of China
| | - Guangxin Yan
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping Area, Shenyang, People's Republic of China
| | - Jiahe Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping Area, Shenyang, People's Republic of China
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping Area, Shenyang, People's Republic of China.
| |
Collapse
|