1
|
Turilli-Ghisolfi ES, Lualdi M, Fasano M. Ligand-Based Regulation of Dynamics and Reactivity of Hemoproteins. Biomolecules 2023; 13:683. [PMID: 37189430 PMCID: PMC10135655 DOI: 10.3390/biom13040683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Hemoproteins include several heme-binding proteins with distinct structure and function. The presence of the heme group confers specific reactivity and spectroscopic properties to hemoproteins. In this review, we provide an overview of five families of hemoproteins in terms of dynamics and reactivity. First, we describe how ligands modulate cooperativity and reactivity in globins, such as myoglobin and hemoglobin. Second, we move on to another family of hemoproteins devoted to electron transport, such as cytochromes. Later, we consider heme-based reactivity in hemopexin, the main heme-scavenging protein. Then, we focus on heme-albumin, a chronosteric hemoprotein with peculiar spectroscopic and enzymatic properties. Eventually, we analyze the reactivity and dynamics of the most recently discovered family of hemoproteins, i.e., nitrobindins.
Collapse
Affiliation(s)
| | | | - Mauro Fasano
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy
| |
Collapse
|
2
|
De Simone G, Varricchio R, Ruberto TF, di Masi A, Ascenzi P. Heme Scavenging and Delivery: The Role of Human Serum Albumin. Biomolecules 2023; 13:biom13030575. [PMID: 36979511 PMCID: PMC10046553 DOI: 10.3390/biom13030575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Heme is the reactive center of several metal-based proteins that are involved in multiple biological processes. However, free heme, defined as the labile heme pool, has toxic properties that are derived from its hydrophobic nature and the Fe-atom. Therefore, the heme concentration must be tightly controlled to maintain cellular homeostasis and to avoid pathological conditions. Therefore, different systems have been developed to scavenge either Hb (i.e., haptoglobin (Hp)) or the free heme (i.e., high-density lipoproteins (HDL), low-density lipoproteins (LDL), hemopexin (Hx), and human serum albumin (HSA)). In the first seconds after heme appearance in the plasma, more than 80% of the heme binds to HDL and LDL, and only the remaining 20% binds to Hx and HSA. Then, HSA slowly removes most of the heme from HDL and LDL, and finally, heme transits to Hx, which releases it into hepatic parenchymal cells. The Hx:heme or HSA:heme complexes are internalized via endocytosis mediated by the CD91 and CD71 receptors, respectively. As heme constitutes a major iron source for pathogens, bacteria have evolved hemophores that can extract and uptake heme from host proteins, including HSA:heme. Here, the molecular mechanisms underlying heme scavenging and delivery from HSA are reviewed. Moreover, the relevance of HSA in disease states associated with increased heme plasma concentrations are discussed.
Collapse
Affiliation(s)
- Giovanna De Simone
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, 00146 Roma, Italy
| | - Romualdo Varricchio
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, 00146 Roma, Italy
| | - Tommaso Francesco Ruberto
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, 00146 Roma, Italy
| | - Alessandra di Masi
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, 00146 Roma, Italy
- Centro Linceo Interdisciplinare Beniamino Segre, Accademia Nazionale dei Lincei, 00165 Roma, Italy
| | - Paolo Ascenzi
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, 00146 Roma, Italy
- Accademia Nazionale dei Lincei, 00165 Roma, Italy
| |
Collapse
|
3
|
De Simone G, Coletta A, di Masi A, Coletta M, Ascenzi P. The Balancing of Peroxynitrite Detoxification between Ferric Heme-Proteins and CO2: The Case of Zebrafish Nitrobindin. Antioxidants (Basel) 2022; 11:antiox11101932. [PMID: 36290653 PMCID: PMC9599043 DOI: 10.3390/antiox11101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Nitrobindins (Nbs) are all-β-barrel heme proteins and are present in prokaryotes and eukaryotes. Although their function(s) is still obscure, Nbs trap NO and inactivate peroxynitrite. Here, the kinetics of peroxynitrite scavenging by ferric Danio rerio Nb (Dr-Nb(III)) in the absence and presence of CO2 is reported. The Dr-Nb(III)-catalyzed scavenging of peroxynitrite is facilitated by a low pH, indicating that the heme protein interacts preferentially with peroxynitrous acid, leading to the formation of nitrate (~91%) and nitrite (~9%). The physiological levels of CO2 dramatically facilitate the spontaneous decay of peroxynitrite, overwhelming the scavenging activity of Dr-Nb(III). The effect of Dr-Nb(III) on the peroxynitrite-induced nitration of L-tyrosine was also investigated. Dr-Nb(III) inhibits the peroxynitrite-mediated nitration of free L-tyrosine, while, in the presence of CO2, Dr-Nb(III) does not impair nitro-L-tyrosine formation. The comparative analysis of the present results with data reported in the literature indicates that, to act as efficient peroxynitrite scavengers in vivo, i.e., in the presence of physiological levels of CO2, the ferric heme protein concentration must be higher than 10−4 M. Thus, only the circulating ferric hemoglobin levels appear to be high enough to efficiently compete with CO2/HCO3− in peroxynitrite inactivation. The present results are of the utmost importance for tissues, like the eye retina in fish, where blood circulation is critical for adaptation to diving conditions.
Collapse
Affiliation(s)
| | - Andrea Coletta
- Dipartimento di Scienze, Università Roma Tre, 00146 Roma, Italy
| | | | - Massimo Coletta
- IRCCS Fondazione Bietti, 00198 Roma, Italy
- Correspondence: (M.C.); (P.A.)
| | - Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, 00146 Roma, Italy
- Correspondence: (M.C.); (P.A.)
| |
Collapse
|
4
|
Marquês JT, Frazão De Faria C, Reis M, Machado D, Santos S, Santos MDS, Viveiros M, Martins F, De Almeida RFM. In vitro Evaluation of Isoniazid Derivatives as Potential Agents Against Drug-Resistant Tuberculosis. Front Pharmacol 2022; 13:868545. [PMID: 35600870 PMCID: PMC9114799 DOI: 10.3389/fphar.2022.868545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
The upsurge of multidrug-resistant tuberculosis has toughened the challenge to put an end to this epidemic by 2030. In 2020 the number of deaths attributed to tuberculosis increased as compared to 2019 and newly identified multidrug-resistant tuberculosis cases have been stably close to 3%. Such a context stimulated the search for new and more efficient antitubercular compounds, which culminated in the QSAR-oriented design and synthesis of a series of isoniazid derivatives active against Mycobacterium tuberculosis. From these, some prospective isonicotinoyl hydrazones and isonicotinoyl hydrazides are studied in this work. To evaluate if the chemical derivatizations are generating compounds with a good performance concerning several in vitro assays, their cytotoxicity against human liver HepG2 cells was determined and their ability to bind human serum albumin was thoroughly investigated. For the two new derivatives presented in this study, we also determined their lipophilicity and activity against both the wild type and an isoniazid-resistant strain of Mycobacterium tuberculosis carrying the most prevalent mutation on the katG gene, S315T. All compounds were less cytotoxic than many drugs in clinical use with IC50 values after a 72 h challenge always higher than 25 µM. Additionally, all isoniazid derivatives studied exhibited stronger binding to human serum albumin than isoniazid itself, with dissociation constants in the order of 10−4–10−5 M as opposed to 10−3 M, respectively. This suggests that their transport and half-life in the blood stream are likely improved when compared to the parent compound. Furthermore, our results are a strong indication that the N′ = C bond of the hydrazone derivatives of INH tested is essential for their enhanced activity against the mutant strain of M. tuberculosis in comparison to both their reduced counterparts and INH.
Collapse
Affiliation(s)
- Joaquim Trigo Marquês
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Frazão De Faria
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Marina Reis
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Superior de Educação e Ciências (ISEC Lisboa), Lisboa, Portugal
| | - Diana Machado
- Unidade de Microbiologia Medica, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Susana Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Maria da Soledade Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Viveiros
- Unidade de Microbiologia Medica, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Filomena Martins
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Filomena Martins, ; Rodrigo F. M. De Almeida,
| | - Rodrigo F. M. De Almeida
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Filomena Martins, ; Rodrigo F. M. De Almeida,
| |
Collapse
|
5
|
Giordano D, Pesce A, Vermeylen S, Abbruzzetti S, Nardini M, Marchesani F, Berghmans H, Seira C, Bruno S, Javier Luque F, di Prisco G, Ascenzi P, Dewilde S, Bolognesi M, Viappiani C, Verde C. Structural and functional properties of Antarctic fish cytoglobins-1: Cold-reactivity in multi-ligand reactions. Comput Struct Biotechnol J 2020; 18:2132-2144. [PMID: 32913582 PMCID: PMC7451756 DOI: 10.1016/j.csbj.2020.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/10/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
While the functions of the recently discovered cytoglobin, ubiquitously expressed in vertebrate tissues, remain uncertain, Antarctic fish provide unparalleled models to study novel protein traits that may arise from cold adaptation. We report here the spectral, ligand-binding and enzymatic properties (peroxynitrite isomerization, nitrite-reductase activity) of cytoglobin-1 from two Antarctic fish, Chaenocephalus aceratus and Dissostichus mawsoni, and present the crystal structure of D. mawsoni cytoglobin-1. The Antarctic cytoglobins-1 display high O2 affinity, scarcely compatible with an O2-supply role, a slow rate constant for nitrite-reductase activity, and do not catalyze peroxynitrite isomerization. Compared with mesophilic orthologues, the cold-adapted cytoglobins favor binding of exogenous ligands to the hexa-coordinated bis-histidyl species, a trait related to their higher rate constant for distal-His/heme-Fe dissociation relative to human cytoglobin. At the light of a remarkable 3D-structure conservation, the observed differences in ligand-binding kinetics may reflect Antarctic fish cytoglobin-1 specific features in the dynamics of the heme distal region and of protein matrix cavities, suggesting adaptation to functional requirements posed by the cold environment. Taken together, the biochemical and biophysical data presented suggest that in Antarctic fish, as in humans, cytoglobin-1 unlikely plays a role in O2 transport, rather it may be involved in processes such as NO detoxification.
Collapse
Key Words
- C.aceCygb-1*, Mutant of C.aceCygb-1
- C.aceCygb-1, Cytoglobin-1 of C. aceratus
- CO, Carbon monoxide
- CYGB, Human Cygb
- Cold-adaptation
- Cygb, Cytoglobin
- Cygb-1, Cytoglobin 1
- Cygb-2, Cytoglobin 2
- Cygbh, Hexa-coordinated bis-histidyl species
- Cygbp, Penta-coordinated Cygb
- Cytoglobin
- D.mawCygb-1*, Mutant of D.mawCygb-1
- D.mawCygb-1, Cytoglobin-1 of D. mawsoni
- DTT, Dithiothreitol
- Hb, Hemoglobin
- Ligand properties
- MD, Molecular Dynamics
- Mb, Myoglobin
- NGB, Human neuroglobin
- NO dioxygenase
- NO, Nitric oxide
- RNS, Reactive Nitrogen Species
- ROS, Reactive Oxygen Species
- X-ray structure
- p50, O2 partial pressure required to achieve half saturation
- rms, Root-mean square
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111 80131 Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Alessandra Pesce
- Department of Physics, University of Genova, Via Dodecaneso 33, I-16121 Genova, Italy
| | - Stijn Vermeylen
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Stefania Abbruzzetti
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milano, Via Celoria 26, I-20133 Milano, Italy
| | - Francesco Marchesani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23A, 43124, Parma, Italy
| | - Herald Berghmans
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Constantí Seira
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Science, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23A, 43124, Parma, Italy
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Science, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111 80131 Napoli, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146 Roma, Italy
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Martino Bolognesi
- Department of Biosciences, University of Milano, Via Celoria 26, I-20133 Milano, Italy
| | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111 80131 Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
6
|
Bapolisi AM, Nkanga CI, Walker RB, Krause RWM. Simultaneous liposomal encapsulation of antibiotics and proteins: Co-loading and characterization of rifampicin and Human Serum Albumin in soy-liposomes. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Sedov I, Nikiforova A, Khaibrakhmanova D. Evaluation of the binding properties of drugs to albumin from DSC thermograms. Int J Pharm 2020; 583:119362. [PMID: 32334069 DOI: 10.1016/j.ijpharm.2020.119362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/23/2022]
Abstract
There is a demand in rapid and robust methods to determine the affinity of drugs to receptors, enzymes, and transport proteins. Differential scanning calorimetry (DSC) is a common method to prove the existence of ligand-protein binding from the shift of denaturation peak, but it is rarely used to obtain the binding constant values. The work is aimed to prove that the DSC experiments can be a source of reliable values of the binding constants and information on the stoichiometry of drug-albumin binding. DSC thermograms of bovine serum albumin denaturation in the presence of several drugs with different affinity and stoichiometry of binding to albumin: naproxen, warfarin, ibuprofen, and isoniazid were recorded. The dependences of the denaturation peak maximum temperature and area on the molar drug/protein ratio, which varied from 0 to 100, were considered. With the help of numerical modeling of the DSC curves, these dependences were predicted using the binding parameters determined in independent experiments and a simple two-state model of denaturation. The DSC data at relatively small concentrations of ligands are in good agreement with the calculation results. The deviations from the model predictions at high ligand concentrations in the cases of naproxen and ibuprofen indicate that albumin is able to bind several additional molecules of these drugs with its low-affinity sites. The fit was improved by using a sequential binding model with two binding constants K1 = 1.0 × 107 and K2 = 1.0 × 104 for naproxen and a cooperative binding model for ibuprofen. The stoichiometry of drug-albumin complexes fully saturated with drug ligand was calculated from the dependence of the denaturation temperature on the drug concentration. In the case of isoniazid, DSC thermograms indicated very weak binding to albumin.
Collapse
Affiliation(s)
- Igor Sedov
- Chemical Institute, Kremlevskaya 18, Kazan Federal University, 420008 Kazan, Russia.
| | - Alena Nikiforova
- Chemical Institute, Kremlevskaya 18, Kazan Federal University, 420008 Kazan, Russia
| | | |
Collapse
|
8
|
Abstract
Heme constitutes a major iron source for microorganisms and particularly for pathogenic microbes; to overcome the iron scarcity in the animal host, many pathogenic bacteria and fungi have developed systems to extract and take up heme from host proteins such as hemoglobin. Microbial heme uptake mechanisms are usually studied using growth media containing free heme or hemoglobin as a sole iron source. However, the animal host contains heme-scavenging proteins that could prevent this uptake. In the human host in particular, the most abundant serum heme-binding protein is albumin. Surprisingly, however, we found that in the case of fungi of the Candida species family, albumin promoted rather than prevented heme utilization. Albumin thus constitutes a human-specific factor that can affect heme-iron utilization and could serve as target for preventing heme-iron utilization by fungal pathogens. As a proof of principle, we identify two drugs that can inhibit albumin-stimulated heme utilization. A large portion of biological iron is found in the form of an iron-protoporphyrin IX complex, or heme. In the human host environment, which is exceptionally poor in free iron, heme iron, particularly from hemoglobin, constitutes a major source of iron for invading microbial pathogens. Several fungi were shown to utilize free heme, and Candida albicans, a major opportunistic pathogen, is able both to capture free heme and to extract heme from hemoglobin using a network of extracellular hemophores. Human serum albumin (HSA) is the most abundant host heme-scavenging protein. Tight binding of heme by HSA restricts its toxic chemical reactivity and could diminish its availability as an iron source for pathogenic microbes. We found, however, that rather than inhibiting heme utilization, HSA greatly increases availability of heme as an iron source for C. albicans and other fungi. In contrast, hemopexin, a low-abundance but high-affinity heme-scavenging serum protein, does inhibit heme utilization by C. albicans. However, inhibition by hemopexin is mitigated in the presence of HSA. Utilization of albumin-bound heme requires the same hemophore cascade as that which mediates hemoglobin-iron utilization. Accordingly, we found that the C. albicans hemophores are able to extract heme bound to HSA in vitro. Since many common drugs are known to bind to HSA, we tested whether they could interfere with heme-iron utilization. We show that utilization of albumin-bound heme by C. albicans can be inhibited by the anti-inflammatory drugs naproxen and salicylic acid.
Collapse
|
9
|
Ferric nitrosylated myoglobin catalyzes peroxynitrite scavenging. J Biol Inorg Chem 2020; 25:361-370. [PMID: 32172452 DOI: 10.1007/s00775-020-01767-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/13/2020] [Indexed: 01/12/2023]
Abstract
Myoglobin (Mb), generally taken as the molecular model of monomeric globular heme-proteins, is devoted: (i) to act as an intracellular oxygen reservoir, (ii) to transport oxygen from the sarcolemma to the mitochondria of vertebrate heart and red muscle cells, and (iii) to act as a scavenger of nitrogen and oxygen reactive species protecting mitochondrial respiration. Here, the first evidence of ·NO inhibition of ferric Mb- (Mb(III)) mediated detoxification of peroxynitrite is reported, at pH 7.2 and 20.0 °C. ·NO binds to Mb(III) with a simple equilibrium; the value of the second-order rate constant for Mb(III) nitrosylation (i.e., ·NOkon) is (6.8 ± 0.7) × 104 M-1 s-1 and the value of the first-order rate constant for Mb(III)-NO denitrosylation (i.e., ·NOkoff) is 3.1 ± 0.3 s-1. The calculated value of the dissociation equilibrium constant for Mb(III)-NO complex formation (i.e., ·NOkoff/·NOkon = (4.6 ± 0.7) × 10-5 M) is virtually the same as that directly measured (i.e., ·NOK = (3.8 ± 0.5) × 10-5 M). In the absence of ·NO, Mb(III) catalyzes the conversion of peroxynitrite to NO3-, the value of the second-order rate constant (i.e., Pkon) being (1.9 ± 0.2) × 104 M-1 s-1. However, in the presence of ·NO, Mb(III)-mediated detoxification of peroxynitrite is only partially inhibited, underlying the possibility that also Mb(III)-NO is able to catalyze the peroxynitrite isomerization, though with a reduced rate (Pkon* = (2.8 ± 0.3) × 103 M-1 s-1). These data expand the multiple roles of ·NO in modulating heme-protein actions, envisaging a delicate balancing between peroxynitrite and ·NO, which is modulated through the relative amount of Mb(III) and Mb(III)-NO.
Collapse
|
10
|
Ascenzi P, Bocedi A, Gioia M, Fanali G, Fasano M, Coletta M. Warfarin inhibits allosterically the reductive nitrosylation of ferric human serum heme-albumin. J Inorg Biochem 2017; 177:63-75. [PMID: 28926756 DOI: 10.1016/j.jinorgbio.2017.08.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/31/2022]
Abstract
Human serum heme-albumin (HSA-heme-Fe) displays heme-based ligand binding and (pseudo-)enzymatic properties. Here, the effect of the prototypical drug warfarin on kinetics and thermodynamics of NO binding to ferric and ferrous HSA-heme-Fe (HSA-heme-Fe(III) and HSA-heme-Fe(II), respectively) and on the NO-mediated reductive nitrosylation of the heme-Fe atom is reported; data were obtained between pH5.5 and 9.5 at 20.0°C. Since warfarin is a common drug, its effect on the reactivity of HSA-heme-Fe represents a relevant issue in the pharmacological therapy management. The inhibition of NO binding to HSA-heme-Fe(III) and HSA-heme-Fe(II) as well as of the NO-mediated reductive nitrosylation of the heme-Fe(III) atom by warfarin has been ascribed to drug binding to the fatty acid binding site 2 (FA2), shifting allosterically the penta-to-six coordination equilibrium of the heme-Fe atom toward the low reactive species showing the six-coordinated metal center by His146 and Tyr161 residues. These data: (i) support the role of HSA-heme-Fe in trapping NO, (ii) highlight the modulation of the heme-Fe-based reactivity by drugs, and (iii) could be relevant for the modulation of HSA functions by drugs in vivo.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, I-00146 Roma, Italy.
| | - Alessio Bocedi
- Department of Chemical Sciences and Technology, University of Roma "Tor Vergata", I-00133 Roma, Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", I-00133 Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, I-70126 Bari, Italy
| | | | - Mauro Fasano
- Department of Science and High Technology, University of Insubria, I-21052 Busto Arsizio, VA, Italy; Neuroscience Research Center, University of Insubria, I-21052 Busto Arsizio, VA, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", I-00133 Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, I-70126 Bari, Italy
| |
Collapse
|
11
|
Ascenzi P, di Masi A, Leboffe L, Fanali G, Fasano M. The drug-dependent five- to six-coordination transition of the heme-Fe atom modulates allosterically human serum heme-albumin reactivity. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2016. [DOI: 10.1007/s12210-016-0562-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Li H, Wu F, Tan J, Wang K, Zhang C, Zheng H, Hu F. Caffeic acid phenethyl ester exhibiting distinctive binding interaction with human serum albumin implies the pharmacokinetic basis of propolis bioactive components. J Pharm Biomed Anal 2016; 122:21-8. [DOI: 10.1016/j.jpba.2016.01.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 11/25/2022]
|
13
|
Ascenzi P, di Masi A, Fanali G, Fasano M. Heme-based catalytic properties of human serum albumin. Cell Death Discov 2015; 1:15025. [PMID: 27551458 PMCID: PMC4991842 DOI: 10.1038/cddiscovery.2015.25] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 12/11/2022] Open
Abstract
Human serum albumin (HSA): (i) controls the plasma oncotic pressure, (ii) modulates fluid distribution between the body compartments, (iii) represents the depot and carrier of endogenous and exogenous compounds, (iv) increases the apparent solubility and lifetime of hydrophobic compounds, (v) affects pharmacokinetics of many drugs, (vi) inactivates toxic compounds, (vii) induces chemical modifications of some ligands, (viii) displays antioxidant properties, and (ix) shows enzymatic properties. Under physiological and pathological conditions, HSA has a pivotal role in heme scavenging transferring the metal-macrocycle from high- and low-density lipoproteins to hemopexin, thus acquiring globin-like reactivity. Here, the heme-based catalytic properties of HSA are reviewed and the structural bases of drug-dependent allosteric regulation are highlighted.
Collapse
Affiliation(s)
- P Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University , 00146 Roma, Italy
| | - A di Masi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, 00146 Roma, Italy; Department of Sciences, Roma Tre University, 00146 Roma, Italy
| | - G Fanali
- Biomedical Research Division, Department of Theoretical and Applied Sciences, University of Insubria , 21052 Busto Arsizio, Italy
| | - M Fasano
- Biomedical Research Division, Department of Theoretical and Applied Sciences, University of Insubria, 21052 Busto Arsizio, Italy; Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| |
Collapse
|
14
|
Imatinib binding to human serum albumin modulates heme association and reactivity. Arch Biochem Biophys 2014; 560:100-12. [DOI: 10.1016/j.abb.2014.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/25/2014] [Accepted: 07/02/2014] [Indexed: 01/09/2023]
|
15
|
Ascenzi P, Leboffe L, Pesce A, Ciaccio C, Sbardella D, Bolognesi M, Coletta M. Nitrite-reductase and peroxynitrite isomerization activities of Methanosarcina acetivorans protoglobin. PLoS One 2014; 9:e95391. [PMID: 24827820 PMCID: PMC4020757 DOI: 10.1371/journal.pone.0095391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/25/2014] [Indexed: 12/04/2022] Open
Abstract
Within the globin superfamily, protoglobins (Pgb) belong phylogenetically to the same cluster of two-domain globin-coupled sensors and single-domain sensor globins. Multiple functional roles have been postulated for Methanosarcina acetivorans Pgb (Ma-Pgb), since the detoxification of reactive nitrogen and oxygen species might co-exist with enzymatic activity(ies) to facilitate the conversion of CO to methane. Here, the nitrite-reductase and peroxynitrite isomerization activities of the CysE20Ser mutant of Ma-Pgb (Ma-Pgb*) are reported and analyzed in parallel with those of related heme-proteins. Kinetics of nitrite-reductase activity of ferrous Ma-Pgb* (Ma-Pgb*-Fe(II)) is biphasic and values of the second-order rate constant for the reduction of NO2– to NO and the concomitant formation of nitrosylated Ma-Pgb*-Fe(II) (Ma-Pgb*-Fe(II)-NO) are kapp1 = 9.6±0.2 M–1 s–1 and kapp2 = 1.2±0.1 M–1 s–1 (at pH 7.4 and 20°C). The kapp1 and kapp2 values increase by about one order of magnitude for each pH unit decrease, between pH 8.3 and 6.2, indicating that the reaction requires one proton. On the other hand, kinetics of peroxynitrite isomerization catalyzed by ferric Ma-Pgb* (Ma-Pgb*-Fe(III)) is monophasic and values of the second order rate constant for peroxynitrite isomerization by Ma-Pgb*-Fe(III) and of the first order rate constant for the spontaneous conversion of peroxynitrite to nitrate are happ = 3.8×104 M–1 s–1 and h0 = 2.8×10–1 s–1 (at pH 7.4 and 20°C). The pH-dependence of hon and h0 values reflects the acid-base equilibrium of peroxynitrite (pKa = 6.7 and 6.9, respectively; at 20°C), indicating that HOONO is the species that reacts preferentially with the heme-Fe(III) atom. These results highlight the potential role of Pgbs in the biosynthesis and scavenging of reactive nitrogen and oxygen species.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Roma, Italy
- National Institute of Biostructures and Biosystems, Roma, Italy
- * E-mail:
| | - Loris Leboffe
- Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Roma, Italy
| | | | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
| | - Diego Sbardella
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
| | | | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
| |
Collapse
|
16
|
Giordano D, Coppola D, Russo R, Tinajero-Trejo M, di Prisco G, Lauro F, Ascenzi P, Verde C. The globins of cold-adapted Pseudoalteromonas haloplanktis TAC125: from the structure to the physiological functions. Adv Microb Physiol 2014; 63:329-89. [PMID: 24054800 DOI: 10.1016/b978-0-12-407693-8.00008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolution allowed Antarctic microorganisms to grow successfully under extreme conditions (low temperature and high O2 content), through a variety of structural and physiological adjustments in their genomes and development of programmed responses to strong oxidative and nitrosative stress. The availability of genomic sequences from an increasing number of cold-adapted species is providing insights to understand the molecular mechanisms underlying crucial physiological processes in polar organisms. The genome of Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct truncated globins exhibiting the 2/2 α-helical fold. One of these globins has been extensively characterised by spectroscopic analysis, kinetic measurements and computer simulation. The results indicate unique adaptive structural properties that enhance the overall flexibility of the protein, so that the structure appears to be resistant to pressure-induced stress. Recent results on a genomic mutant strain highlight the involvement of the cold-adapted globin in the protection against the stress induced by high O2 concentration. Moreover, the protein was shown to catalyse peroxynitrite isomerisation in vitro. In this review, we first summarise how cold temperatures affect the physiology of microorganisms and focus on the molecular mechanisms of cold adaptation revealed by recent biochemical and genetic studies. Next, since only in a very few cases the physiological role of truncated globins has been demonstrated, we also discuss the structural and functional features of the cold-adapted globin in an attempt to put into perspective what has been learnt about these proteins and their potential role in the biology of cold-adapted microorganisms.
Collapse
|
17
|
Simultaneous determination of rifampicin, clarithromycin and their metabolites in dried blood spots using LC–MS/MS. Talanta 2014; 121:9-17. [DOI: 10.1016/j.talanta.2013.12.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/11/2013] [Accepted: 12/22/2013] [Indexed: 11/19/2022]
|
18
|
Fujiwara SI, Amisaki T. Fatty acid binding to serum albumin: Molecular simulation approaches. Biochim Biophys Acta Gen Subj 2013; 1830:5427-34. [DOI: 10.1016/j.bbagen.2013.03.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 02/02/2023]
|
19
|
Warfarin modulates the nitrite reductase activity of ferrous human serum heme-albumin. J Biol Inorg Chem 2013; 18:939-46. [PMID: 24037275 DOI: 10.1007/s00775-013-1040-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/27/2013] [Indexed: 12/28/2022]
Abstract
Human serum heme-albumin (HSA-heme-Fe) displays reactivity and spectroscopic properties similar to those of heme proteins. Here, the nitrite reductase activity of ferrous HSA-heme-Fe [HSA-heme-Fe(II)] is reported. The value of the second-order rate constant for the reduction of [Formula: see text] to NO and the concomitant formation of nitrosylated HSA-heme-Fe(II) (i.e., k on) is 1.3 M(-1) s(-1) at pH 7.4 and 20 °C. Values of k on increase by about one order of magnitude for each pH unit decrease between pH 6.5 to 8.2, indicating that the reaction requires one proton. Warfarin inhibits the HSA-heme-Fe(II) reductase activity, highlighting the allosteric linkage between the heme binding site [also named the fatty acid (FA) binding site 1; FA1] and the drug-binding cleft FA2. The dissociation equilibrium constant for warfarin binding to HSA-heme-Fe(II) is (3.1 ± 0.4) × 10(-4) M at pH 7.4 and 20 °C. These results: (1) represent the first evidence for the [Formula: see text] reductase activity of HSA-heme-Fe(II), (2) highlight the role of drugs (e.g., warfarin) in modulating HSA(-heme-Fe) functions, and (3) strongly support the view that HSA acts not only as a heme carrier but also displays transient heme-based reactivity.
Collapse
|
20
|
Ascenzi P, Coletta A, Cao Y, Trezza V, Leboffe L, Fanali G, Fasano M, Pesce A, Ciaccio C, Marini S, Coletta M. Isoniazid inhibits the heme-based reactivity of Mycobacterium tuberculosis truncated hemoglobin N. PLoS One 2013; 8:e69762. [PMID: 23936350 PMCID: PMC3731299 DOI: 10.1371/journal.pone.0069762] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
Isoniazid represents a first-line anti-tuberculosis medication in prevention and treatment. This prodrug is activated by a mycobacterial catalase-peroxidase enzyme called KatG in Mycobacterium tuberculosis), thereby inhibiting the synthesis of mycolic acid, required for the mycobacterial cell wall. Moreover, isoniazid activation by KatG produces some radical species (e.g., nitrogen monoxide), that display anti-mycobacterial activity. Remarkably, the ability of mycobacteria to persist in vivo in the presence of reactive nitrogen and oxygen species implies the presence in these bacteria of (pseudo-)enzymatic detoxification systems, including truncated hemoglobins (trHbs). Here, we report that isoniazid binds reversibly to ferric and ferrous M. tuberculosis trHb type N (or group I; Mt-trHbN(III) and Mt-trHbN(II), respectively) with a simple bimolecular process, which perturbs the heme-based spectroscopic properties. Values of thermodynamic and kinetic parameters for isoniazid binding to Mt-trHbN(III) and Mt-trHbN(II) are K = (1.1±0.1)×10−4 M, kon = (5.3±0.6)×103 M−1 s−1 and koff = (4.6±0.5)×10−1 s−1; and D = (1.2±0.2)×10−3 M, don = (1.3±0.4)×103 M−1 s−1, and doff = 1.5±0.4 s−1, respectively, at pH 7.0 and 20.0°C. Accordingly, isoniazid inhibits competitively azide binding to Mt-trHbN(III) and Mt-trHbN(III)-catalyzed peroxynitrite isomerization. Moreover, isoniazid inhibits Mt-trHbN(II) oxygenation and carbonylation. Although the structure of the Mt-trHbN-isoniazid complex is not available, here we show by docking simulation that isoniazid binding to the heme-Fe atom indeed may take place. These data suggest a direct role of isoniazid to impair fundamental functions of mycobacteria, e.g. scavenging of reactive nitrogen and oxygen species, and metabolism.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Roma, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kumar A, Ganini D, Deterding LJ, Ehrenshaft M, Chatterjee S, Mason RP. Immuno-spin trapping of heme-induced protein radicals: Implications for heme oxygenase-1 induction and heme degradation. Free Radic Biol Med 2013; 61:265-72. [PMID: 23624303 PMCID: PMC3851609 DOI: 10.1016/j.freeradbiomed.2013.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 01/29/2023]
Abstract
Heme, in the presence of hydrogen peroxide, can act as a peroxidase. Intravascular hemolysis results in a massive release of heme into the plasma in several pathophysiological conditions such as hemolytic anemia, malaria, and sickle cell disease. Heme is known to induce heme oxygenase-1(HO-1) expression, and the extent of induction depends on the ratio of albumin to heme in plasma. HO-1 degrades heme and ultimately generates the antioxidant bilirubin. Heme also causes oxidative stress in cells, but whether it causes protein-radical formation has not yet been studied. In the literature, two purposes for the degradation of heme by HO-1 are discussed. One is the production of the antioxidant bilirubin and the other is the prevention of heme-dependent adverse effects. Here we have investigated heme-induced protein-radical formation, which might have pathophysiological consequences, and have used immuno-spin trapping to establish the formation of heme-induced protein radicals in two systems: human serum albumin (HSA)/H2O2 and human plasma/H2O2.We found that excess heme catalyzed the formation of HSA radicals in the presence of hydrogen peroxide. When heme and hydrogen peroxide were added to human plasma, heme was found to oxidize proteins, primarily and predominantly HSA; however, when HSA-depleted plasma was used, heme triggered the oxidation of several other proteins, including transferrin. Thus, HSA in plasma protected other proteins from heme/H2O2-induced oxidation. The antioxidants ascorbate and uric acid significantly attenuated protein-radical formation induced by heme/H2O2; however, bilirubin did not confer significant protection. Based on these findings, we conclude that heme is degraded by HO-1 because it is a catalyst of protein-radical formation and not merely to produce the relatively inefficient antioxidant bilirubin.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Free Radical Metabolism Group, Laboratories of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Douglas Ganini
- Free Radical Metabolism Group, Laboratories of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Leesa J Deterding
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Marilyn Ehrenshaft
- Free Radical Metabolism Group, Laboratories of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Saurabh Chatterjee
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Ronald P Mason
- Free Radical Metabolism Group, Laboratories of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
22
|
Coppola D, Giordano D, Tinajero-Trejo M, di Prisco G, Ascenzi P, Poole RK, Verde C. Antarctic bacterial haemoglobin and its role in the protection against nitrogen reactive species. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1923-31. [PMID: 23434851 DOI: 10.1016/j.bbapap.2013.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 01/25/2023]
Abstract
In a cold and oxygen-rich environment such as Antarctica, mechanisms for the defence against reactive oxygen and nitrogen species are needed and represent important components in the evolutionary adaptations. In the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125, the presence of multiple genes encoding 2/2 haemoglobins and a flavohaemoglobin strongly suggests that these proteins fulfil important physiological roles, perhaps associated to the peculiar features of the Antarctic habitat. In this work, the putative role of Ph-2/2HbO, encoded by the PSHAa0030 gene, was investigated by in vivo and in vitro experiments in order to highlight its involvement in NO detoxification mechanisms. The PSHAa0030 gene was cloned and then over-expressed in a flavohaemoglobin-deficient mutant of Escherichia coli, unable to metabolise NO, and the resulting strain was studied analysing its growth properties and oxygen uptake in the presence of NO. We here demonstrate that Ph-2/2HbO protects growth and cellular respiration of the heterologous host from the toxic effect of NO-donors. Unlike in Mycobacterium tuberculosis 2/2 HbN, the deletion of the N-terminal extension of Ph-2/2HbO does not seem to reduce the NO scavenging activity, showing that the N-terminal extension is not a requirement for efficient NO detoxification. Moreover, the ferric form of Ph-2/2HbO was shown to catalyse peroxynitrite isomerisation in vitro, confirming its potential role in the scavenging of reactive nitrogen species. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Daniela Coppola
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Cuya Guizado TR, Louro SRW, Anteneodo C. Dynamics of heme complexed with human serum albumin: a theoretical approach. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:1033-42. [PMID: 23104623 DOI: 10.1007/s00249-012-0860-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 08/27/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
Human serum albumin (HSA) is the most abundant protein in the blood serum. It binds several ligands and has an especially strong affinity for heme, hence becoming a natural candidate for oxygen transport. In order to analyze the interaction of HSA-heme, molecular dynamics simulations of HSA with bound heme were performed. Based on the results of X-ray diffraction, the binding site of the heme, localized in subdomain IB, was considered. We analyzed the fluctuations and their correlations along trajectories to detect collective motions. The role of H bonds and salt bridges in the stabilization of heme in its pocket was also investigated. Complementarily, the localization of water molecules in the hydrophobic pocket and the interaction with heme were discussed.
Collapse
|
24
|
Mondol T, Batabyal S, Pal SK. Interaction of an antituberculosis drug with nano-sized cationic micelle: Förster resonance energy transfer from dansyl to rifampicin in the microenvironment. Photochem Photobiol 2012; 88:328-35. [PMID: 22211727 DOI: 10.1111/j.1751-1097.2012.01075.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this contribution, we report studies on the interaction of an antituberculosis drug rifampicin (RF) in a macromolecular assembly of CTAB with an extrinsic fluorescent probe, dansyl chloride (DC). The absorption spectrum of the drug RF has been employed to study Förster resonance energy transfer (FRET) from DC, bound to the CTAB micelle using picosecond resolved fluorescence spectroscopy. We have applied a kinetic model developed by Tachiya to understand the kinetics of energy transfer and the distribution of acceptor (RF) molecules around the donor (DC) molecules in the micellar surface with increasing quencher concentration. The mean number of RF molecules associated with the micelle increases from 0.24 at 20 μm RF concentration to 1.5 at 190 μm RF concentration and consequently the quenching rate constant (k(q)) due to the acceptor (RF) molecules increases from 0.23 to 0.75 ns(-1) at 20 and 190 μm RF concentration, respectively. However, the mean number of the quencher molecule and the quenching rate constant does not change significantly beyond a certain RF concentration (150 μm), which is consistent with the results obtained from time resolved FRET analysis. Moreover, we have explored the diffusion controlled FRET between DC and RF, using microfluidics setup, which reveals that the reaction pathway follows one-step process.
Collapse
Affiliation(s)
- Tanumoy Mondol
- Department of Chemical, Biological & Macromolecular Sciences, S N Bose National Centre for Basic Sciences, Salt Lake, Kolkata, India
| | | | | |
Collapse
|
25
|
Human serum albumin: from bench to bedside. Mol Aspects Med 2011; 33:209-90. [PMID: 22230555 DOI: 10.1016/j.mam.2011.12.002] [Citation(s) in RCA: 1211] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 12/21/2011] [Indexed: 02/07/2023]
Abstract
Human serum albumin (HSA), the most abundant protein in plasma, is a monomeric multi-domain macromolecule, representing the main determinant of plasma oncotic pressure and the main modulator of fluid distribution between body compartments. HSA displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds. Indeed, HSA represents the main carrier for fatty acids, affects pharmacokinetics of many drugs, provides the metabolic modification of some ligands, renders potential toxins harmless, accounts for most of the anti-oxidant capacity of human plasma, and displays (pseudo-)enzymatic properties. HSA is a valuable biomarker of many diseases, including cancer, rheumatoid arthritis, ischemia, post-menopausal obesity, severe acute graft-versus-host disease, and diseases that need monitoring of the glycemic control. Moreover, HSA is widely used clinically to treat several diseases, including hypovolemia, shock, burns, surgical blood loss, trauma, hemorrhage, cardiopulmonary bypass, acute respiratory distress syndrome, hemodialysis, acute liver failure, chronic liver disease, nutrition support, resuscitation, and hypoalbuminemia. Recently, biotechnological applications of HSA, including implantable biomaterials, surgical adhesives and sealants, biochromatography, ligand trapping, and fusion proteins, have been reported. Here, genetic, biochemical, biomedical, and biotechnological aspects of HSA are reviewed.
Collapse
|
26
|
Peroxynitrite detoxification by horse heart carboxymethylated cytochrome c is allosterically modulated by cardiolipin. Biochem Biophys Res Commun 2011; 415:463-7. [DOI: 10.1016/j.bbrc.2011.10.094] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 10/21/2011] [Indexed: 11/19/2022]
|
27
|
Ascenzi P, Cao Y, Tundo GR, Coletta M, Fanali G, Fasano M. Ibuprofen and warfarin modulate allosterically ferrous human serum heme–albumin nitrosylation. Biochem Biophys Res Commun 2011; 411:185-9. [DOI: 10.1016/j.bbrc.2011.06.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/20/2011] [Indexed: 01/06/2023]
|
28
|
Ascenzi P, Gullotta F, Gioia M, Coletta M, Fasano M. O2-mediated oxidation of ferrous nitrosylated human serum heme–albumin is limited by nitrogen monoxide dissociation. Biochem Biophys Res Commun 2011; 406:112-6. [DOI: 10.1016/j.bbrc.2011.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
|