1
|
Alvarez-Hernandez JL, Salamatian AA, Sopchak AE, Bren KL. Hydrogen evolution catalysis by a cobalt porphyrin peptide: A proposed role for porphyrin propionic acid groups. J Inorg Biochem 2023; 249:112390. [PMID: 37801884 DOI: 10.1016/j.jinorgbio.2023.112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
Cobalt microperoxidase-11 (CoMP11-Ac) is a cobalt porphyrin-peptide catalyst for hydrogen (H2) evolution from water. Herein, we assess electrocatalytic activity of CoMP11-Ac from pH 1.0-10.0. This catalyst remains intact and active under highly acidic conditions (pH 1.0) that are desirable for maximizing H2 evolution activity. Analysis of electrochemical data indicate that H2 evolution takes place by two pH-dependent mechanisms. At pH < 4.3, a proton transfer mechanism involving the propionic acid groups of the porphyrin is proposed, decreasing the catalytic overpotential by 280 mV.
Collapse
Affiliation(s)
| | - Alison A Salamatian
- Department of Chemistry, University of Rochester. Rochester, NY 14627-0216, United States.
| | - Andrew E Sopchak
- Department of Chemistry, University of Rochester. Rochester, NY 14627-0216, United States.
| | - Kara L Bren
- Department of Chemistry, University of Rochester. Rochester, NY 14627-0216, United States.
| |
Collapse
|
2
|
Influence of heme c attachment on heme conformation and potential. J Biol Inorg Chem 2018; 23:1073-1083. [PMID: 30143872 DOI: 10.1007/s00775-018-1603-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
Heme c is characterized by its covalent attachment to a polypeptide. The attachment is typically to a CXXCH motif in which the two Cys form thioether bonds with the heme, "X" can be any amino acid other than Cys, and the His serves as a heme axial ligand. Some cytochromes c, however, contain heme attachment motifs with three or four intervening residues in a CX3CH or CX4CH motif. Here, the impacts of these variations in the heme attachment motif on heme ruffling and electronic structure are investigated by spectroscopically characterizing CX3CH and CX4CH variants of Hydrogenobacter thermophilus cytochrome c552. In addition, a novel CXCH variant is studied. 1H and 13C NMR, EPR, and resonance Raman spectra of the protein variants are analyzed to deduce the extent of ruffling using previously reported relationships between these spectral data and heme ruffling. In addition, the reduction potentials of these protein variants are measured using protein film voltammetry. The CXCH and CX4CH variants are found to have enhanced heme ruffling and lower reduction potentials. Implications of these results for the use of these noncanonical motifs in nature, and for the engineering of novel heme peptide structures, are discussed.
Collapse
|
3
|
He C, Ogata H, Lubitz W. Elucidation of the heme active site electronic structure affecting the unprecedented nitrite dismutase activity of the ferriheme b proteins, the nitrophorins. Chem Sci 2016; 7:5332-5340. [PMID: 30155185 PMCID: PMC6020753 DOI: 10.1039/c6sc01019a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/23/2016] [Indexed: 12/14/2022] Open
Abstract
Nitrophorins (NPs) catalyze the nitrite dismutation reaction that is unprecedented in ferriheme proteins. Despite progress in studying the reaction mechanism, fundamental issues regarding the correlation of the structural features with the nitrite dismutase activity of NPs remain elusive. On the other hand, it has been shown that the nitrite complexes of NPs are unique among those of the ferriheme proteins since some of their electron paramagnetic resonance (EPR) spectra show significant highly anisotropic low spin (HALS) signals with large gmax values over 3.2. The origin of HALS signals in ferriheme proteins or models is not well understood, especially in cases where axial ligands other than histidine are present. In this study several mutations were introduced in NP4. The related nitrite coordination and dismutation reaction were investigated. As a result, the EPR spectra of the NP-nitrite complexes were found to be tightly correlated with the extent of heme ruffling and protonation state of the proximal His ligand-dictated by an extended H-bonding network at the heme active site. Furthermore, it is established that the two factors are essential in determining the nitrite dismutase activity of NPs. These results may provide a valuable guide for identifying or designing novel heme proteins with similar activity.
Collapse
Affiliation(s)
- Chunmao He
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , D-45470 , Mülheim an der Ruhr , Germany . ;
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , D-45470 , Mülheim an der Ruhr , Germany . ;
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , D-45470 , Mülheim an der Ruhr , Germany . ;
| |
Collapse
|
4
|
Berry RE, Muthu D, Yang F, Walker FA. NMR studies of the dynamics of high-spin nitrophorins: comparative studies of NP4 and NP2 at close to physiological pH. Biochemistry 2015; 54:221-39. [PMID: 25486224 PMCID: PMC4303294 DOI: 10.1021/bi501305a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The
β-barrel nitrophorin (NP) heme proteins are found in
the saliva of the blood-sucking insect Rhodnius prolixus, which synthesizes and stores nitric oxide (NO) in the salivary
glands. NO is bound to iron of the NPs and is released by dilution
and an increase in pH when the insect spits its saliva into the tissues
of a victim, to aid in obtaining a blood meal. In the adult insect,
there are four nitrophorins, NP1–NP4, which have sequence similarities
in two pairs, NP1 and NP4 (90% identical) and NP2 and NP3 (80% identical).
The available crystal structures of NP4 have been used to propose
that pH-dependent changes in the conformation of two loops between
adjacent β-strands at the front opening of the protein, the
A–B and G–H loops, determine the rate of NO release.
At pH 7.3, NP4 releases NO 17 times faster than NP2 does. In this
work, the aqua complexes of NP4 and NP2 have been investigated by
nuclear magnetic resonance (NMR) relaxation measurements to probe
the pico- to nanosecond and micro- to millisecond time scale motions
at two pH values, 6.5 and 7.3. It is found that NP4-OH2 is fairly rigid and only residues in the loop regions show dynamics
at pH 6.5; at pH 7.3, much more dynamics of the loops and most of
the β-strands are observed while the α-helices remain
fairly rigid. In comparison, NP2-OH2 shows much less dynamics,
albeit somewhat more than that of the previously reported NP2-NO complex
[Muthu, D., Berry, R. E., Zhang, H., and Walker, F. A. (2013) Biochemistry 52, 7910–7925]. The reasons for this
major difference between NP4 and NP2 are discussed.
Collapse
Affiliation(s)
- Robert E Berry
- Department of Chemistry and Biochemistry, The University of Arizona , 1306 East University Boulevard, Tucson, Arizona 85721-0041, United States
| | | | | | | |
Collapse
|
5
|
Berry RE, Yang F, Shokhireva TK, Amoia AM, Garrett S, Goren AM, Korte SR, Zhang H, Weichsel A, Montfort WR, Walker FA. Dimerization of nitrophorin 4 at low pH and comparison to the K1A mutant of nitrophorin 1. Biochemistry 2015; 54:208-20. [PMID: 25489673 PMCID: PMC4303305 DOI: 10.1021/bi5013047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/08/2014] [Indexed: 11/28/2022]
Abstract
Nitrophorin 4, one of the four NO-carrying heme proteins from the salivary glands of Rhodnius prolixus, forms a homodimer at pH 5.0 with a Kd of ∼8 μM. This dimer begins to dissociate at pH 5.5 and is completely dissociated to monomer at pH 7.3, even at 3.7 mM. The dimer is significantly stabilized by binding NO to the heme and at pH 7.3 would require dilution to well below 0.2 mM to completely dissociate the NP4-NO homodimer. The primary techniques used for investigating the homodimer and the monomer-dimer equilibrium were size-exclusion fast protein liquid chromatography at pH 5.0 and (1)H{(15)N} heteronuclear single-quantum coherence spectroscopy as a function of pH and concentration. Preparation of site-directed mutants of NP4 (A1K, D30A, D30N, V36A/D129A/L130A, K38A, R39A, K125A, K125E, D132A, L133V, and K38Q/R39Q/K125Q) showed that the N-terminus, D30, D129, D132, at least one heme propionate, and, by association, likely also E32 and D35 are involved in the dimerization. The "closed loop" form of the A-B and G-H flexible loops of monomeric NP4, which predominates in crystal structures of the monomeric protein reported at pH 5.6 but not at pH 7.5 and which involves all of the residues listed above except D132, is required for dimer formation. Wild-type NP1 does not form a homodimer, but NP1(K1A) and native N-terminal NP1 form dimers in the presence of NO. The homodimer of NP1, however, is considerably less stable than that of NP4 in the absence of NO. This suggests that additional aspartate or glutamate residues present in the C-terminal region of NP4, but not NP1, are also involved in stabilizing the dimer.
Collapse
Affiliation(s)
| | - Fei Yang
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Tatiana K. Shokhireva
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Angela M. Amoia
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Sarah
A. Garrett
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Allena M. Goren
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Stephanie R. Korte
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Hongjun Zhang
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Andrzej Weichsel
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - William R. Montfort
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - F. Ann Walker
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| |
Collapse
|
6
|
NMR investigations of nitrophorin 2 belt side chain effects on heme orientation and seating of native N-terminus NP2 and NP2(D1A). J Biol Inorg Chem 2013; 19:577-93. [PMID: 24292244 DOI: 10.1007/s00775-013-1063-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/31/2013] [Indexed: 12/21/2022]
Abstract
Nitrophorin 2 (NP2), one of the four NO-storing and NO-releasing proteins found in the saliva of the blood-sucking bug Rhodnius prolixus, has a more ruffled heme and a high preference for a particular heme orientation (B) compared with nitrophorin 1 and nitrophorin 4, which show not a preference (A to B ratio of approximately 1:1), suggesting that it fits more tightly in the β-barrel protein. In this work we have prepared a series of "belt" mutants of NP2(D1A) and (ΔM0)NP2 aimed at reducing the size of aromatic or other residues that surround the heme, and investigated them as the high-spin aqua and low-spin N-methylimidazole complexes. The belt mutants included Y38A, Y38F, F42A, F66A, Y85A, Y85F, Y104A, I120T, and a triple mutant of NP2(D1A), the F42L, L106F, I120T mutant. Although I120 has been mainly considered to be a distal pocket residue, CδH3 of I120 lies directly above the heme 3-methyl, at 2.67 Å, of heme orientation B, or the 2-vinyl of A, and it thus plays a role as a belt mutant, a role that turns out to be extremely important in creating the strong favoring of the B heme orientation [A to B ratio of 1:14 for NP2(D1A) or 1:12 for (ΔM0)NP2]. The results show that the 1D (1)H NMR spectra of the high-spin forms are quite sensitive to changes in the shape of the heme binding cavity. The single mutation I120T eliminates the favorability of the B heme orientation by producing a heme A to B orientation ratio of 1:1, whereas the single mutation F42A reverses the heme orientation from an A to B ratio of 1:14 seen for NP2(D1A) to 10:1 for NP2(D1A,F42A). The most extreme ratio was found for the triple mutant of NP2(D1A), NP2(D1A,F42L,L105F,I120T), in which the A to B ratio is approximately 25:1, a ΔG change of about -3.5 kcal/mol or -14.1 kJ/mol with respect to NP2(D1A). The seating of the heme is modified as well in that mutant and in several others, by rotations of the heme by up to 4° from the seating observed in NP2(D1A), in order to relieve steric interactions between a vinyl β-carbon and a protein side chain, or to fill a cavity created by replacing a large protein side chain by a much smaller one; the latter was observed for all tyrosine to alanine mutants. These relatively small changes in seating have a measurable effect on the NMR spectra of the mutants, but are indeed minor in terms of overall seating and reactivity of the NP2(D1A) protein. The (1)H NMR resonances of the hemin substituents of the low-spin N-methylimidazole complexes of NP2(D1A,F42L,L105F,I120T) as well as NP2(D1A,I120T), NP2(D1A,Y104A), and NP2(D1A,F42A) have been assigned using natural abundance (1)H{(13)C} heteronuclear multiple quantum correlation and (1)H-(1)H nuclear Overhauser effect spectroscopy spectra.
Collapse
|
7
|
Kleingardner JG, Bowman SEJ, Bren KL. The influence of heme ruffling on spin densities in ferricytochromes c probed by heme core 13C NMR. Inorg Chem 2013; 52:12933-46. [PMID: 24187968 DOI: 10.1021/ic401250d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The heme in cytochromes c undergoes a conserved out-of-plane distortion known as ruffling. For cytochromes c from the bacteria Hydrogenobacter thermophilus and Pseudomonas aeruginosa , NMR and EPR spectra have been shown to be sensitive to the extent of heme ruffling and to provide insights into the effect of ruffling on the electronic structure. Through the use of mutants of each of these cytochromes that differ in the amount of heme ruffling, NMR characterization of the low-spin (S = ½) ferric proteins has confirmed and refined the developing understanding of how ruffling influences the spin distribution on heme. The chemical shifts of the core heme carbons were obtained through site-specific labeling of the heme via biosynthetic incorporation of (13)C-labeled 5-aminolevulinic acid derivatives. Analysis of the contact shifts of these core heme carbons allowed Fermi contact spin densities to be estimated and changes upon ruffling to be evaluated. The results allow a deconvolution of the contributions to heme hyperfine shifts and a test of the influence of heme ruffling on the electronic structure and hyperfine shifts. The data indicate that as heme ruffling increases, the spin densities on the β-pyrrole carbons decrease while the spin densities on the α-pyrrole carbons and meso carbons increase. Furthermore, increased ruffling is associated with stronger bonding to the heme axial His ligand.
Collapse
Affiliation(s)
- Jesse G Kleingardner
- Department of Chemistry, University of Rochester , Rochester, New York 14627-0216, United States
| | | | | |
Collapse
|
8
|
Berry RE, Muthu D, Shokhireva TK, Garrett SA, Zhang H, Walker FA. Native N-terminus nitrophorin 2 from the kissing bug: similarities to and differences from NP2(D1A). Chem Biodivers 2013; 9:1739-55. [PMID: 22976966 DOI: 10.1002/cbdv.201100449] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The first amino acid of mature native nitrophorin 2 is aspartic acid, and when expressed in E. coli, the wild-type gene of the mature protein retains the methionine-0, which is produced by translation of the start codon. This form of NP2, (M0)NP2, has been found to have different properties from its D1A mutant, for which the Met0 is cleaved by the methionine aminopeptidase of E. coli (R. E. Berry, T. K. Shokhireva, I. Filippov, M. N. Shokhirev, H. Zhang, F. A. Walker, Biochemistry 2007, 46, 6830). Native N-terminus nitrophorin 2 ((ΔM0)NP2) has been prepared by employing periplasmic expression of NP2 in E. coli using the pelB leader sequence from Erwinia carotovora, which is present in the pET-26b expression plasmid (Novagen). This paper details the similarities and differences between the three different N-terminal forms of nitrophorin 2, (M0)NP2, NP2(D1A), and (ΔM0)NP2. It is found that the NMR spectra of high- and low-spin (ΔM0)NP2 are essentially identical to those of NP2(D1A), but the rate and equilibrium constants for histamine and NO dissociation/association of the two are different.
Collapse
Affiliation(s)
- Robert E Berry
- Department of Chemistry and Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, AZ 85721-0041, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Assignment of the 1H NMR resonances of protein residues in close proximity to the heme of the nitrophorins: similarities and differences among the four proteins from the saliva of the adult blood-sucking insect Rhodnius prolixus. J Biol Inorg Chem 2012; 17:911-26. [PMID: 22711329 DOI: 10.1007/s00775-012-0908-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
Abstract
The nuclear Overhauser effects (NOEs) observed between heme substituent protons and a small number of nearby protein side chain protons in the water-elimination Fourier transform NOE spectroscopy (WEFT-NOESY) spectra of high- and low-spin wild-type nitrophorin (NP) 2 and its ligand complexes have been analyzed and compared with those observed for the same complexes of wild-type NP3. These assignments were made on naturally abundant isotope samples, with the most useful protein side chains being those of Ile120, Leu122, and Leu132 for NP2 and NP3, and Thr121, Leu123, and Leu133 for NP1 and NP4. It is found that the NOEs observed are identical, with extremely similar protein side chain proton chemical shifts. This is strong evidence that the structure of NP3, for which no X-ray crystal structures are available, is essentially identical to that of NP2, at least near the heme binding pocket. Similarly, the NOEs observed between heme substituents and protein side chains for NP1 and NP4 also indicate that the structures of the protein having both A and B heme orientations are very similar to each other, as well as to the proteins with major B heme orientation of NP2 and NP3. These A and B connectivities can be seen, even though the two heme orientations have similar populations in NP1 and NP4, which complicates the analysis of the NOESY spectra. The histamine complex of wild-type NP2 shows significant shifts of the Leu132 side chain protons relative to all other ligand complexes of NP1-NP4 because of the perturbation of the structure near Leu132 caused by the histamine's side chain ammonium hydrogen bond to the Asp29 side chain carboxylate.
Collapse
|
10
|
Moeser B, Janoschka A, Wolny JA, Paulsen H, Filippov I, Berry RE, Zhang H, Chumakov AI, Walker FA, Schünemann V. Nuclear inelastic scattering and Mössbauer spectroscopy as local probes for ligand binding modes and electronic properties in proteins: vibrational behavior of a ferriheme center inside a β-barrel protein. J Am Chem Soc 2012; 134:4216-28. [PMID: 22295945 DOI: 10.1021/ja210067t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, we present a study of the influence of the protein matrix on its ability to tune the binding of small ligands such as NO, cyanide (CN(-)), and histamine to the ferric heme iron center in the NO-storage and -transport protein Nitrophorin 2 (NP2) from the salivary glands of the blood-sucking insect Rhodnius prolixus. Conventional Mössbauer spectroscopy shows a diamagnetic ground state of the NP2-NO complex and Type I and II electronic ground states of the NP2-CN(-) and NP2-histamine complex, respectively. The change in the vibrational signature of the protein upon ligand binding has been monitored by Nuclear Inelastic Scattering (NIS), also called Nuclear Resonant Vibrational Spectroscopy (NRVS). The NIS data thus obtained have also been calculated by quantum mechanical (QM) density functional theory (DFT) coupled with molecular mechanics (MM) methods. The calculations presented here show that the heme ruffling in NP2 is a consequence of the interaction with the protein matrix. Structure optimizations of the heme and its ligands with DFT retain the characteristic saddling and ruffling only if the protein matrix is taken into account. Furthermore, simulations of the NIS data by QM/MM calculations suggest that the pH dependence of the binding of NO, but not of CN(-) and histamine, might be a consequence of the protonation state of the heme carboxyls.
Collapse
Affiliation(s)
- Beate Moeser
- Technische Universität Kaiserslautern, Fachbereich Physik, Erwin-Schrödinger-Str. 56, D-67663 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Leghemoglobin green derivatives with nitrated hemes evidence production of highly reactive nitrogen species during aging of legume nodules. Proc Natl Acad Sci U S A 2012; 109:2660-5. [PMID: 22308405 DOI: 10.1073/pnas.1116559109] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Globins constitute a superfamily of proteins widespread in all kingdoms of life, where they fulfill multiple functions, such as efficient O(2) transport and modulation of nitric oxide bioactivity. In plants, the most abundant Hbs are the symbiotic leghemoglobins (Lbs) that scavenge O(2) and facilitate its diffusion to the N(2)-fixing bacteroids in nodules. The biosynthesis of Lbs during nodule formation has been studied in detail, whereas little is known about the green derivatives of Lbs generated during nodule senescence. Here we characterize modified forms of Lbs, termed Lba(m), Lbc(m), and Lbd(m), of soybean nodules. These green Lbs have identical globins to the parent red Lbs but their hemes are nitrated. By combining UV-visible, MS, NMR, and resonance Raman spectroscopies with reconstitution experiments of the apoprotein with protoheme or mesoheme, we show that the nitro group is on the 4-vinyl. In vitro nitration of Lba with excess nitrite produced several isomers of nitrated heme, one of which is identical to those found in vivo. The use of antioxidants, metal chelators, and heme ligands reveals that nitration is contingent upon the binding of nitrite to heme Fe, and that the reactive nitrogen species involved derives from nitrous acid and is most probably the nitronium cation. The identification of these green Lbs provides conclusive evidence that highly oxidizing and nitrating species are produced in nodules leading to nitrosative stress. These findings are consistent with a previous report showing that the modified Lbs are more abundant in senescing nodules and have aberrant O(2) binding.
Collapse
|
12
|
Can M, Zoppellaro G, Andersson KK, Bren KL. Modulation of ligand-field parameters by heme ruffling in cytochromes c revealed by EPR spectroscopy. Inorg Chem 2011; 50:12018-24. [PMID: 22044358 DOI: 10.1021/ic201479q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron paramagnetic resonance (EPR) spectra of variants of Hydrogenobacter thermophilus cytochrome c(552) (Ht c-552) and Pseudomonas aeruginosa cytochrome c(551) (Pa c-551) are analyzed to determine the effect of heme ruffling on ligand-field parameters. Mutations introduced at positions 13 and 22 in Ht c-552 were previously demonstrated to influence hydrogen bonding in the proximal heme pocket and to tune reduction potential (E(m)) over a range of 80 mV [Michel, L. V.; Ye, T.; Bowman, S. E. J.; Levin, B. D.; Hahn, M. A.; Russell, B. S.; Elliott, S. J.; Bren, K. L. Biochemistry 2007, 46, 11753-11760]. These mutations are shown here to also increase heme ruffling as E(m) decreases. The primary effect on electronic structure of increasing heme ruffling is found to be a decrease in the axial ligand-field term Δ/λ, which is proposed to arise from an increase in the energy of the d(xy) orbital. Mutations at position 7, previously demonstrated to influence heme ruffling in Pa c-551 and Ht c-552, are utilized to test this correlation between molecular and electronic structure. In conclusion, the structure of the proximal heme pocket of cytochromes c is shown to play a role in determining heme conformation and electronic structure.
Collapse
Affiliation(s)
- Mehmet Can
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, USA
| | | | | | | |
Collapse
|
13
|
NMR studies of nitrophorin distal pocket side chain effects on the heme orientation and seating of NP2 as compared to NP1. J Inorg Biochem 2011; 105:1238-57. [PMID: 21767470 DOI: 10.1016/j.jinorgbio.2011.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/03/2011] [Accepted: 06/08/2011] [Indexed: 11/23/2022]
Abstract
The nitrophorins (NP) of the adult blood-sucking insect Rhodnius prolixus fall into two pairs based on sequence identity (NP1,4 (90%) and NP2,3 (79%)), which differ significantly in the size of side chains of residues which contact the heme. These residues include those in the distal pocket of NP2 (I120) and NP1 (T121) and the "belt" that surrounds the heme of NP2 (S40, F42), and NP1(A42, L44). To determine the importance of these residues and others conserved or very similar for the two pairs, including L122(123), L132(133), appropriate mutants of NP2 and NP1 have been prepared and studied by (1)H NMR spectroscopy. Wild-type NP2 has heme orientation ratio (A:B) of 1:8 at equilibrium, while wild-type NP1 has A:B ~1:1 at equilibrium. Another difference between NP2 and NP1 is in the heme seating with regard to His57(59). It is found that among the distal pocket residues investigated, the residue most responsible for heme orientation and seating is I120(T121). F42(L44) and L106(F107) may also be important, but must be investigated in greater detail.
Collapse
|
14
|
Yang F, Shokhireva TK, Walker FA. Linear correlation between 1H and 13C chemical shifts of ferriheme proteins and model ferrihemes. Inorg Chem 2011; 50:1176-83. [PMID: 21244013 DOI: 10.1021/ic1020274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The (1)H{(13)C} HMQC experiment at natural-abundance (13)C provides a very useful way of determining not only (1)H but also (13)C chemical shifts of most heme substituents, without isotopic labeling of the hemin. This is true both in model low-spin ferriheme complexes and in low-spin ferriheme proteins, even when the proton resonances are buried in the protein diamagnetic region, because the carbon shifts are much larger than the proton shifts. In addition, in many cases, the protohemin methyl cross peaks are fairly linearly related to each other, with the slope of the correlation, δ(C)/δ(H), being approximately -2.0 for most low-spin ferriheme proteins. The reasons why this should be the case, and when it is not, are discussed.
Collapse
Affiliation(s)
- Fei Yang
- Department of Chemistry and Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | | | | |
Collapse
|
15
|
Liptak MD, Wen X, Bren KL. NMR and DFT investigation of heme ruffling: functional implications for cytochrome c. J Am Chem Soc 2010; 132:9753-63. [PMID: 20572664 DOI: 10.1021/ja102098p] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Out-of-plane (OOP) deformations of the heme cofactor are found in numerous heme-containing proteins and the type of deformation tends to be conserved within functionally related classes of heme proteins. We demonstrate correlations between the heme ruffling OOP deformation and the (13)C and (1)H nuclear magnetic resonance (NMR) hyperfine shifts of heme aided by density functional theory (DFT) calculations. The degree of ruffling in the heme cofactor of Hydrogenobacter thermophilus cytochrome c(552) has been modified by a single amino acid mutation in the second coordination sphere of the cofactor. The (13)C and (1)H resonances of the cofactor have been assigned using one- and two-dimensional NMR spectroscopy aided by selective (13)C-enrichment of the heme. DFT has been used to predict the NMR hyperfine shifts and electron paramagnetic resonance (EPR) g-tensor at several points along the ruffling deformation coordinate. The DFT-predicted NMR and EPR parameters agree with the experimental observations, confirming that an accurate theoretical model of the electronic structure and its response to ruffling has been established. As the degree of ruffling increases, the heme methyl (1)H resonances move upfield while the heme methyl and meso (13)C resonances move downfield. These changes are a consequence of altered overlap of the Fe 3d and porphyrin pi orbitals, which destabilizes all three occupied Fe 3d-based molecular orbitals and decreases the positive and negative spin density on the beta-pyrrole and meso carbons, respectively. Consequently, the heme ruffling deformation decreases the electronic coupling of the cofactor with external redox partners and lowers the reduction potential of heme.
Collapse
Affiliation(s)
- Matthew D Liptak
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, USA
| | | | | |
Collapse
|
16
|
Unprecedented Peroxidase-like Activity of Rhodnius prolixus Nitrophorin 2: Identification of the [FeIV═O Por•]+ and [FeIV═O Por](Tyr38•) Intermediates and Their Role(s) in Substrate Oxidation. Biochemistry 2010; 49:8857-72. [DOI: 10.1021/bi100499a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Bowman SEJ, Bren KL. Variation and analysis of second-sphere interactions and axial histidinate character in c-type cytochromes. Inorg Chem 2010; 49:7890-7. [PMID: 20666367 PMCID: PMC2933145 DOI: 10.1021/ic100899k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The electron-donating properties of the axial His ligand to heme iron in cytochromes c (cyts c) are found to be correlated with the midpoint reduction potential (E(m)) in variants of Hydrogenobacter thermophilus cytochrome c(552) (Ht cyt c(552)) in which mutations have been made in and near the Cys-X-X-Cys-His (CXXCH) heme-binding motif. To probe the strength of the His-Fe(III) interaction, we have measured (13)C nuclear magnetic resonance (NMR) chemical shifts for (13)CN(-) bound to heme iron trans to the axial His in Ht Fe(III) cyt c(552) variants. We observe a linear relationship between these (13)C chemical shifts and E(m), indicating that the His-Fe(III) bond strength correlates with E(m). To probe a conserved hydrogen bonding interaction between the axial His Hdelta1 and the backbone carbonyl of a Pro residue, we measured the pK(a) of the axial His Hdelta1 proton (pK(a(2))), which we propose to relate to the His-Fe(III) interaction, reduction potential, and local electrostatic effects. The observed linear relationship between the axial His (13)Cbeta chemical shift and E(m) is proposed to reflect histidinate (anionic) character of the ligand. A linear relationship also is seen between the average heme methyl (1)H chemical shift and E(m) which may reflect variation in axial His electron-donating properties or in the ruffling distortion of the heme plane. In summary, chemical shifts of the axial His and exogenous CN(-) bound trans to His are shown to be sensitive probes of the His-Fe(III) interaction in variants of Ht cyt c(552) and display trends that correlate with E(m).
Collapse
Affiliation(s)
- Sarah E. J. Bowman
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216
| |
Collapse
|
18
|
Xu J, Li L, Yin G, Li H, Du W. Ligand orientation of human neuroglobin obtained from solution NMR and molecular dynamics simulation as compared with X-ray crystallography. J Inorg Biochem 2009; 103:1693-701. [PMID: 19850349 DOI: 10.1016/j.jinorgbio.2009.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 09/17/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
Abstract
Neuroglobin, a new member of hemoprotein family, can reversibly bind oxygen and take part in many biological processes such as enzymatic reaction, signal transduction and the mitochondria function. Different from myoglobin and hemoglobin, it has a hexacoordinated heme environment, with histidyl imidazole of proximal His(96)(F8) and distal His(64)(E7) directly bound to the metal ion. In the present work, solution (1)H NMR spectroscopy was employed to investigate the electronic structure of heme center of wild-type met-human neuroglobin. The resonances of heme protons and key residues in the heme pocket were assigned. Two heme orientations resulting from a 180 degrees rotation about the alpha-gamma-meso axis with a population ratio about 2:1 were observed. Then the (1)H NMR chemical shifts of the ferriheme methyl groups were used to predict orientations of the axial ligand. The obtained axial ligand plane angle phi is consistent with that from the molecular dynamics simulation but not with those from the crystal data. Compared with mouse neuroglobin, the obtained average ligand orientation of human neuroglobin reflects the changeability of heme environment for the Ngb family.
Collapse
Affiliation(s)
- Jia Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | | | | | | | | |
Collapse
|
19
|
1H and 13C NMR spectroscopic studies of the ferriheme resonances of three low-spin complexes of wild-type nitrophorin 2 and nitrophorin 2(V24E) as a function of pH. J Biol Inorg Chem 2009; 14:1077-95. [PMID: 19517143 PMCID: PMC2847153 DOI: 10.1007/s00775-009-0551-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/24/2009] [Indexed: 11/19/2022]
Abstract
The ferriheme resonances of the low-spin (S = 1/2) complexes of wild-type (wt) nitrophorin 2 (NP2) and its heme pocket mutant NP2(V24E) with imidazole (ImH), histamine (Hm), and cyanide (CN−) as the sixth ligand have been investigated by NMR spectroscopy as a function of pH (4.0–7.5). For the three wt NP2 complexes, the ratio of the two possible heme orientational isomers, A and B, remains almost unchanged (ratio of A:B approximately 1:6 to 1:5) over this wide pH range. However, strong chemical exchange cross peaks appear in the nuclear Overhauser effect spectroscopy/exchange spectroscopy (NOESY/EXSY) spectra for the heme methyl resonances at low pH (pH* 4.0–5.5), which indicate chemical exchange between two species. We have shown these to be two different exogenous ImH or Hm orientations that are denoted B and B′, with the ImH plane nearly parallel and perpendicular to the ImH plane of the protein-provided His57, respectively. The wt NP2–CN complex also shows EXSY cross peaks due to chemical exchange, which is shown to be a result of interchange between two ruffling distortions of the heme. The same ruffling distortion interchange is also responsible for the ImH and Hm chemical exchange. For the three NP2(V24E) ligand complexes, no EXSY cross peaks are observed, but the A:B ratios change dramatically with pH. The fact that heme favors the A orientation highly for NP2(V24E) at low pH as compared with wt NP2 is believed to be due to the steric effect of the V24E mutation. The existence of the B′ species at lower pH for wt NP2 complexes and the increase in A heme orientation at lower pH for NP2(V24E) are believed to be a result of a change in structure near Glu53 when it is protonated at low pH. 1H{13C} heteronuclear multiple quantum coherence (HMQC) spectra are very helpful for the assignment of heme and nearby protein side chain resonances.
Collapse
|
20
|
Berry RE, Shokhirev MN, Ho AYW, Yang F, Shokhireva TK, Zhang H, Weichsel A, Montfort WR, Walker FA. Effect of mutation of carboxyl side-chain amino acids near the heme on the midpoint potentials and ligand binding constants of nitrophorin 2 and its NO, histamine, and imidazole complexes. J Am Chem Soc 2009; 131:2313-27. [PMID: 19175316 PMCID: PMC2647857 DOI: 10.1021/ja808105d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitrophorins (NPs) are a group of NO-carrying heme proteins found in the saliva of a blood-sucking insect from tropical Central and South America, Rhodnius prolixus, the "kissing bug". NO is kept stable for long periods of time by binding it as an axial ligand to a ferriheme center. The fact that the nitrophorins are stabilized as Fe(III)-NO proteins is a unique property because most heme proteins are readily autoreduced by excess NO and bind NO to the Fe(II) heme irreversibly (K(d)s in the picomolar range). In contrast, the nitrophorins, as Fe(III) heme centers, have K(d)s in the micromolar to nanomolar range and thus allow NO to dissociate upon dilution following injection into the tissues of the victim. This NO can cause vasodilation and thereby allow more blood to be transported to the site of the wound. We prepared 13 site-directed mutants of three major nitrophorins, NP2, NP1, and NP4, to investigate the stabilization of the ferric-NO heme center and preservation of reversible binding that facilitates these proteins' NO storage, transport, and release functions. Of the mutations in which Glu and/or Asp were replaced by Ala, most of these carboxyls show a significant role stabilizing Fe(III)-NO over Fe(II)-NO, with buried E53 of NP2 or E55 of NP1 and NP4 being the most important and partially buried D29 of NP2 or D30 of NP4 being second in importance. The pK(a)s of the carboxyl groups studied vary significantly but all are largely deprotonated at pH 7.5 except E124.
Collapse
Affiliation(s)
- Robert E. Berry
- Contribution from the Department of Chemistry and Biochemistry, The University of Arizona, PO Box 210041, Tucson, AZ 85721-0041
| | - Maxim N. Shokhirev
- Contribution from the Department of Chemistry and Biochemistry, The University of Arizona, PO Box 210041, Tucson, AZ 85721-0041
| | - Arthur Y. W. Ho
- Contribution from the Department of Chemistry and Biochemistry, The University of Arizona, PO Box 210041, Tucson, AZ 85721-0041
| | - Fei Yang
- Contribution from the Department of Chemistry and Biochemistry, The University of Arizona, PO Box 210041, Tucson, AZ 85721-0041
| | - Tatiana K. Shokhireva
- Contribution from the Department of Chemistry and Biochemistry, The University of Arizona, PO Box 210041, Tucson, AZ 85721-0041
| | - Hongjun Zhang
- Contribution from the Department of Chemistry and Biochemistry, The University of Arizona, PO Box 210041, Tucson, AZ 85721-0041
| | - Andrzej Weichsel
- Contribution from the Department of Chemistry and Biochemistry, The University of Arizona, PO Box 210041, Tucson, AZ 85721-0041
| | - William R. Montfort
- Contribution from the Department of Chemistry and Biochemistry, The University of Arizona, PO Box 210041, Tucson, AZ 85721-0041
| | - F. Ann Walker
- Contribution from the Department of Chemistry and Biochemistry, The University of Arizona, PO Box 210041, Tucson, AZ 85721-0041
| |
Collapse
|
21
|
Shokhireva TK, Berry RE, Zhang H, Shokhirev NV, Walker FA. Assignment of Ferriheme Resonances for High- and Low-Spin Forms of Nitrophorin 3 by H and C NMR Spectroscopy and Comparison to Nitrophorin 2: Heme Pocket Structural Similarities and Differences. Inorganica Chim Acta 2008; 361:925-940. [PMID: 19262680 PMCID: PMC2390817 DOI: 10.1016/j.ica.2007.05.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nitrophorin 3 (NP3) is the only one of the four major NO-binding heme proteins found in the saliva of the blood-sucking insect Rhodnius prolixus (also called the Kissing Bug) for which it has not been possible to obtain crystals of diffraction quality for structure determination by X-ray crystallography. Thus we have used NMR spectroscopy, mainly of the hyperfine-shifted ferriheme substituent resonances, to learn about the similarities and differences in the heme pocket and the iron active site of NP3 as compared to NP2, which has previously been well-characterized by both X-ray crystallography and NMR spectroscopy. Only one residue in the heme pocket differs between the two, F27 of NP2 is Y27 for NP3; in both cases this residue is expected to interact strongly with the 2-vinyl side chain of the B heme rotational isomer or the 4-vinyl of the A heme rotational isomer. Both the high-spin (S = 5/2) aquo complex, NP3-H(2)O, and the low-spin (S = 1/2) N-methylimidazole (NMeIm) complex of NP3 have been studied. It is found that the chemical shifts of the protons of both forms are similar to those of the corresponding NP2 complexes, but with minor differences that indicate a slightly different angle for the proximal histidine (H57) ligand plane. The B heme rotational isomer is preferred by both NP3 and NP2 in both spin states, but to a greater extent when phenylalanine is present at position 27 (A:B = 1:8 for NP2, 1:6 for NP3-Y27F, 1:4 for NP3, and 1:3 for NP2-F27Y). Careful analysis of the 5Me and 8Me shifts of the A and B isomers of the two high-spin nitrophorins leads to the conclusion that the heme environment for the two isomers differs in some way that cannot be explained at the present time. The kinetics of deprotonation of the high-spin complexes of NP2 and NP3 are very different, with NP2 giving well-resolved high-spin aquo and "low-spin" hydroxo proton NMR spectra until close to the end of the titration, while NP3 exhibits broadened (1)H NMR spectra indicative of an intermediate rate of exchange on the NMR timescale between the two forms throughout the titration. The heme methyl shifts of NP2-OH are similar in magnitude and spread to those of NP2-CN, while those of metmyoglobin-hydroxo complexes are much larger in magnitude but not spread. It is concluded that the hydroxo complex of NP2 is likely S = 1/2 with a mixed (d(XY))(2)(d(XZ),d(YZ))(3)/(d(xy))(1)(d(xz),d(yz))(4) electron configuration, while those of met-Mb-OH are likely S = 1/2,3/2 mixed spin systems.
Collapse
Affiliation(s)
- Tatiana Kh Shokhireva
- Contribution from the Department of Chemistry, The University of Arizona, Tucson, AZ 85721-0041
| | | | | | | | | |
Collapse
|
22
|
Shokhireva TK, Smith KM, Berry RE, Shokhirev NV, Balfour CA, Zhang H, Walker FA. Assignment of the ferriheme resonances of the high-spin forms of nitrophorins 1 and 4 by 1H NMR spectroscopy: comparison to structural data obtained from X-ray crystallography. Inorg Chem 2007; 46:170-8. [PMID: 17198425 PMCID: PMC2518634 DOI: 10.1021/ic061407t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we report the assignment of the majority of the ferriheme resonances of high-spin nitrophorins (NPs) 1 and 4 and compare them to those of NP2, published previously. It is found that the structures of the ferriheme complexes of NP1 and NP4, in terms of the orientation of the histidine imidazole ligand, can be described with good accuracy by NMR techniques and that the angle plot proposed previously for the high-spin form of the NPs (Shokhireva, T. Kh.; Shokhirev, N. V.; Walker, F. A. Biochemistry 2003, 42, 679-693) describes the angle of the effective nodal plane of the axial histidine imidazole in solution. There is an equilibrium between the two heme orientations (A and B), which depends on the heme cavity shape, which can be altered by mutation of amino acids with side chains (phenyl vs tyrosyl) near the potential position where a heme vinyl group would be in one of the isomers. The A:B ratio can be much more accurately measured by NMR spectroscopy than by X-ray crystallography.
Collapse
|