1
|
Guo Z, Xu S, Chen X, Wang C, Yang P, Qin S, Zhao C, Fei F, Zhao X, Tan PH, Wang J, Xie C. Modulation of MagR magnetic properties via iron-sulfur cluster binding. Sci Rep 2021; 11:23941. [PMID: 34907239 PMCID: PMC8671422 DOI: 10.1038/s41598-021-03344-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
Iron-sulfur clusters are essential cofactors found in all kingdoms of life and play essential roles in fundamental processes, including but not limited to respiration, photosynthesis, and nitrogen fixation. The chemistry of iron-sulfur clusters makes them ideal for sensing various redox environmental signals, while the physics of iron-sulfur clusters and its host proteins have been long overlooked. One such protein, MagR, has been proposed as a putative animal magnetoreceptor. It forms a rod-like complex with cryptochromes (Cry) and possesses intrinsic magnetic moment. However, the magnetism modulation of MagR remains unknown. Here in this study, iron-sulfur cluster binding in MagR has been characterized. Three conserved cysteines of MagR play different roles in iron-sulfur cluster binding. Two forms of iron-sulfur clusters binding have been identified in pigeon MagR and showed different magnetic properties: [3Fe-4S]-MagR appears to be superparamagnetic and has saturation magnetization at 5 K but [2Fe-2S]-MagR is paramagnetic. While at 300 K, [2Fe-2S]-MagR is diamagnetic but [3Fe-4S]-MagR is paramagnetic. Together, the different types of iron-sulfur cluster binding in MagR attribute distinguished magnetic properties, which may provide a fascinating mechanism for animals to modulate the sensitivity in magnetic sensing.
Collapse
Affiliation(s)
- Zhen Guo
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Shuai Xu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, 230031, China
| | - Xue Chen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Changhao Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, 230031, China
| | - Peilin Yang
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Siying Qin
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Cuiping Zhao
- Department of Microbiology and Biochemistry, Rutgers University, New Brunswick, NJ, USA
| | - Fan Fei
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, 230031, China
| | - Xianglong Zhao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, 230031, China
| | - Ping-Heng Tan
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, 230031, China
- International Magnetobiology Frontier Research Center, Science Island, Hefei, 230031, China
| | - Can Xie
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, 100871, China.
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, 230031, China.
- International Magnetobiology Frontier Research Center, Science Island, Hefei, 230031, China.
| |
Collapse
|
2
|
Suraci D, Saudino G, Nasta V, Ciofi-Baffoni S, Banci L. ISCA1 Orchestrates ISCA2 and NFU1 in the Maturation of Human Mitochondrial [4Fe-4S] Proteins. J Mol Biol 2021; 433:166924. [PMID: 33711344 DOI: 10.1016/j.jmb.2021.166924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
The late-acting steps of the pathway responsible for the maturation of mitochondrial [4Fe-4S] proteins are still elusive. Three proteins ISCA1, ISCA2 and NFU1 were shown to be implicated in the assembly of [4Fe-4S] clusters and their transfer into mitochondrial apo proteins. We present here a NMR-based study showing a detailed molecular model of the succession of events performed in a coordinated manner by ISCA1, ISCA2 and NFU1 to make [4Fe-4S] clusters available to mitochondrial apo proteins. We show that ISCA1 is the key player of the [4Fe-4S] protein maturation process because of its ability to interact with both NFU1 and ISCA2, which, instead do not interact each other. ISCA1 works as the promoter of the interaction between ISCA2 and NFU1 being able to determine the formation of a transient ISCA1-ISCA2-NFU1 ternary complex. We also show that ISCA1, thanks to its specific interaction with the C-terminal cluster-binding domain of NFU1, drives [4Fe-4S] cluster transfer from the site where the cluster is assembled on the ISCA1-ISCA2 complex to a cluster binding site formed by ISCA1 and NFU1 in the ternary ISCA1-ISCA2-NFU1 complex. Such mechanism guarantees that the [4Fe-4S] cluster can be safely moved from where it is assembled on the ISCA1-ISCA2 complex to NFU1, thereby resulting the [4Fe-4S] cluster available for the mitochondrial apo proteins specifically requiring NFU1 for their maturation.
Collapse
Affiliation(s)
- Dafne Suraci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Giovanni Saudino
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Veronica Nasta
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
3
|
Mancini JA, Pike DH, Tyryshkin AM, Haramaty L, Wang MS, Poudel S, Hecht M, Nanda V. Design of a Fe 4 S 4 cluster into the core of a de novo four-helix bundle. Biotechnol Appl Biochem 2020; 67:574-585. [PMID: 32770861 DOI: 10.1002/bab.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
We explore the capacity of the de novo protein, S824, to incorporate a multinuclear iron-sulfur cluster within the core of a single-chain four-helix bundle. This topology has a high intrinsic designability because sequences are constrained largely by the pattern of hydrophobic and hydrophilic amino acids, thereby allowing for the extensive substitution of individual side chains. Libraries of novel proteins based on these constraints have surprising functional potential and have been shown to complement the deletion of essential genes in E. coli. Our structure-based design of four first-shell cysteine ligands, one per helix, in S824 resulted in successful incorporation of a cubane Fe4 S4 cluster into the protein core. A number of challenges were encountered during the design and characterization process, including nonspecific metal-induced aggregation and the presence of competing metal-cluster stoichiometries. The introduction of buried iron-sulfur clusters into the helical bundle is an initial step toward converting libraries of designed structures into functional de novo proteins with catalytic or electron-transfer functionalities.
Collapse
Affiliation(s)
- Joshua A Mancini
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Douglas H Pike
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Alexei M Tyryshkin
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Liti Haramaty
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Michael S Wang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Saroj Poudel
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Michael Hecht
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
4
|
Abstract
Mitochondria are essential in most eukaryotes and are involved in numerous biological functions including ATP production, cofactor biosyntheses, apoptosis, lipid synthesis, and steroid metabolism. Work over the past two decades has uncovered the biogenesis of cellular iron-sulfur (Fe/S) proteins as the essential and minimal function of mitochondria. This process is catalyzed by the bacteria-derived iron-sulfur cluster assembly (ISC) machinery and has been dissected into three major steps: de novo synthesis of a [2Fe-2S] cluster on a scaffold protein; Hsp70 chaperone-mediated trafficking of the cluster and insertion into [2Fe-2S] target apoproteins; and catalytic conversion of the [2Fe-2S] into a [4Fe-4S] cluster and subsequent insertion into recipient apoproteins. ISC components of the first two steps are also required for biogenesis of numerous essential cytosolic and nuclear Fe/S proteins, explaining the essentiality of mitochondria. This review summarizes the molecular mechanisms underlying the ISC protein-mediated maturation of mitochondrial Fe/S proteins and the importance for human disease.
Collapse
Affiliation(s)
- Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany;
- SYNMIKRO Zentrum für synthetische Mikrobiologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Sven-A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany;
| |
Collapse
|
5
|
Olive JA, Cowan JA. Role of the HSPA9/HSC20 chaperone pair in promoting directional human iron-sulfur cluster exchange involving monothiol glutaredoxin 5. J Inorg Biochem 2018; 184:100-107. [PMID: 29689452 DOI: 10.1016/j.jinorgbio.2018.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
Abstract
Iron‑sulfur clusters are essential cofactors found across all domains of life. Their assembly and transfer are accomplished by highly conserved protein complexes and partners. In eukaryotes a [2Fe-2S] cluster is first assembled in the mitochondria on the iron‑sulfur cluster scaffold protein ISCU in tandem with iron, sulfide, and electron donors. Current models suggest that a chaperone pair interacts with a cluster-bound ISCU to facilitate cluster transfer to a monothiol glutaredoxin. In humans this protein is glutaredoxin 5 (GLRX5) and the cluster can then be exchanged with a variety of target apo proteins. By use of circular dichroism spectroscopy, the kinetics of cluster exchange reactivity has been evaluated for human GLRX5 with a variety of cluster donor and acceptor partners, and the role of chaperones determined for several of these. In contrast to the prokaryotic model, where heat-shock type chaperone proteins HscA and HscB are required for successful and efficient transfer of a [2Fe-2S] cluster from the ISCU scaffold to a monothiol glutaredoxin. However, in the human system the chaperone homologs, HSPA9 and HSC20, are not necessary for human ISCU to promote cluster transfer to GLRX5, and appear to promote the reverse transfer. Cluster exchange with the human iron‑sulfur cluster carrier protein NFU1 and ferredoxins (FDX's), and the role of chaperones, has also been evaluated, demonstrating in certain cases control over the directionality of cluster transfer. In contrast to other prokaryotic and eukaryotic organisms, NFU1 is identified as a more likely physiological donor of [2Fe-2S] cluster to human GLRX5 than ISCU.
Collapse
Affiliation(s)
- Joshua A Olive
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, United States
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, United States.
| |
Collapse
|
6
|
Fidai I, Wachnowsky C, Cowan JA. Mapping cellular Fe-S cluster uptake and exchange reactions - divergent pathways for iron-sulfur cluster delivery to human ferredoxins. Metallomics 2017; 8:1283-1293. [PMID: 27878189 DOI: 10.1039/c6mt00193a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferredoxins are protein mediators of biological electron-transfer reactions and typically contain either [2Fe-2S] or [4Fe-4S] clusters. Two ferredoxin homologues have been identified in the human genome, Fdx1 and Fdx2, that share 43% identity and 69% similarity in protein sequence and both bind [2Fe-2S] clusters. Despite the high similarity, the two ferredoxins play very specific roles in distinct physiological pathways and cannot replace each other in function. Both eukaryotic and prokaryotic ferredoxins and homologues have been reported to receive their Fe-S cluster from scaffold/delivery proteins such as IscU, Isa, glutaredoxins, and Nfu. However, the preferred and physiologically relevant pathway for receiving the [2Fe-2S] cluster by ferredoxins is subject to speculation and is not clearly identified. In this work, we report on in vitro UV-visible (UV-vis) circular dichroism studies of [2Fe-2S] cluster transfer to the ferredoxins from a variety of partners. The results reveal rapid and quantitative transfer to both ferredoxins from several donor proteins (IscU, Isa1, Grx2, and Grx3). Transfer from Isa1 to Fdx2 was also observed to be faster than that of IscU to Fdx2, suggesting that Fdx2 could receive its cluster from Isa1 instead of IscU. Several other transfer combinations were also investigated and the results suggest a complex, but kinetically detailed map for cellular cluster trafficking. This is the first step toward building a network map for all of the possible iron-sulfur cluster transfer pathways in the mitochondria and cytosol, providing insights on the most likely cellular pathways and possible redundancies in these pathways.
Collapse
Affiliation(s)
- Insiya Fidai
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. and The Biophysics Graduate Program, The Ohio State University, USA
| | - Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. and The Ohio State Biochemistry Program, The Ohio State University, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. and The Biophysics Graduate Program, The Ohio State University, USA and The Ohio State Biochemistry Program, The Ohio State University, USA
| |
Collapse
|
7
|
Wesley NA, Wachnowsky C, Fidai I, Cowan JA. Analysis of NFU-1 metallocofactor binding-site substitutions-impacts on iron-sulfur cluster coordination and protein structure and function. FEBS J 2017; 284:3817-3837. [PMID: 28906593 DOI: 10.1111/febs.14270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/28/2017] [Accepted: 09/11/2017] [Indexed: 11/27/2022]
Abstract
Iron-sulfur (Fe/S) clusters are ancient prosthetic groups found in numerous metalloproteins and are conserved across all kingdoms of life due to their diverse, yet essential functional roles. Genetic mutations to a specific subset of mitochondrial Fe/S cluster delivery proteins are broadly categorized as disease-related under multiple mitochondrial dysfunction syndrome (MMDS), with symptoms indicative of a general failure of the metabolic system. Multiple mitochondrial dysfunction syndrome 1 (MMDS1) arises as a result of the missense mutation in NFU1, an Fe/S cluster scaffold protein, which substitutes a glycine near the Fe/S cluster-binding pocket to a cysteine (p.Gly208Cys). This substitution has been shown to promote protein dimerization such that cluster delivery to NFU1 is blocked, preventing downstream cluster trafficking. However, the possibility of this additional cysteine, located adjacent to the cluster-binding site, serving as an Fe/S cluster ligand has not yet been explored. To fully understand the consequences of this Gly208Cys replacement, complementary substitutions at the Fe/S cluster-binding pocket for native and Gly208Cys NFU1 were made, along with six other variants. Herein, we report the results of an investigation on the effect of these substitutions on both cluster coordination and NFU1 structure and function. The data suggest that the G208C substitution does not contribute to cluster binding. Rather, replacement of the glycine at position 208 changes the oligomerization state as a result of global structural alterations that result in the downstream effects manifest as MMDS1, but does not perturb the coordination chemistry of the Fe-S cluster.
Collapse
Affiliation(s)
- Nathaniel A Wesley
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Insiya Fidai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.,The Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Wesley NA, Wachnowsky C, Fidai I, Cowan JA. Understanding the molecular basis for multiple mitochondrial dysfunctions syndrome 1 (MMDS1): impact of a disease-causing Gly189Arg substitution on NFU1. FEBS J 2017; 284:3838-3848. [PMID: 28906594 DOI: 10.1111/febs.14271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/28/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022]
Abstract
Iron-sulfur (Fe/S) cluster-containing proteins constitute one of the largest protein classes, with highly varied function. Consequently, the biosynthesis of Fe/S clusters is evolutionarily conserved and mutations in intermediate Fe/S cluster scaffold proteins can cause disease, including multiple mitochondrial dysfunctions syndrome (MMDS). Herein, we have characterized the impact of defects occurring in the MMDS1 disease state that result from a point mutation (p.Gly189Arg) near the active site of NFU1, an Fe/S scaffold protein. In vitro investigation into the structure-function relationship of the Gly189Arg derivative, along with two other variants, reveals that substitution at position 189 triggers structural changes that increase flexibility, decrease stability, and alter the monomer-dimer equilibrium toward monomer, thereby impairing the ability of the Gly189X derivatives to receive an Fe/S cluster from physiologically relevant sources.
Collapse
Affiliation(s)
- Nathaniel A Wesley
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Insiya Fidai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.,The Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
ISCA1 is essential for mitochondrial Fe 4S 4 biogenesis in vivo. Nat Commun 2017; 8:15124. [PMID: 28492233 PMCID: PMC5437272 DOI: 10.1038/ncomms15124] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 03/02/2017] [Indexed: 01/18/2023] Open
Abstract
Mammalian A-type proteins, ISCA1 and ISCA2, are evolutionarily conserved proteins involved in iron–sulfur cluster (Fe–S) biogenesis. Recently, it was shown that ISCA1 and ISCA2 form a heterocomplex that is implicated in the maturation of mitochondrial Fe4S4 proteins. Here we report that mouse ISCA1 and ISCA2 are Fe2S2-containing proteins that combine all features of Fe–S carrier proteins. We use biochemical, spectroscopic and in vivo approaches to demonstrate that despite forming a complex, ISCA1 and ISCA2 establish discrete interactions with components of the late Fe–S machinery. Surprisingly, knockdown experiments in mouse skeletal muscle and in primary cultures of neurons suggest that ISCA1, but not ISCA2, is required for mitochondrial Fe4S4 proteins biogenesis. Collectively, our data suggest that cellular processes with different requirements for ISCA1, ISCA2 and ISCA1–ISCA2 complex seem to exist. The mitochondrial proteins ISCA1 and ISCA2 form a complex that is involved in the biogenesis of Fe–S clusters. Here the authors report that ISCA1 and ISCA2 interact differently with proteins of the Fe–S machinery and that under certain conditions, ISCA2 seems dispensable for Fe–S biogenesis.
Collapse
|
10
|
Wachnowsky C, Wesley NA, Fidai I, Cowan JA. Understanding the Molecular Basis of Multiple Mitochondrial Dysfunctions Syndrome 1 (MMDS1)-Impact of a Disease-Causing Gly208Cys Substitution on Structure and Activity of NFU1 in the Fe/S Cluster Biosynthetic Pathway. J Mol Biol 2017; 429:790-807. [PMID: 28161430 DOI: 10.1016/j.jmb.2017.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/20/2017] [Accepted: 01/28/2017] [Indexed: 02/08/2023]
Abstract
Iron-sulfur (Fe/S)-cluster-containing proteins constitute one of the largest protein classes, with varied functions that include electron transport, regulation of gene expression, substrate binding and activation, and radical generation. Consequently, the biosynthetic machinery for Fe/S clusters is evolutionarily conserved, and mutations in a variety of putative intermediate Fe/S cluster scaffold proteins can cause disease states, including multiple mitochondrial dysfunctions syndrome (MMDS), sideroblastic anemia, and mitochondrial encephalomyopathy. Herein, we have characterized the impact of defects occurring in the MMDS1 disease state that result from a point mutation (Gly208Cys) near the active site of NFU1, an Fe/S scaffold protein, via an in vitro investigation into the structural and functional consequences. Analysis of protein stability and oligomeric state demonstrates that the mutant increases the propensity to dimerize and perturbs the secondary structure composition. These changes appear to underlie the severely decreased ability of mutant NFU1 to accept an Fe/S cluster from physiologically relevant sources. Therefore, the point mutation on NFU1 impairs downstream cluster trafficking and results in the disease phenotype, because there does not appear to be an alternative in vivo reconstitution path, most likely due to greater protein oligomerization from a minor structural change.
Collapse
Affiliation(s)
- Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA; The Ohio State Biochemistry Program, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA
| | - Nathaniel A Wesley
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Insiya Fidai
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA; The Biophysics Graduate Program, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA; The Ohio State Biochemistry Program, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA; The Biophysics Graduate Program, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
11
|
Brancaccio D, Gallo A, Piccioli M, Novellino E, Ciofi-Baffoni S, Banci L. [4Fe-4S] Cluster Assembly in Mitochondria and Its Impairment by Copper. J Am Chem Soc 2017; 139:719-730. [DOI: 10.1021/jacs.6b09567] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Diego Brancaccio
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano
49, 80131 Napoli, Italy
| | - Angelo Gallo
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
- Department
of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Mario Piccioli
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
- Department
of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano
49, 80131 Napoli, Italy
| | - Simone Ciofi-Baffoni
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
- Department
of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Lucia Banci
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
- Department
of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
12
|
Fidai I, Wachnowsky C, Cowan JA. Glutathione-complexed [2Fe-2S] clusters function in Fe-S cluster storage and trafficking. J Biol Inorg Chem 2016; 21:887-901. [PMID: 27590019 DOI: 10.1007/s00775-016-1387-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/12/2016] [Indexed: 12/19/2022]
Abstract
Glutathione-coordinated [2Fe-2S] complex is a non-protein-bound [2Fe-2S] cluster that is capable of reconstituting the human iron-sulfur cluster scaffold protein IscU. This complex demonstrates physiologically relevant solution chemistry and is a viable substrate for iron-sulfur cluster transport by Atm1p exporter protein. Herein, we report on some of the possible functional and physiological roles for this novel [2Fe-2S](GS4) complex in iron-sulfur cluster biosynthesis and quantitatively characterize its role in the broader network of Fe-S cluster transfer reactions. UV-vis and circular dichroism spectroscopy have been used in kinetic studies to determine second-order rate constants for [2Fe-2S] cluster transfer from [2Fe-2S](GS4) complex to acceptor proteins, such as human IscU, Schizosaccharomyces pombe Isa1, human and yeast glutaredoxins (human Grx2 and Saccharomyces cerevisiae Grx3), and human ferredoxins. Second-order rate constants for cluster extraction from these holo proteins were also determined by varying the concentration of glutathione, and a likely common mechanism for cluster uptake was determined by kinetic analysis. The results indicate that the [2Fe-2S](GS4) complex is stable under physiological conditions, and demonstrates reversible cluster exchange with a wide range of Fe-S cluster proteins, thereby supporting a possible physiological role for such centers.
Collapse
Affiliation(s)
- Insiya Fidai
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA.,The Biophysics Graduate Program, The Ohio State University, Columbus, USA
| | - Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA. .,The Biophysics Graduate Program, The Ohio State University, Columbus, USA. .,The Ohio State Biochemistry Program, The Ohio State University, Columbus, USA.
| |
Collapse
|
13
|
Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, Hashimi H, Horáková E, Huang Z, Paris Z, Peña-Diaz P, Ridlon L, Týč J, Wildridge D, Zíková A, Lukeš J. Malleable mitochondrion of Trypanosoma brucei. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:73-151. [PMID: 25708462 DOI: 10.1016/bs.ircmb.2014.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The importance of mitochondria for a typical aerobic eukaryotic cell is undeniable, as the list of necessary mitochondrial processes is steadily growing. Here, we summarize the current knowledge of mitochondrial biology of an early-branching parasitic protist, Trypanosoma brucei, a causative agent of serious human and cattle diseases. We present a comprehensive survey of its mitochondrial pathways including kinetoplast DNA replication and maintenance, gene expression, protein and metabolite import, major metabolic pathways, Fe-S cluster synthesis, ion homeostasis, organellar dynamics, and other processes. As we describe in this chapter, the single mitochondrion of T. brucei is everything but simple and as such rivals mitochondria of multicellular organisms.
Collapse
Affiliation(s)
- Zdeněk Verner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Present address: Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Somsuvro Basu
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Germany
| | - Corinna Benz
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Sameer Dixit
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Dobáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Zhenqiu Huang
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Lucie Ridlon
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Salk Institute, La Jolla, San Diego, USA
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - David Wildridge
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
14
|
Brancaccio D, Gallo A, Mikolajczyk M, Zovo K, Palumaa P, Novellino E, Piccioli M, Ciofi-Baffoni S, Banci L. Formation of [4Fe-4S] Clusters in the Mitochondrial Iron–Sulfur Cluster Assembly Machinery. J Am Chem Soc 2014; 136:16240-50. [DOI: 10.1021/ja507822j] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Diego Brancaccio
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano
49, 80131 Napoli, Italy
| | - Angelo Gallo
- Department
of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Maciej Mikolajczyk
- Department
of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Kairit Zovo
- Department
of Gene Technology, Tallinn University of Technology, Akadeemia
tee 15, 12618 Tallinn, Estonia
| | - Peep Palumaa
- Department
of Gene Technology, Tallinn University of Technology, Akadeemia
tee 15, 12618 Tallinn, Estonia
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano
49, 80131 Napoli, Italy
| | - Mario Piccioli
- Department
of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Simone Ciofi-Baffoni
- Department
of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Lucia Banci
- Department
of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
15
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part II. {[Fe2S2](SγCys)4} proteins. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Lukeš J, Basu S. Fe/S protein biogenesis in trypanosomes - A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1481-92. [PMID: 25196712 DOI: 10.1016/j.bbamcr.2014.08.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 12/15/2022]
Abstract
Trypanosoma brucei, the causative agent of the African sleeping sickness of humans, and other kinetoplastid flagellates belong to the eukarytotic supergroup Excavata. This early-branching model protist is known for a broad range of unique features. As it is amenable to most techniques of forward and reverse genetics, T. brucei was subject to several studies of its iron-sulfur (Fe/S) protein biogenesis and thus represents the best studied excavate eukaryote. Here we review what is known about the Fe/S protein biogenesis of T. brucei, and focus especially on the comparative and evolutionary interesting aspects. We also explore the connections between the well-known and quite conserved ISC and CIA machineries and the tRNA thiolation pathway. Moreover, the Fe/S cluster protein biogenesis is dissected in the procyclic stage of T. brucei which has an active mitochondrion, as well as in its pathogenic bloodstream stage with a metabolically repressed organelle. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic.
| | - Somsuvro Basu
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| |
Collapse
|
17
|
Iannuzzi C, Adrover M, Puglisi R, Yan R, Temussi PA, Pastore A. The role of zinc in the stability of the marginally stable IscU scaffold protein. Protein Sci 2014; 23:1208-19. [PMID: 24917298 PMCID: PMC4243993 DOI: 10.1002/pro.2501] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 11/12/2022]
Abstract
Understanding the factors that determine protein stability is interesting because it directly reflects the evolutionary pressure coming from function and environment. Here, we have combined experimental and computational methods to study the stability of IscU, a bacterial scaffold protein highly conserved in most organisms and an essential component of the iron-sulfur cluster biogenesis pathway. We demonstrate that the effect of zinc and its consequence strongly depend on the sample history. IscU is a marginally stable protein at low ionic strength to the point that undergoes cold denaturation at around -8°C with a corresponding dramatic decrease of enthalpy, which is consistent with the fluxional nature of the protein. Presence of constitutively bound zinc appreciably stabilizes the IscU fold, whereas it may cause protein aggregation when zinc is added back posthumously. We discuss how zinc coordination can be achieved by different side chains spatially available and all competent for tetrahedral coordination. The individual absence of some of these residues can be largely compensated by small local rearrangements of the others. We discuss the potential importance of our findings in vitro for the function in vivo of the protein.
Collapse
Affiliation(s)
- Clara Iannuzzi
- MRC National Institute for Medical ResearchThe Ridgeway, London, NW7 1AA, United Kingdom
- Department of Biochemistry, Biophysics and General Pathology, Seconda Universita' di Napoli80138, Naples, Italy
| | - Miquel Adrover
- MRC National Institute for Medical ResearchThe Ridgeway, London, NW7 1AA, United Kingdom
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS). Departament de Química, Universitat de les Illes BalearsCtra. Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain
| | - Rita Puglisi
- MRC National Institute for Medical ResearchThe Ridgeway, London, NW7 1AA, United Kingdom
| | - Robert Yan
- MRC National Institute for Medical ResearchThe Ridgeway, London, NW7 1AA, United Kingdom
| | - Piero Andrea Temussi
- MRC National Institute for Medical ResearchThe Ridgeway, London, NW7 1AA, United Kingdom
- Dipartimento di Chimica, Universita' di Napoli Federico IIVia Cinthia, I-80126, Napoli, Italy
| | - Annalisa Pastore
- MRC National Institute for Medical ResearchThe Ridgeway, London, NW7 1AA, United Kingdom
- Department of Clinical Neurosciences, King's College LondonLondon SE5, United Kingdom
| |
Collapse
|
18
|
Abstract
Monothiol glutaredoxins play a crucial role in iron-sulfur (Fe/S) protein biogenesis. Essentially all of them can coordinate a [2Fe-2S] cluster and have been proposed to mediate the transfer of [2Fe-2S] clusters from scaffold proteins to target apo proteins, possibly by acting as cluster transfer proteins. The molecular basis of [2Fe-2S] cluster transfer from monothiol glutaredoxins to target proteins is a fundamental, but still unresolved, aspect to be defined in Fe/S protein biogenesis. In mitochondria monothiol glutaredoxin 5 (GRX5) is involved in the maturation of all cellular Fe/S proteins and participates in cellular iron regulation. Here we show that the structural plasticity of the dimeric state of the [2Fe-2S] bound form of human GRX5 (holo hGRX5) is the crucial factor that allows an efficient cluster transfer to the partner proteins human ISCA1 and ISCA2 by a specific protein-protein recognition mechanism. Holo hGRX5 works as a metallochaperone preventing the [2Fe-2S] cluster to be released in solution in the presence of physiological concentrations of glutathione and forming a transient, cluster-mediated protein-protein intermediate with two physiological protein partners receiving the [2Fe-2S] cluster. The cluster transfer mechanism defined here may extend to other mitochondrial [2Fe-2S] target proteins.
Collapse
|
19
|
Stehling O, Wilbrecht C, Lill R. Mitochondrial iron-sulfur protein biogenesis and human disease. Biochimie 2014; 100:61-77. [PMID: 24462711 DOI: 10.1016/j.biochi.2014.01.010] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/13/2014] [Indexed: 12/29/2022]
Abstract
Work during the past 14 years has shown that mitochondria are the primary site for the biosynthesis of iron-sulfur (Fe/S) clusters. In fact, it is this process that renders mitochondria essential for viability of virtually all eukaryotes, because they participate in the synthesis of the Fe/S clusters of key nuclear and cytosolic proteins such as DNA polymerases, DNA helicases, and ABCE1 (Rli1), an ATPase involved in protein synthesis. As a consequence, mitochondrial function is crucial for nuclear DNA synthesis and repair, ribosomal protein synthesis, and numerous other extra-mitochondrial pathways including nucleotide metabolism and cellular iron regulation. Within mitochondria, the synthesis of Fe/S clusters and their insertion into apoproteins is assisted by 17 proteins forming the ISC (iron-sulfur cluster) assembly machinery. Biogenesis of mitochondrial Fe/S proteins can be dissected into three main steps: First, a Fe/S cluster is generated de novo on a scaffold protein. Second, the Fe/S cluster is dislocated from the scaffold and transiently bound to transfer proteins. Third, the latter components, together with specific ISC targeting factors insert the Fe/S cluster into client apoproteins. Disturbances of the first two steps impair the maturation of extra-mitochondrial Fe/S proteins and affect cellular and systemic iron homeostasis. In line with the essential function of mitochondria, genetic mutations in a number of ISC genes lead to severe neurological, hematological and metabolic diseases, often with a fatal outcome in early childhood. In this review we briefly summarize our current functional knowledge on the ISC assembly machinery, and we present a comprehensive overview of the various Fe/S protein assembly diseases.
Collapse
Affiliation(s)
- Oliver Stehling
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | - Claudia Wilbrecht
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany; Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany; LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Str., 35043 Marburg, Germany.
| |
Collapse
|
20
|
Markley JL, Kim JH, Dai Z, Bothe JR, Cai K, Frederick RO, Tonelli M. Metamorphic protein IscU alternates conformations in the course of its role as the scaffold protein for iron-sulfur cluster biosynthesis and delivery. FEBS Lett 2013; 587:1172-9. [PMID: 23333622 DOI: 10.1016/j.febslet.2013.01.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 12/24/2012] [Accepted: 01/06/2013] [Indexed: 11/16/2022]
Abstract
IscU from Escherichia coli, the scaffold protein for iron-sulfur cluster biosynthesis and delivery, populates a complex energy landscape. IscU exists as two slowly interconverting species: one (S) is largely structured with all four peptidyl-prolyl bonds trans; the other (D) is partly disordered but contains an ordered domain that stabilizes two cis peptidyl-prolyl peptide bonds. At pH 8.0, the S-state is maximally populated at 25 °C, but its population decreases at higher or lower temperatures or at lower pH. The D-state binds preferentially to the cysteine desulfurase (IscS), which generates and transfers sulfur to IscU cysteine residues to form persulfides. The S-state is stabilized by Fe-S cluster binding and interacts preferentially with the DnaJ-type co-chaperone (HscB), which targets the holo-IscU:HscB complex to the DnaK-type chaperone (HscA) in its ATP-bound from. HscA is involved in delivery of Fe-S clusters to acceptor proteins by a mechanism dependent on ATP hydrolysis. Upon conversion of ATP to ADP, HscA binds the D-state of IscU ensuring release of the cluster and HscB. These findings have led to a more complete model for cluster biosynthesis and delivery.
Collapse
Affiliation(s)
- John L Markley
- Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
The monothiol glutaredoxin Grx4 exerts an iron-dependent inhibitory effect on Php4 function. EUKARYOTIC CELL 2012; 11:806-19. [PMID: 22523368 DOI: 10.1128/ec.00060-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
When iron is scarce, Schizosaccharomyces pombe cells repress transcription of several genes that encode iron-using proteins. Php4 mediates this transcriptional control by specifically interacting with the CCAAT-binding core complex that is composed of Php2, Php3, and Php5. In contrast, when there is sufficient iron, Php4 is inactivated, thus allowing the transcription of many genes that encode iron-requiring proteins. Analysis by bimolecular fluorescence complementation and two-hybrid assays showed that Php4 and the monothiol glutaredoxin Grx4 physically interact with each other. Deletion mapping analysis revealed that the glutaredoxin (GRX) domain of Grx4 associates with Php4 in an iron-dependent manner. Site-directed mutagenesis identified the Cys172 of Grx4 as being required for this iron-dependent association. Subsequent analysis showed that, although the thioredoxin (TRX) domain of Grx4 interacts strongly with Php4, this interaction is insensitive to iron. Fine mapping analysis revealed that the Cys35 of Grx4 is necessary for the association between the TRX domain and Php4. Taken together, the results revealed that whereas the TRX domain interacts constitutively with Php4, the GRX domain-Php4 association is both modulated by iron and required for the inhibition of Php4 activity in response to iron repletion.
Collapse
|
22
|
Mühlenhoff U, Richter N, Pines O, Pierik AJ, Lill R. Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe-4S] proteins. J Biol Chem 2011; 286:41205-41216. [PMID: 21987576 DOI: 10.1074/jbc.m111.296152] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most eukaryotes contain iron-sulfur cluster (ISC) assembly proteins related to Saccharomyces cerevisiae Isa1 and Isa2. We show here that Isa1 but not Isa2 can be functionally replaced by the bacterial relatives IscA, SufA, and ErpA. The specific function of these "A-type" ISC proteins within the framework of mitochondrial and bacterial Fe/S protein biogenesis is still unresolved. In a comprehensive in vivo analysis, we show that S. cerevisiae Isa1 and Isa2 form a complex that is required for maturation of mitochondrial [4Fe-4S] proteins, including aconitase and homoaconitase. In contrast, Isa1-Isa2 were dispensable for the generation of mitochondrial [2Fe-2S] proteins and cytosolic [4Fe-4S] proteins. Targeting of bacterial [2Fe-2S] and [4Fe-4S] ferredoxins to yeast mitochondria further supported this specificity. Isa1 and Isa2 proteins are shown to bind iron in vivo, yet the Isa1-Isa2-bound iron was not needed as a donor for de novo assembly of the [2Fe-2S] cluster on the general Fe/S scaffold proteins Isu1-Isu2. Upon depletion of the ISC assembly factor Iba57, which specifically interacts with Isa1 and Isa2, or in the absence of the major mitochondrial [4Fe-4S] protein aconitase, iron accumulated on the Isa proteins. These results suggest that the iron bound to the Isa proteins is required for the de novo synthesis of [4Fe-4S] clusters in mitochondria and for their insertion into apoproteins in a reaction mediated by Iba57. Taken together, these findings define Isa1, Isa2, and Iba57 as a specialized, late-acting ISC assembly subsystem that is specifically dedicated to the maturation of mitochondrial [4Fe-4S] proteins.
Collapse
Affiliation(s)
- Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Strasse 6, 35032 Marburg, Germany
| | - Nadine Richter
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Strasse 6, 35032 Marburg, Germany
| | - Ophry Pines
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Antonio J Pierik
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Strasse 6, 35032 Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Strasse 6, 35032 Marburg, Germany.
| |
Collapse
|
23
|
Long S, Changmai P, Tsaousis AD, Skalický T, Verner Z, Wen YZ, Roger AJ, Lukeš J. Stage-specific requirement for Isa1 and Isa2 proteins in the mitochondrion of Trypanosoma brucei and heterologous rescue by human and Blastocystis orthologues. Mol Microbiol 2011; 81:1403-18. [DOI: 10.1111/j.1365-2958.2011.07769.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Wu SP, Bellei M, Mansy SS, Battistuzzi G, Sola M, Cowan JA. Redox chemistry of the Schizosaccharomyces pombe ferredoxin electron-transfer domain and influence of Cys to Ser substitutions. J Inorg Biochem 2011; 105:806-11. [PMID: 21497579 DOI: 10.1016/j.jinorgbio.2011.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/29/2011] [Accepted: 03/10/2011] [Indexed: 11/26/2022]
Abstract
Schizosaccharomyces pombe (Sp) ferredoxin contains a C-terminal electron transfer protein ferredoxin domain (etp(Fd)) that is homologous to adrenodoxin. The ferredoxin has been characterized by spectroelectrochemical methods, and Mössbauer, UV-Vis and circular dichroism spectroscopies. The Mössbauer spectrum is consistent with a standard diferric [2Fe-2S](2+) cluster. While showing sequence homology to vertebrate ferredoxins, the E°' and the reduction thermodynamics for etp(Fd) (-0.392 V) are similar to plant-type ferredoxins. Relatively stable Cys to Ser derivatives were made for each of the four bound Cys residues and variations in the visible spectrum in the 380-450 nm range were observed that are characteristic of oxygen ligated clusters, including members of the [2Fe-2S] cluster IscU/ISU scaffold proteins. Circular dichroism spectra were similar and consistent with no significant structural change accompanying these mutations. All derivatives were active in an NADPH-Fd reductase cytochrome c assay. The binding affinity of Fd to the reductase was similar, however, V(max) reflecting rate limiting electron transfer was found to decrease ~13-fold. The data are consistent with relatively minor perturbations of both the electronic properties of the cluster following substitution of the Fe-bond S atom with O, and the electronic coupling of the cluster to the protein.
Collapse
Affiliation(s)
- Shu-pao Wu
- Evans Laboratory of Chemistry, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
25
|
DsrR, a novel IscA-like protein lacking iron- and Fe-S-binding functions, involved in the regulation of sulfur oxidation in Allochromatium vinosum. J Bacteriol 2010; 192:1652-61. [PMID: 20061482 DOI: 10.1128/jb.01269-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the purple sulfur bacterium Allochromatium vinosum, the reverse-acting dissimilatory sulfite reductase (DsrAB) is the key enzyme responsible for the oxidation of intracellular sulfur globules. The genes dsrAB are the first and the gene dsrR is the penultimate of the 15 genes of the dsr operon in A. vinosum. Genes homologous to dsrR occur in a number of other environmentally important sulfur-oxidizing bacteria utilizing Dsr proteins. DsrR exhibits sequence similarities to A-type scaffolds, like IscA, that partake in the maturation of protein-bound iron-sulfur clusters. We used nuclear magnetic resonance (NMR) spectroscopy to solve the solution structure of DsrR and to show that the protein is indeed structurally highly similar to A-type scaffolds. However, DsrR does not retain the Fe-S- or the iron-binding ability of these proteins, which is due to the lack of all three highly conserved cysteine residues of IscA-like scaffolds. Taken together, these findings suggest a common function for DsrR and IscA-like proteins different from direct participation in iron-sulfur cluster maturation. An A. vinosum DeltadsrR deletion strain showed a significantly reduced sulfur oxidation rate that was fully restored upon complementation with dsrR in trans. Immunoblot analyses revealed a reduced level of DsrE and DsrL in the DeltadsrR strain. These proteins are absolutely essential for sulfur oxidation. Transcriptional and translational gene fusion experiments suggested the participation of DsrR in the posttranscriptional control of the dsr operon, similar to the alternative function of cyanobacterial IscA as part of the sense and/or response cascade set into action upon iron limitation.
Collapse
|
26
|
Complementary roles of SufA and IscA in the biogenesis of iron-sulfur clusters in Escherichia coli. Biochem J 2008; 409:535-43. [PMID: 17941825 DOI: 10.1042/bj20071166] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biogenesis of iron-sulfur clusters requires a concerted delivery of iron and sulfur to target proteins. It is now clear that sulfur in iron-sulfur clusters is derived from L-cysteine via cysteine desulfurases. However, the specific iron donor for the iron-sulfur cluster assembly still remains elusive. Previous studies showed that IscA, a member of the iron-sulfur cluster assembly machinery in Escherichia coli, is a novel iron-binding protein, and that the iron-bound IscA can provide iron for the iron-sulfur cluster assembly in a proposed scaffold IscU in vitro. However, genetic studies have indicated that IscA is not essential for the cell growth of E. coli. In the present paper, we report that SufA, an IscA paralogue in E. coli, may represent the redundant activity of IscA. Although deletion of IscA or SufA has only a mild effect on cell growth, deletion of both IscA and SufA in E. coli results in a severe growth phenotype in minimal medium under aerobic growth conditions. Cell growth is restored when either IscA or SufA is re-introduced into the iscA-/sufA- double mutant, demonstrating further that either IscA or SufA is sufficient for their functions in vivo. Purified SufA, like IscA, is an iron-binding protein that can provide iron for the iron-sulfur cluster assembly in IscU in the presence of a thioredoxin reductase system which emulates the intracellular redox potential. Site-directed mutagenesis studies show that the SufA/IscA variants that lose the specific iron-binding activity fail to restore the cell growth of the iscA-/sufA- double mutant. The results suggest that SufA and IscA may constitute the redundant cellular activities to recruit intracellular iron and deliver iron for the iron-sulfur cluster assembly in E. coli.
Collapse
|
27
|
Fontecave M, Ollagnier-de-Choudens S. Iron-sulfur cluster biosynthesis in bacteria: Mechanisms of cluster assembly and transfer. Arch Biochem Biophys 2007; 474:226-37. [PMID: 18191630 DOI: 10.1016/j.abb.2007.12.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/13/2007] [Accepted: 12/16/2007] [Indexed: 11/17/2022]
Abstract
Iron-sulfur [Fe-S] clusters are ubiquitous ancient prosthetic groups that are required to sustain fundamental life processes. Formation of intracellular [Fe-S] clusters does not occur spontaneously but requires a complex biosynthetic machinery. Different types of [Fe-S] cluster assembly systems have been discovered. All of them have in common the requirement of a cysteine desulfurase and the participation of [Fe-S] scaffold proteins. The purpose of this review is to discuss various aspects of the molecular mechanisms of [Fe-S] cluster assembly in living organisms: (i) mechanism of sulfur donor enzymes, namely the cysteine desulfurases; (ii) mechanism by which clusters are preassembled on scaffold proteins and (iii) mechanism of [Fe-S] cluster transfer from scaffold to target proteins.
Collapse
|
28
|
M NMU, Ollagnier-de-Choudens S, Sanakis Y, Abdel-Ghany SE, Rousset C, Ye H, Fontecave M, Pilon-Smits EAH, Pilon M. Characterization of Arabidopsis thaliana SufE2 and SufE3: functions in chloroplast iron-sulfur cluster assembly and Nad synthesis. J Biol Chem 2007; 282:18254-18264. [PMID: 17452319 DOI: 10.1074/jbc.m701428200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we characterize two novel chloroplast SufE-like proteins from Arabidopsis thaliana. Other SufE-like proteins, including the previously described A. thaliana CpSufE, participate in sulfur mobilization for Fe-S biosynthesis through activation of cysteine desulfurization by NifS-like proteins. In addition to CpSufE, the Arabidopsis genome encodes two other proteins with SufE domains, SufE2 and SufE3. SufE2 has plastid targeting information. Purified recombinant SufE2 could activate the cysteine desulfurase activity of CpNifS 40-fold. SufE2 expression was flower-specific and high in pollen; we therefore hypothesize that SufE2 has a specific function in pollen Fe-S cluster biosynthesis. SufE3, also a plastid targeted protein, was expressed at low levels in all major plant organs. The mature SufE3 contains two domains, one SufE-like and one with similarity to the bacterial quinolinate synthase, NadA. Indeed SufE3 displayed both SufE activity (stimulating CpNifS cysteine desulfurase activity 70-fold) and quinolinate synthase activity. The full-length protein was shown to carry a highly oxygen-sensitive (4Fe-4S) cluster at its NadA domain, which could be reconstituted by its own SufE domain in the presence of CpNifS, cysteine and ferrous iron. Knock-out of SufE3 in Arabidopsis is embryolethal. We conclude that SufE3 is the NadA enzyme of A. thaliana, involved in a critical step during NAD biosynthesis.
Collapse
Affiliation(s)
- Narayana Murthy U M
- Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Sandrine Ollagnier-de-Choudens
- Laboratoire de Chimie et Biologie des Métaux, UMR UJF/CEA/CNRS no. 5249, Institut de Recherche en Technologie et Sciences pour le Vivant/Laboratoire de Chimie et Biologie des Métauk, CEA Grenoble, 17 Avenue des Martyrs, 38054 Grenoble, Cedex 09, France
| | - Yiannis Sanakis
- NCSR, Demokritos, Institute of Materials Science, 15310 Ag. Paraskevi, Attiki, Greece
| | - Salah E Abdel-Ghany
- Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Carine Rousset
- Laboratoire de Chimie et Biologie des Métaux, UMR UJF/CEA/CNRS no. 5249, Institut de Recherche en Technologie et Sciences pour le Vivant/Laboratoire de Chimie et Biologie des Métauk, CEA Grenoble, 17 Avenue des Martyrs, 38054 Grenoble, Cedex 09, France
| | - Hong Ye
- Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Marc Fontecave
- Laboratoire de Chimie et Biologie des Métaux, UMR UJF/CEA/CNRS no. 5249, Institut de Recherche en Technologie et Sciences pour le Vivant/Laboratoire de Chimie et Biologie des Métauk, CEA Grenoble, 17 Avenue des Martyrs, 38054 Grenoble, Cedex 09, France
| | - Elizabeth A H Pilon-Smits
- Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Marinus Pilon
- Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, Colorado 80523.
| |
Collapse
|
29
|
Zeng J, Geng M, Jiang H, Liu Y, Liu J, Qiu G. The IscA from Acidithiobacillus ferrooxidans is an iron-sulfur protein which assemble the [Fe4S4] cluster with intracellular iron and sulfur. Arch Biochem Biophys 2007; 463:237-44. [PMID: 17470358 DOI: 10.1016/j.abb.2007.03.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/08/2007] [Accepted: 03/16/2007] [Indexed: 10/23/2022]
Abstract
IscA was proposed to be involved in the iron-sulfur cluster assembly in Acidithiobacillus ferrooxidans encoded by the iscSUA operon, but the role of IscA in the iron-sulfur cluster assembly still remains controversial. In this study, the IscA from A. ferrooxidans ATCC 23270 was successfully expressed in Escherichia coli, and purified by affinity chromatography to homogeneity. To our surprise, the purified IscA was observed to be an iron-sulfur protein according to MALDI-TOF-MS and spectra results, which was capable of recruiting intracellular iron and sulfur and hosted a stable [Fe4S4] cluster. Site-directed mutagenesis for the protein revealed that Cys35, Cys99 and Cys101 were in ligating with the [Fe4S4] cluster. The [Fe4S4] cluster could be assembled in apoIscA with Fe2+ and sulfide in vitro. The IscA from A. ferrooxidans may function as a scaffold protein for the pre-assembly of Fe-S cluster and then transfer it to target proteins in A. ferrooxidans.
Collapse
Affiliation(s)
- Jia Zeng
- Department of Bioengineering, School of Resources Processing and Bioengineering, Central South University, Changsha 410083, PR China
| | | | | | | | | | | |
Collapse
|
30
|
Mühlenhoff U, Gerl MJ, Flauger B, Pirner HM, Balser S, Richhardt N, Lill R, Stolz J. The ISC [corrected] proteins Isa1 and Isa2 are required for the function but not for the de novo synthesis of the Fe/S clusters of biotin synthase in Saccharomyces cerevisiae. EUKARYOTIC CELL 2007; 6:495-504. [PMID: 17259550 PMCID: PMC1828929 DOI: 10.1128/ec.00191-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The yeast Saccharomyces cerevisiae is able to use some biotin precursors for biotin biosynthesis. Insertion of a sulfur atom into desthiobiotin, the final step in the biosynthetic pathway, is catalyzed by biotin synthase (Bio2). This mitochondrial protein contains two iron-sulfur (Fe/S) clusters that catalyze the reaction and are thought to act as a sulfur donor. To identify new components of biotin metabolism, we performed a genetic screen and found that Isa2, a mitochondrial protein involved in the formation of Fe/S proteins, is necessary for the conversion of desthiobiotin to biotin. Depletion of Isa2 or the related Isa1, however, did not prevent the de novo synthesis of any of the two Fe/S centers of Bio2. In contrast, Fe/S cluster assembly on Bio2 strongly depended on the Isu1 and Isu2 proteins. Both isa mutants contained low levels of Bio2. This phenotype was also found in other mutants impaired in mitochondrial Fe/S protein assembly and in wild-type cells grown under iron limitation. Low Bio2 levels, however, did not cause the inability of isa mutants to utilize desthiobiotin, since this defect was not cured by overexpression of BIO2. Thus, the Isa proteins are crucial for the in vivo function of biotin synthase but not for the de novo synthesis of its Fe/S clusters. Our data demonstrate that the Isa proteins are essential for the catalytic activity of Bio2 in vivo.
Collapse
Affiliation(s)
- Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35033 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wu SP, Cowan JA. Iron–sulfur cluster stability. Kinetics and mechanism of ligand-promoted cluster degradation. Chem Commun (Camb) 2007:82-4. [PMID: 17279268 DOI: 10.1039/b610665j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactivity studies of iron-sulfur cluster proteins with chelating ligands model the reactivity of cluster scaffold proteins such as ISU, and suggest a rate law [k(obs) = k2[ligand]n/{[ligand]n + K(D)}] consistent with formation of a pre-reaction complex between the Fe-S protein and one chelate ligand.
Collapse
Affiliation(s)
- Shu-pao Wu
- Evans Laboratory of Chemistry, Ohio State University, 100 West, 18th Ave, Columbus, OH 43210, USA
| | | |
Collapse
|
32
|
Abstract
Iron-sulfur (Fe/S) clusters require a complex set of proteins to become assembled and incorporated into apoproteins in a living cell. Researchers have described three distinct assembly systems in eukaryotes that are involved in the maturation of cellular Fe/S proteins. Mitochondria are central for biogenesis. They contain the ISC-the iron-sulfur cluster assembly machinery that was inherited from a similar system of eubacteria in evolution and is involved in biogenesis of all cellular Fe/S proteins. The basic principle of mitochondrial (and bacterial) Fe/S protein maturation is the synthesis of the Fe/S cluster on a scaffold protein before the cluster is transferred to apoproteins. Biogenesis of cytosolic and nuclear Fe/S proteins is facilitated by the cytosolic iron-sulfur protein assembly (CIA) apparatus. This process requires the participation of mitochondria that export a still unknown component via the ISC export machinery, including an ABC transporter.
Collapse
Affiliation(s)
- Roland Lill
- Institut für Zytobiologie, Philipps Universität Marburg, 35037 Marburg, Germany.
| | | |
Collapse
|
33
|
Mercier A, Pelletier B, Labbé S. A transcription factor cascade involving Fep1 and the CCAAT-binding factor Php4 regulates gene expression in response to iron deficiency in the fission yeast Schizosaccharomyces pombe. EUKARYOTIC CELL 2006; 5:1866-81. [PMID: 16963626 PMCID: PMC1694796 DOI: 10.1128/ec.00199-06] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified genes encoding candidate proteins involved in iron storage (pcl1+), the tricarboxylic acid cycle (sdh4+), and iron-sulfur cluster assembly (isa1+) that are negatively regulated in response to iron deprivation. Promoter deletion and site-directed mutagenesis permitted identification of a new cis-regulatory element in the promoter region of the pcl1+ gene. This cis-acting regulatory sequence containing the pentanucleotide sequence CCAAT is responsible for transcriptional repression of pcl1+ under low iron supply conditions. In Schizosaccharomyces pombe, the CCAAT-binding factor is a heteromeric DNA-binding complex that contains three subunits, designated Php2, Php3, and Php5. Inactivation of the php2+ locus negatively affects the transcriptional competency of pcl1+. A fourth subunit, designated Php4, is not essential for the transcriptional activation of target genes under basal and iron-replete conditions. We demonstrate that, in response to iron-limiting conditions, Php4 is required for down-regulation of pcl1+, sdh4+, and isa1+ mRNA levels. In vivo RNase protection studies reveal that the expression of php4+ is negatively regulated by iron and that this regulated expression requires a functional fep1+ gene. The results of these studies reveal that Fep1 represses php4+ expression in response to iron. In contrast, when iron is scarce, Fep1 becomes inactive and php4+ is expressed to act as a regulatory subunit of the CCAAT-binding factor that is required to block pcl1+, sdh4+, and isa1+ gene transcription.
Collapse
Affiliation(s)
- Alexandre Mercier
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, 3001 12e Ave. Nord, Sherbrooke, Québec J1H 5N4, Canada
| | | | | |
Collapse
|
34
|
Johnson DC, Unciuleac MC, Dean DR. Controlled expression and functional analysis of iron-sulfur cluster biosynthetic components within Azotobacter vinelandii. J Bacteriol 2006; 188:7551-61. [PMID: 16936042 PMCID: PMC1636278 DOI: 10.1128/jb.00596-06] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A system for the controlled expression of genes in Azotobacter vinelandii by using genomic fusions to the sucrose catabolic regulon was developed. This system was used for the functional analysis of the A. vinelandii isc genes, whose products are involved in the maturation of [Fe-S] proteins. For this analysis, the scrX gene, contained within the sucrose catabolic regulon, was replaced by the contiguous A. vinelandii iscS, iscU, iscA, hscB, hscA, fdx, and iscX genes, resulting in duplicate genomic copies of these genes: one whose expression is directed by the normal isc regulatory elements (Pisc) and the other whose expression is directed by the scrX promoter (PscrX). Functional analysis of [Fe-S] protein maturation components was achieved by placing a mutation within a particular Pisc-controlled gene with subsequent repression of the corresponding PscrX-controlled component by growth on glucose as the carbon source. This experimental strategy was used to show that IscS, IscU, HscBA, and Fdx are essential in A. vinelandii and that their depletion results in a deficiency in the maturation of aconitase, an enzyme that requires a [4Fe-4S] cluster for its catalytic activity. Depletion of IscA results in a null growth phenotype only when cells are cultured under conditions of elevated oxygen, marking the first null phenotype associated with the loss of a bacterial IscA-type protein. Furthermore, the null growth phenotype of cells depleted of HscBA could be partially reversed by culturing cells under conditions of low oxygen. Conserved amino acid residues within IscS, IscU, and IscA that are essential for their respective functions and/or whose replacement results in a partial or complete dominant-negative growth phenotype were also identified using this system.
Collapse
|
35
|
Yang J, Bitoun JP, Ding H. Interplay of IscA and IscU in biogenesis of iron-sulfur clusters. J Biol Chem 2006; 281:27956-63. [PMID: 16877383 DOI: 10.1074/jbc.m601356200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence suggests that sulfur in ubiquitous iron-sulfur clusters is derived from L-cysteine via cysteine desulfurases. In Escherichia coli, the major cysteine desulfurase activity for biogenesis of iron-sulfur clusters has been attributed to IscS. The gene that encodes IscS is a member of an operon iscSUA, which also encodes two highly conserved proteins: IscU and IscA. Previous studies suggested that both IscU and IscA may act as the iron-sulfur cluster assembly scaffold proteins. However, recent evidence indicated that IscA is an iron-binding protein that can provide iron for the iron-sulfur cluster assembly in IscU (Ding, H., Harrison, K., and Lu, J. (2005) J. Biol. Chem. 280, 30432-30437). To further elucidate the function of IscA in biogenesis of iron-sulfur clusters, we evaluate the iron-sulfur cluster binding activity of IscA and IscU under physiologically relevant conditions. When equal amounts of IscA and IscU are incubated with an equivalent amount of ferrous iron in the presence of IscS, L-cysteine and dithiothreitol, iron-sulfur clusters are assembled in IscU, but not in IscA, suggesting that IscU is a preferred iron-sulfur cluster assembly scaffold protein. In contrast, when equal amounts of IscA and IscU are incubated with an equivalent amount of ferrous iron in the presence of IscS and dithiothreitol but without L-cysteine, nearly all iron is bound to IscA. The iron binding in IscA appears to prevent the formation of the biologically inaccessible ferric hydroxide under aerobic conditions. Subsequent addition of L-cysteine efficiently mobilizes the iron center in IscA and transfers the iron for the iron-sulfur cluster assembly in IscU. The results suggest an intriguing interplay between IscA and IscU in which IscA acts as an iron chaperon that recruits "free" iron and delivers the iron for biogenesis of iron-sulfur clusters in IscU under aerobic conditions.
Collapse
Affiliation(s)
- Juanjuan Yang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, 70803, USA
| | | | | |
Collapse
|
36
|
Morimoto K, Yamashita E, Kondou Y, Lee SJ, Arisaka F, Tsukihara T, Nakai M. The asymmetric IscA homodimer with an exposed [2Fe-2S] cluster suggests the structural basis of the Fe-S cluster biosynthetic scaffold. J Mol Biol 2006; 360:117-32. [PMID: 16730357 DOI: 10.1016/j.jmb.2006.04.067] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 04/21/2006] [Accepted: 04/27/2006] [Indexed: 10/24/2022]
Abstract
It has been shown that the so-called scaffold proteins are vital in Fe-S cluster biosynthesis by providing an intermediate site for the assembly of Fe-S clusters. However, since no structural information on such scaffold proteins with bound Fe-S cluster intermediates is available, the structural basis of the core of Fe-S cluster biosynthesis remains poorly understood. Here we report the first Fe-S cluster-bound crystal structure of a scaffold protein, IscA, from Thermosynechococcus elongatus, which carries three strictly conserved cysteine residues. Surprisingly, one partially exposed [2Fe-2S] cluster is coordinated by two conformationally distinct IscA protomers, termed alpha and beta, with asymmetric cysteinyl ligation by Cys37, Cys101, Cys103 from alpha and Cys103 from beta. In the crystal, two alphabeta dimers form an unusual domain-swapped tetramer via central domains of beta protomers. Together with additional biochemical data supporting its physiologically relevant configuration, we propose that the unique asymmetric Fe-S cluster coordination and the resulting distinct conformational stabilities of the two IscA protomers are central to the function of IscA-type Fe-S cluster biosynthetic scaffold.
Collapse
Affiliation(s)
- Kozo Morimoto
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Barras F, Loiseau L, Py B. How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins. Adv Microb Physiol 2006; 50:41-101. [PMID: 16221578 DOI: 10.1016/s0065-2911(05)50002-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Owing to the versatile electronic properties of iron and sulfur, iron sulfur (Fe/S) clusters are perfectly suited for sensing changes in environmental conditions and regulating protein properties accordingly. Fe/S proteins have been recruited in a wide array of diverse biological processes, including electron transfer chains, metabolic pathways and gene regulatory circuits. Chemistry has revealed the great diversity of Fe/S clusters occurring in proteins. The question now is to understand how iron and sulfur come together to form Fe/S clusters and how these clusters are subsequently inserted into apoproteins. Iron, sulfide and reducing conditions were found to be sufficient for successful maturation of many apoproteins in vitro, opening the possibility that insertion might be a spontaneous event. However, as in many other biological pathways such as protein folding, genetic analyses revealed that Fe/S cluster biogenesis and insertion depend in vivo upon auxiliary proteins. This was brought to light by studies on Azotobacter vinelandii nitrogenase, which, in particular, led to the concept of scaffold proteins, the role of which would be to allow transient assembly of Fe/S cluster. These studies paved the way toward the identification of the ISC and SUF systems, subjects of the present review that allow Fe/S cluster assembly into apoproteins of most organisms. Despite the recent discovery of the SUF and ISC systems, remarkable progress has been made in our understanding of their molecular composition and biochemical mechanisms. Such a rapid increase in our knowledge arose from a convergent interest from researchers engaged in unrelated fields and whose complementary expertise covered most experimental approaches used in biology. Also, the high conservation of ISC and SUF systems throughout a wide array of organisms helped cross-feeding between studies. The ISC system is conserved in eubacteria and most eukaryotes, while the SUF system arises in eubacteria, archaea, plants and parasites. ISC and SUF systems share a common core function made of a cysteine desulfurase, which acts as a sulfur donor, and scaffold proteins, which act as sulfur and iron acceptors. The ISC and SUF systems also exhibit important differences. In particular, the ISC system includes an Hsp70/Hsp40-like pair of chaperones, while the SUF system involves an unorthodox ATP-binding cassette (ABC)-like component. The role of these two sets of ATP-hydrolyzing proteins in Fe/S cluster biogenesis remains unclear. Both systems are likely to target overlapping sets of apoproteins. However, regulation and phenotypic studies in E. coli, which synthesizes both types of systems, leads us to envisage ISC as the house-keeping one that functions under normal laboratory conditions, while the SUF system appears to be required in harsh environmental conditions such as oxidative stress and iron starvation. In Saccharomyces cerevisiae, the ISC system is located in the mitochondria and its function is necessary for maturation of both mitochondrial and cytosolic Fe/S proteins. Here, we attempt to provide the first comprehensive review of the ISC and SUF systems since their discovery in the mid and late 1990s. Most emphasis is put on E. coli and S. cerevisiae models with reference to other organisms when their analysis provided us with information of particular significance. We aim at covering information made available on each Isc and Suf component by the different experimental approaches, including physiology, gene regulation, genetics, enzymology, biophysics and structural biology. It is our hope that this parallel coverage will facilitate the identification of both similarities and specificities of ISC and SUF systems.
Collapse
Affiliation(s)
- Frédéric Barras
- Laboratoire de Chimie Bactérienne, UPR-CNRS 9043 and LRC-CNRS-CEA 35v, Institut de Biologie Structurale et Microbiologie, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | | | | |
Collapse
|
38
|
Wada K, Hasegawa Y, Gong Z, Minami Y, Fukuyama K, Takahashi Y. Crystal structure of Escherichia coli SufA involved in biosynthesis of iron-sulfur clusters: implications for a functional dimer. FEBS Lett 2005; 579:6543-8. [PMID: 16298366 DOI: 10.1016/j.febslet.2005.10.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 10/19/2005] [Accepted: 10/25/2005] [Indexed: 11/23/2022]
Abstract
IscA and SufA are paralogous proteins that play crucial roles in the biosynthesis of Fe-S clusters, perhaps through a mechanism involving transient Fe-S cluster formation. We have determined the crystal structure of E. coli SufA at 2.7A resolution. SufA exists as a homodimer, in contrast to the tetrameric organization of IscA. Furthermore, a C-terminal segment containing two essential cysteine residues (Cys-Gly-Cys), which is disordered in the IscA structure, is clearly visible in one molecule (the alpha1 subunit) of the SufA homodimer. Although this segment is disordered in the other molecule (the alpha2 subunit), computer modeling of this segment based on the well-defined conformation of alpha1 subunit suggests that the four cysteine residues (Cys114 and Cys116 in each subunit) in the Cys-Gly-Cys motif are positioned in close proximity at the dimer interface. The arrangement of these cysteines together with the nearby Glu118 in SufA dimer may allow coordination of an Fe-S cluster and/or an Fe atom.
Collapse
Affiliation(s)
- Kei Wada
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Fontecave M, Choudens SOD, Py B, Barras F. Mechanisms of iron-sulfur cluster assembly: the SUF machinery. J Biol Inorg Chem 2005; 10:713-21. [PMID: 16211402 DOI: 10.1007/s00775-005-0025-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 08/23/2005] [Indexed: 11/26/2022]
Abstract
Biosynthesis of iron-sulfur clusters is a cellular process which depends on complex protein machineries. Escherichia coli contains two such biosynthetic systems, ISC and SUF. In this review article we specifically make a presentation of the various Suf proteins and discuss the molecular mechanisms by which these proteins work together to assemble Fe and S atoms within a scaffold and to transfer the resulting cluster to target proteins.
Collapse
Affiliation(s)
- M Fontecave
- Laboratoire de Chimie et Biochimie des Centres Rédox Biologiques, DRDC-CB, CEA/CNRS/Université Joseph Fourier, CEA-Grenoble, Grenoble Cedex 09, France.
| | | | | | | |
Collapse
|
40
|
Ding B, Smith E, Ding H. Mobilization of the iron centre in IscA for the iron-sulphur cluster assembly in IscU. Biochem J 2005; 389:797-802. [PMID: 15828873 PMCID: PMC1180730 DOI: 10.1042/bj20050405] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The biogenesis of iron-sulphur clusters requires the co-ordinated delivery of both iron and sulphur. It is now clear that sulphur in iron-sulphur clusters is derived from L-cysteine by cysteine desulphurases. However, the iron donor for the iron-sulphur cluster assembly still remains elusive. Our previous studies indicated that Escherichia coli IscA, a member of the iron-sulphur cluster assembly machinery, is an iron-binding protein that can provide iron for the iron-sulphur cluster assembly in a proposed scaffold IscU. To determine how the iron centre in IscA is transferred for the iron-sulphur cluster assembly in IscU, we explore the mobility of the iron centre in IscA. The UV-visible and EPR measurements show that L-cysteine, but not IscU, is able to mobilize the iron centre in IscA and make the iron available for the iron-sulphur cluster assembly in IscU. Other related biological thiols such as N-acetyl-L-cysteine or reduced glutathione have no effect on the iron centre of IscA, suggesting that L-cysteine is unique in mobilizing the iron centre of IscA. Nevertheless, L-cysteine alone is not sufficient to transfer the iron from IscA to IscU. Both L-cysteine and cysteine desulphurase (IscS) are required for the IscA-mediated assembly of iron-sulphur clusters in IscU. The results suggest that L-cysteine may have two distinct functions in the biogenesis of iron-sulphur clusters: to mobilize the iron centre in IscA and to provide sulphur via cysteine desulphurase (IscS) for the iron-sulphur cluster assembly in IscU.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, U.S.A
| | - Edward S. Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, U.S.A
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
41
|
Bonomi F, Iametti S, Ta D, Vickery LE. Multiple Turnover Transfer of [2Fe2S] Clusters by the Iron-Sulfur Cluster Assembly Scaffold Proteins IscU and IscA. J Biol Chem 2005; 280:29513-8. [PMID: 15964837 DOI: 10.1074/jbc.m504344200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IscU/Isu and IscA/Isa (and related NifU and SufA proteins) have been proposed to serve as molecular scaffolds for preassembly of [FeS] clusters to be used in the biogenesis of iron-sulfur proteins. In vitro studies demonstrating transfer of preformed scaffold-[FeS] complexes to apoprotein acceptors have provided experimental support for this hypothesis, but investigations to date have yielded only single-cluster transfer events. We describe an in vitro assay system that allows for real-time monitoring of [FeS] cluster formation using circular dichroism spectroscopy and use this to investigate de novo [FeS] cluster formation and transfer from Escherichia coli IscU and IscA to apo-ferredoxin. Both IscU and IscA were found to be capable of multiple cycles of [2Fe2S] cluster formation and transfer suggesting that these scaffold proteins are capable of acting "catalytically." Kinetic studies further showed that cluster transfer exhibits Michaelis-Menten behavior indicative of complex formation of holo-IscU and holo-IscA with apoferredoxin and consistent with a direct [FeS] cluster transfer mechanism. Analysis of the dependence of the rate of cluster transfer, however, revealed enhanced efficiency at low ratios of scaffold to acceptor protein suggesting participation of a transient, labile scaffold-[FeS] species in the transfer process.
Collapse
Affiliation(s)
- Francesco Bonomi
- Section of Biochemistry, Dipartimento di Sciencze Molecolari Agroalimentari, University of Milan, Italy
| | | | | | | |
Collapse
|
42
|
Ding H, Harrison K, Lu J. Thioredoxin reductase system mediates iron binding in IscA and iron delivery for the iron-sulfur cluster assembly in IscU. J Biol Chem 2005; 280:30432-7. [PMID: 15985427 DOI: 10.1074/jbc.m504638200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IscA is a key member of the iron-sulfur cluster assembly machinery found in bacteria and eukaryotes. Previously, IscA was characterized as an alternative iron-sulfur cluster assembly scaffold, as purified IscA can host transient iron-sulfur clusters. However, recent studies indicated that IscA is an iron-binding protein that can provide iron for the iron-sulfur cluster assembly in a proposed scaffold IscU (Ding H., Clark, R. J., and Ding, B. (2004) J. Biol. Chem. 279, 37499-37504). To further elucidate the roles of IscA in the biogenesis of iron-sulfur clusters, we reevaluate the iron binding activity of IscA under physiologically relevant conditions. The results indicate that in the presence of the thioredoxin reductase system, Escherichia coli IscA binds iron with an iron association constant of 2.0 x 10(19) M(-1) in vitro. Whereas all three components (thioredoxin 1, thioredoxin reductase and NADPH) in the thioredoxin reductase system are essential for mediating the iron binding in IscA, only catalytic amounts of thioredoxin 1 and thioredoxin reductase are required. In contrast, IscU fails to bind iron in the presence of the thioredoxin reductase system, suggesting that the iron binding in IscA is specific. Nevertheless, the thioredoxin reductase system can promote the iron-sulfur cluster assembly in IscU in the presence of the iron-loaded IscA, cysteine desulfurase (IscS), and L-cysteine, demonstrating a physiologically relevant system for the biogenesis of iron-sulfur clusters. The results provide additional evidence for the hypothesis that IscA is capable of recruiting intracellular "free" iron and delivering the iron for the iron-sulfur cluster assembly in IscU.
Collapse
Affiliation(s)
- Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | |
Collapse
|
43
|
Abstract
Iron-sulfur [Fe-S] clusters are ubiquitous and evolutionary ancient prosthetic groups that are required to sustain fundamental life processes. Owing to their remarkable structural plasticity and versatile chemical/electronic features [Fe-S] clusters participate in electron transfer, substrate binding/activation, iron/sulfur storage, regulation of gene expression, and enzyme activity. Formation of intracellular [Fe-S] clusters does not occur spontaneously but requires a complex biosynthetic machinery. Three different types of [Fe-S] cluster biosynthetic systems have been discovered, and all of them are mechanistically unified by the requirement for a cysteine desulfurase and the participation of an [Fe-S] cluster scaffolding protein. Important mechanistic questions related to [Fe-S] cluster biosynthesis involve the molecular details of how [Fe-S] clusters are assembled on scaffold proteins, how [Fe-S] clusters are transferred from scaffolds to target proteins, how various accessory proteins participate in [Fe-S] protein maturation, and how the biosynthetic process is regulated.
Collapse
Affiliation(s)
- Deborah C Johnson
- Department of Biochemistry, Virginia Polytechnic Institute, Blacksburg, Virginia 24061, USA.
| | | | | | | |
Collapse
|
44
|
Abdel-Ghany SE, Ye H, Garifullina GF, Zhang L, Pilon-Smits EAH, Pilon M. Iron-sulfur cluster biogenesis in chloroplasts. Involvement of the scaffold protein CpIscA. PLANT PHYSIOLOGY 2005; 138:161-72. [PMID: 15888686 PMCID: PMC1104172 DOI: 10.1104/pp.104.058602] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The chloroplast contains many iron (Fe)-sulfur (S) proteins for the processes of photosynthesis and nitrogen and S assimilation. Although isolated chloroplasts are known to be able to synthesize their own Fe-S clusters, the machinery involved is largely unknown. Recently, a cysteine desulfurase was reported in Arabidopsis (Arabidopsis thaliana; AtCpNifS) that likely provides the S for Fe-S clusters. Here, we describe an additional putative component of the plastid Fe-S cluster assembly machinery in Arabidopsis: CpIscA, which has homology to bacterial IscA and SufA proteins that have a scaffold function during Fe-S cluster formation. CpIscA mRNA was shown to be expressed in all tissues tested, with higher expression level in green, photosynthetic tissues. The plastid localization of CpIscA was confirmed by green fluorescent protein fusions, in vitro import, and immunoblotting experiments. CpIscA was cloned and purified after expression in Escherichia coli. Addition of CpIscA significantly enhanced CpNifS-mediated in vitro reconstitution of the 2Fe-2S cluster in apo-ferredoxin. During incubation with CpNifS in a reconstitution mix, CpIscA was shown to acquire a transient Fe-S cluster. The Fe-S cluster could subsequently be transferred by CpIscA to apo-ferredoxin. We propose that the CpIscA protein serves as a scaffold in chloroplast Fe-S cluster assembly.
Collapse
Affiliation(s)
- Salah E Abdel-Ghany
- Biology Department, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | |
Collapse
|
45
|
Rodriguez JA, Abreu IA. Chemical Activity of Iron in [2Fe-2S]-Protein Centers and FeS2(100) Surfaces. J Phys Chem B 2005; 109:2754-62. [PMID: 16851284 DOI: 10.1021/jp0405355] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron atoms bonded to sulfur play an important role in proteins, heterogeneous catalysts, and gas sensors. First-principles density functional calculations were used to investigate the structure and chemical activity of a unique [2Fe-2S] center in the split-Soret cytochrome c (Ssc) from Desulfovibrio desulfuricans. In agreement with a previously proposed structural model [Abreu et al., J. Biol. Inorg. Chem. 2003, 8, 360], it is found that the [2Fe-2S] cluster is located in a surface pocket of the Ssc and bonded to only three cysteines. The [2Fe-2S] center in the Ssc is nonplanar and somewhat distorted with respect to canonical [2Fe-2S] centers seen in proteins where the iron-sulfur unit is bonded to four cysteines. In the Ssc, the lack of one Fe-cysteine bond is partially compensated by the separation between the cysteines that minimizes electrostatic repulsion among these ligands. The unique structure of the [2Fe-2S] center in the Ssc makes the center more chemically active than canonical [2Fe-2S] centers in proteins, (RS)(4)[2Fe-2S] inorganic complexes, and an FeS2(100) surface. A [2Fe-2S] center in the Ssc interacts efficiently with electron acceptors (O2, NO, CO) and poorly with a Lewis base such as H2O. The interaction with molecular oxygen is so strong that eventually oxidatively destroys the [2Fe-2S] unit. The bonding energy of the ligands to the [2Fe-2S] centers and FeS2(100) surface increases following the sequence: H2O << CO < NO < O2. The higher the electron affinity of the ligand, the larger its bonding energy. A relatively large positive charge on the Fe cations in FeS2(100) makes this sulfide surface less reactive toward O2, CO, and NO than the [2Fe-2S] centers in proteins and inorganic complexes.
Collapse
Affiliation(s)
- José A Rodriguez
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973-5000, USA.
| | | |
Collapse
|
46
|
Ding H, Clark RJ, Ding B. IscA Mediates Iron Delivery for Assembly of Iron-Sulfur Clusters in IscU under the Limited Accessible Free Iron Conditions. J Biol Chem 2004; 279:37499-504. [PMID: 15247288 DOI: 10.1074/jbc.m404533200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence suggests that IscS, a cysteine desulfurase, provides sulfur for assembly of transient iron-sulfur clusters in IscU. IscU appears to act as a scaffold and eventually transfers the assembled clusters to target proteins. However, the iron donor for the iron-sulfur cluster assembly largely remains elusive. Here we find that Escherichia coli IscU fails to assemble iron-sulfur clusters when the accessible "free" iron in solution is limited by an iron chelator sodium citrate. Remarkably, IscA, an iron-sulfur cluster assembly protein with an iron association constant of 3.0 x 10(19) m(-1), is able to overcome the iron limitation due to sodium citrate and deliver iron for the IscS-mediated iron-sulfur cluster assembly in IscU. Substitution of the invariant cysteine residues Cys-99 or Cys-101 in IscA with serine completely abolishes the iron binding activity of the protein. The IscA mutants that fail to bind iron are unable to mediate iron delivery for the iron-sulfur cluster assembly in IscU under the limited accessible "free" iron conditions. The results suggest that IscA is capable of recruiting intracellular iron and providing iron for the iron-sulfur cluster assembly in IscU in cells in which the accessible "free" iron content is probably restricted.
Collapse
Affiliation(s)
- Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | |
Collapse
|
47
|
Ollagnier-de-Choudens S, Sanakis Y, Fontecave M. SufA/IscA: reactivity studies of a class of scaffold proteins involved in [Fe-S] cluster assembly. J Biol Inorg Chem 2004; 9:828-38. [PMID: 15278785 DOI: 10.1007/s00775-004-0581-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 07/06/2004] [Indexed: 10/26/2022]
Abstract
IscA/SufA proteins belong to complex protein machineries which are involved in iron-sulfur cluster biosynthesis. They are defined as scaffold proteins from which preassembled clusters are transferred to target apoproteins. The experiments described here demonstrate that the transfer reaction proceeds in two observable steps: a first fast one leading to a protein-protein complex between the cluster donor (SufA/IscA) and the acceptor (biotin synthase), and a slow one consisting of cluster transfer leading to the apoform of the scaffold protein and the holoform of the target protein. Mutation of cysteines in the acceptor protein specifically inhibits the second step of the reaction, showing that these cysteines are involved in the cluster transfer mechanism but not in complex formation. No cluster transfer from IscA to IscU, another scaffold of the isc operon, could be observed, whereas IscU was shown to be an efficient cluster source for cluster assembly in IscA. Implications of these results are discussed.
Collapse
Affiliation(s)
- S Ollagnier-de-Choudens
- Laboratoire de Chimie et Biochimie des Centres Rédox Biologiques, DRDC-CB, CEA/CNRS/Université Joseph Fourier, UMR 5047, 17 Avenue des Martyrs, 38054 Grenoble Cedex 09, France
| | | | | |
Collapse
|
48
|
Ding H, Clark RJ. Characterization of iron binding in IscA, an ancient iron-sulphur cluster assembly protein. Biochem J 2004; 379:433-40. [PMID: 14720122 PMCID: PMC1224081 DOI: 10.1042/bj20031702] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 12/19/2003] [Accepted: 01/14/2004] [Indexed: 11/17/2022]
Abstract
Iron-sulphur clusters are one of the most common types of redox centre in biology. At least six proteins (IscS, IscU, IscA, HscB, HscA and ferredoxin) have been identified as being essential for the biogenesis of iron-sulphur proteins in bacteria. It has been shown that IscS is a cysteine desulphurase that provides sulphur for iron-sulphur clusters, and that IscU is a scaffold for the IscS-mediated assembly of iron-sulphur clusters. The iron donor for iron-sulphur clusters, however, remains elusive. Here we show that IscA is an iron binding protein with an apparent iron association constant of 3.0x10(19) M(-1), and that iron-loaded IscA can provide iron for the assembly of transient iron-sulphur clusters in IscU in the presence of IscS and L-cysteine in vitro. The results suggest that IscA is capable of recruiting intracellular iron and delivering iron for iron-sulphur clusters in proteins.
Collapse
Affiliation(s)
- Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
49
|
Affiliation(s)
- Jason Kuchar
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824-4320, USA
| | | |
Collapse
|
50
|
Higgins CL, Wittung-Stafshede P. Formation of linear three-iron clusters in Aquifex aeolicus two-iron ferredoxins: effect of protein-unfolding speed. Arch Biochem Biophys 2004; 427:154-63. [PMID: 15196989 DOI: 10.1016/j.abb.2004.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 04/22/2004] [Indexed: 10/26/2022]
Abstract
The presence of a linear [3Fe-4S] cluster in a protein was first observed in beef-heart aconitase. Here, we report the formation of linear [3Fe-4S] clusters upon guanidine hydrochloride (GuHCl)-induced unfolding of Aquifex aeolicus [2Fe-2S] ferredoxins (Fd) (AaeFd1, AaeFd4, and AaeFd5) at alkaline conditions (pH 10, 20 degrees C). We find the mechanism of linear [3Fe-4S] cluster formation to depend critically on the speed of polypeptide unfolding. In similarity to seven-iron Fds, polypeptide unfolding determines the rate by which linear [3Fe-4S] clusters form in AaeFd4 and AaeFd5. In contrast, in a disulfide-lacking variant of AaeFd1, which unfolds faster than AaeFd4 and AaeFd5, the polypeptides unfold first and the majority of clusters decompose. Next, unfolded polypeptides retaining intact clusters scavenge iron and sulfur to form linear [3Fe-4S] clusters in a bimolecular reaction. Wild-type AaeFd1 unfolds slower than the speed of linear-cluster decomposition, and the linear species is never populated. Linear [3Fe-4S] clusters may be intermediates during folding of iron-sulfur proteins.
Collapse
|