1
|
Trimpin S, Yenchick FS, Lee C, Hoang K, Pophristic M, Karki S, Marshall DD, Lu IC, Lutomski CA, El-Baba TJ, Wang B, Pagnotti VS, Meher AK, Chakrabarty S, Imperial LF, Madarshahian S, Richards AL, Lietz CB, Moreno-Pedraza A, Leach SM, Gibson SC, Elia EA, Thawoos SM, Woodall DW, Jarois DR, Davis ETJ, Liao G, Muthunayake NS, Redding MJ, Reynolds CA, Anthony TM, Vithanarachchi SM, DeMent P, Adewale AO, Yan L, Wager-Miller J, Ahn YH, Sanderson TH, Przyklenk K, Greenberg ML, Suits AG, Allen MJ, Narayan SB, Caruso JA, Stemmer PM, Nguyen HM, Weidner SM, Rackers KJ, Djuric A, Shulaev V, Hendrickson TL, Chow CS, Pflum MKH, Grayson SM, Lobodin VV, Guo Z, Ni CK, Walker JM, Mackie K, Inutan ED, McEwen CN. New Processes for Ionizing Nonvolatile Compounds in Mass Spectrometry: The Road of Discovery to Current State-of-the-Art. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39374043 DOI: 10.1021/jasms.3c00122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This Perspective covers discovery and mechanistic aspects as well as initial applications of novel ionization processes for use in mass spectrometry that guided us in a series of subsequent discoveries, instrument developments, and commercialization. Vacuum matrix-assisted ionization on an intermediate pressure matrix-assisted laser desorption/ionization source without the use of a laser, high voltages, or any other added energy was simply unbelievable, at first. Individually and as a whole, the various discoveries and inventions started to paint, inter alia, an exciting new picture and outlook in mass spectrometry from which key developments grew that were at the time unimaginable, and continue to surprise us in its simplistic preeminence. We, and others, have demonstrated exceptional analytical utility. Our current research is focused on how best to understand, improve, and use these novel ionization processes through dedicated platforms and source developments. These ionization processes convert volatile and nonvolatile compounds from solid or liquid matrixes into gas-phase ions for analysis by mass spectrometry using, e.g., mass-selected fragmentation and ion mobility spectrometry to provide accurate, and sometimes improved, mass and drift time resolution. The combination of research and discoveries demonstrated multiple advantages of the new ionization processes and established the basis of the successes that lead to the Biemann Medal and this Perspective. How the new ionization processes relate to traditional ionization is also presented, as well as how these technologies can be utilized in tandem through instrument modification and implementation to increase coverage of complex materials through complementary strengths.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - Frank S Yenchick
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Chuping Lee
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Khoa Hoang
- MSTM, LLC, Newark, Delaware 19711, United States
- Saint Joseph's University, Philadelphia, Pennsylvania 19104, United States
| | - Milan Pophristic
- MSTM, LLC, Newark, Delaware 19711, United States
- Saint Joseph's University, Philadelphia, Pennsylvania 19104, United States
| | - Santosh Karki
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - Darrell D Marshall
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - I-Chung Lu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan
| | - Corinne A Lutomski
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Tarick J El-Baba
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Beixi Wang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Vincent S Pagnotti
- Saint Joseph's University, Philadelphia, Pennsylvania 19104, United States
| | - Anil K Meher
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - Shubhashis Chakrabarty
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - Lorelei F Imperial
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Sara Madarshahian
- Saint Joseph's University, Philadelphia, Pennsylvania 19104, United States
| | - Alicia L Richards
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Christopher B Lietz
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | - Samantha M Leach
- Department of Forensic Sciences (DFS), Washington, D.C. 20024, United States
| | - Stephen C Gibson
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Efstathios A Elia
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Shameemah M Thawoos
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Daniel W Woodall
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Dean R Jarois
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Eric T J Davis
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Guochao Liao
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | - McKenna J Redding
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Christian A Reynolds
- Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Thilani M Anthony
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | - Paul DeMent
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Adeleye O Adewale
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Lu Yan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - James Wager-Miller
- Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Young-Hoon Ahn
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Thomas H Sanderson
- Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Karin Przyklenk
- Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Arthur G Suits
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Srinivas B Narayan
- Detroit Medical Center: Detroit Hospital (DMC), Detroit, Michigan 48201, United States
| | - Joseph A Caruso
- Institute of Environmental Health Sciences, Wayne State University, Detroit Michigan 48202, United States
| | - Paul M Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit Michigan 48202, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Steffen M Weidner
- Federal Institute for Materials Research and Testing (BAM), Berlin 12489, Germany
| | - Kevin J Rackers
- Automation Techniques, Inc, Greensboro, North Carolina 27407, United States
| | - Ana Djuric
- College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Vladimir Shulaev
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, Texas 76210, United States
| | - Tamara L Hendrickson
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Scott M Grayson
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | | | - Zhongwu Guo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - J Michael Walker
- Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Ken Mackie
- Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Ellen D Inutan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
- Mindanao State University Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Charles N McEwen
- MSTM, LLC, Newark, Delaware 19711, United States
- Saint Joseph's University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Mollazadeh M, Fakhari A, Mortezazadeh T, Mofrad FB, Nazarie AJ. Synthesis, MTT assay, 99m-Technetium radiolabeling, biodistribution evaluation of radiotracer and in vitro magnetic resonance imaging study of P,N-doped graphene quantum dots as a new multipurpose imaging nano-agent. RADIOCHIM ACTA 2024; 112:663-677. [DOI: 10.1515/ract-2023-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Abstract
In this study, a new nano-structure, N,P-doped graphene quantum dots (N,P-GQDs), were synthesized as multipurpose imaging agent for performing scintigraphy and magnetic resonance imaging (MRI). Some standard characterization methods were used to identify the nano-structure. In vitro cytotoxicity evaluation using MTT assay revealed that N,P-GQDs nanoparticles had no significant cytotoxicity after 24 and 48 h against normal (MCF-10A) and cancerous (MCF 7) human breast cell line in concentration up to 200 μg/mL. The N,P-GQDs were radiolabeled with Technetium-99m as 99mTc-(N,P-GQDs) and the radiochemical purity was assayed by ITLC concluding RCP ≥ 95 %. The passing of 99mTc-(N,P-GQDs) through 0.1 µm filter demonstrated that 70.8 % of particles were <0.1 µm. In order to perform scintigraphy, the 99mTc-(N,P-GQDs) were injected to female healthy Wistar rats. The results showed that the radio-complex was captured and eliminated just by kidneys. Moreover, in vitro T1-weighted phantom MRI imaging showed that the N,P-GQDs have proper relaxivity in comparison to Dotarem® as a clinically available contrast agent. The results showed that the N,P-GQDs have potential to be considered as a novel and encouraging agent for both molecular MRI and nuclear medicine imagings.
Collapse
Affiliation(s)
- Morteza Mollazadeh
- Department of Medical Radiation Engineering, Science and Research Branch , Islamic Azad University , Tehran , Iran
| | - Ashraf Fakhari
- Medical Radiation Sciences Research Team , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Tohid Mortezazadeh
- Department of Medical Physics, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Farshid Babapour Mofrad
- Department of Medical Radiation Engineering, Science and Research Branch , Islamic Azad University , Tehran , Iran
| | - Ali Jamali Nazarie
- Department of Engineering, Shahrood Branch , Islamic Azad University , Shahrood , Iran
| |
Collapse
|
3
|
Paranawithana NN, Chiaffarelli R, Kretschmer J, Buchanan E, Lopez K, Zhao P, Kiefer G, Jurek P, Martins AF, Sherry AD. Enhancing r1 Relaxivity in GdDOTA-Monoamide Complexes through Polar Group-Mediated Ordering of Second-Sphere Water Molecules. Inorg Chem 2024; 63:4072-4077. [PMID: 38385753 DOI: 10.1021/acs.inorgchem.3c03639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
This study was designed to test whether the single appended phosphonate group in GdDOTA-1AmP is sufficient for catalyzing the exchange of proton from the single inner-sphere water-exchanging molecule. Unlike the other phosphonate derivatives in this series, GdDOTA-1AmP showed a surprisingly smooth increase in r1 relaxivity from 3.0 to 6.3 mM-1 s-1 at 20 MHz as the pH was lowered from 9 to 2.5. In comparison to the bis-, tris-, and tetrakis-phosphonate analogues, which all show a biphasic dependence of r1 with changes in pH, the unique r1 versus pH characteristics of GdDOTA-1AmP are shown to closely parallel deprotonation of the single appended phosphonate group. Although the tissue biodistribution and clearance rates of GdDOTA-1AmP are more favorable than the other more highly charged phosphonate derivatives, the pH dependency of r1 is substantially reduced at magnetic fields typically used for small animal imaging (7 and 9.4T), so the attractiveness of this new molecule for quantitative imaging of tissue pH is diminished. However, this study provides some new insights into the feasibility of designing pH-responsive MRI contrast agents based upon fundamental acid-base prototropic mechanisms.
Collapse
Affiliation(s)
- Namini N Paranawithana
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Remy Chiaffarelli
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies″, University of Tübingen, Tübingen 72076, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Jan Kretschmer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies″, University of Tübingen, Tübingen 72076, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Emily Buchanan
- Macrocyclics, Inc., An Orano Med Company, 700 Klein Road, Plano, Texas 75074, United States
| | - Katherine Lopez
- Macrocyclics, Inc., An Orano Med Company, 700 Klein Road, Plano, Texas 75074, United States
| | - Piyu Zhao
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Garry Kiefer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Macrocyclics, Inc., An Orano Med Company, 700 Klein Road, Plano, Texas 75074, United States
| | - Paul Jurek
- Macrocyclics, Inc., An Orano Med Company, 700 Klein Road, Plano, Texas 75074, United States
| | - André F Martins
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies″, University of Tübingen, Tübingen 72076, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States
| | - A Dean Sherry
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States
| |
Collapse
|
4
|
Di Gregorio E, Papi C, Conti L, Di Lorenzo A, Cavallari E, Salvatore M, Cavaliere C, Ferrauto G, Aime S. A Magnetic Resonance Imaging-Chemical Exchange Saturation Transfer (MRI-CEST) Method for the Detection of Water Cycling across Cellular Membranes. Angew Chem Int Ed Engl 2024; 63:e202313485. [PMID: 37905585 DOI: 10.1002/anie.202313485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Water cycling across the membrane transporters is considered a hallmark of cellular metabolism and it could be of high diagnostic relevance in the characterization of tumors and other diseases. The method relies on the response of intracellular proton exchanging molecules to the presence of extracellular Gd-based contrast agents (GBCAs). Paramagnetic GBCAs enhances the relaxation rate of water molecules in the extracellular compartment and, through membrane exchange, the relaxation enhancement is transferred to intracellular molecules. The effect is detected at the MRI-CEST (Magnetic Resonance Imaging - Chemical Exchange Saturation Transfer) signal of intracellular proton exchanging molecules. The magnitude of the change in the CEST response reports on water cycling across the membrane. The method has been tested on Red Blood Cells and on orthotopic murine models of breast cancer with different degree of malignancy (4T1, TS/A and 168FARN). The distribution of voxels reporting on membrane permeability fits well with the cells' aggressiveness and acts as an early reporter to monitor therapeutic treatments.
Collapse
Affiliation(s)
- Enza Di Gregorio
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Chiara Papi
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Laura Conti
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Antonino Di Lorenzo
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Eleonora Cavallari
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Marco Salvatore
- IRCCS SDN SynLab, Via E. Gianturco 113, 80143, Napoli, Italy
| | - Carlo Cavaliere
- IRCCS SDN SynLab, Via E. Gianturco 113, 80143, Napoli, Italy
| | - Giuseppe Ferrauto
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Silvio Aime
- IRCCS SDN SynLab, Via E. Gianturco 113, 80143, Napoli, Italy
| |
Collapse
|
5
|
Hu T, Wan C, Zhan Y, Li X, Zheng Y. Preparation and performance of biocompatible gadolinium polymer as liver-targeting magnetic resonance imaging contrast agent. J Biosci Bioeng 2024; 137:134-140. [PMID: 38195341 DOI: 10.1016/j.jbiosc.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024]
Abstract
A biocompatible macromolecule-conjugated gadolinium chelate complex (PAV2-EDA-DOTA-Gd) as a new liver-specific contrast agent for magnetic resonance imaging (MRI) was synthesized and evaluated. An aspartic acid-valine copolymer was used as a carrier and ethylenediamine as a chemical linker, and the aspartic acid-valine copolymer was covalently linked to the small molecule MRI contrast agent Gd-DOTA (Dotarem) to synthesize a large molecule contrast agent. In vitro MR relaxation showed that the T1-relaxivity of PAV2-EDA-DOTA-Gd (13.7 mmol-1 L s-1) was much higher than that of the small-molecule Gd-DOTA (4.9 mmol-1 L s-1). In vivo imaging of rats showed that the enhancement effect of PAV2-EDA-DOTA-Gd (55.37 ± 2.80%) on liver imaging was 2.6 times that of Gd-DOTA (21.12 ± 3.86%), and it produced a longer imaging window time (40-70 min for PAV2-EDA-DOTA-Gd and 10-30 min for Gd-DOTA). Preliminary safety experiments, such as cell experiments and tissue sectioning, showed that PAV2-EDA-DOTA-Gd had low toxicity and satisfactory biocompatibility. The results of this study indicated that PAV2-EDA-DOTA-Gd had high potential as a liver-specific MRI contrast agent.
Collapse
Affiliation(s)
- Tingting Hu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Chuanling Wan
- School of Science, Changchun Institute of Technology, Changchun 130012, Jilin Province, China
| | - Youyang Zhan
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin Province, China
| | - Xiaojing Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin Province, China
| | - Yan Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
6
|
Stefania R, Palagi L, Di Gregorio E, Ferrauto G, Dinatale V, Aime S, Gianolio E. Seeking for Innovation with Magnetic Resonance Imaging Paramagnetic Contrast Agents: Relaxation Enhancement via Weak and Dynamic Electrostatic Interactions with Positively Charged Groups on Endogenous Macromolecules. J Am Chem Soc 2024; 146:134-144. [PMID: 38152996 PMCID: PMC10785807 DOI: 10.1021/jacs.3c06275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Gd-L1 is a macrocyclic Gd-HPDO3A derivative functionalized with a short spacer to a trisulfonated pyrene. When compared to Gd-HPDO3A, the increased relaxivity appears to be determined by both the higher molecular weight and the occurrence of an intramolecularly catalyzed prototropic exchange of the coordinated OH moiety. In water, Gd-L1 displayed a relaxivity of 7.1 mM-1 s-1 (at 298 K and 0.5 T), slightly increasing with the concentration likely due to the onset of intermolecular aggregation. A remarkably high and concentration-dependent relaxivity was measured in human serum (up to 26.5 mM-1 s-1 at the lowest tested concentration of 0.005 mM). The acquisition of 1H-nuclear magnetic relaxation dispersion (NMRD) and 17O-R2 vs T profiles allowed to get an in-depth characterization of the system. In vitro experiments in the presence of human serum albumin, γ-globulins, and polylysine, as well as using media mimicking the extracellular matrix, provided strong support to the view that the trisulfonated pyrene fosters binding interactions with the exposed positive groups on the surface of proteins, responsible for a remarkable in vivo hyperintensity in T1w MR images. The in vivo MR images of the liver, kidneys, and spleen showed a marked contrast enhancement in the first 10 min after the i.v. injection of Gd-L1, which was 2-6-fold higher than that for Gd-HPDO3A, while maintaining a very similar excretion behavior. These findings may pave the way to an improved design of MRI GBCAs, for the first time, based on the setup of weak and dynamic interactions with abundant positive groups on serum and ECM proteins.
Collapse
Affiliation(s)
- Rachele Stefania
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
- Department
of Science and Technological Innovation, University of Eastern Piedmont, Alessandria 15120, Italy
| | - Lorenzo Palagi
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Enza Di Gregorio
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Giuseppe Ferrauto
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Valentina Dinatale
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | | | - Eliana Gianolio
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| |
Collapse
|
7
|
Wang Y, Staudinger JN, Mindt TL, Gasser G. Theranostics with photodynamic therapy for personalized medicine: to see and to treat. Theranostics 2023; 13:5501-5544. [PMID: 37908729 PMCID: PMC10614685 DOI: 10.7150/thno.87363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/26/2023] [Indexed: 11/02/2023] Open
Abstract
Photodynamic Therapy (PDT) is an approved treatment modality, which is presently receiving great attention due to its limited invasiveness, high selectivity and limited susceptibility to drug resistance. Another related research area currently expanding rapidly is the development of novel theranostic agents based on the combination of PDT with different imaging technologies, which allows for both therapy and diagnosis. This combination can help to address issues of suboptimal biodistribution and selectivity through regional imaging, while therapeutic agents enable an effective and personalized therapy. In this review, we describe compounds, whose structures combine PDT photosensitizers with different imaging probes - including examples for near-infrared optical imaging, magnetic resonance imaging (MRI) and nuclear imaging (PET or SPECT), generating novel theranostic drug candidates. We have intentionally focused our attention on novel compounds, which have already been investigated preclinically in vivo in order to demonstrate the potential of such theranostic agents for clinical applications.
Collapse
Affiliation(s)
- Youchao Wang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Johannes Nikodemus Staudinger
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
| | - Thomas L. Mindt
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility, University of Vienna, Währingerstraße 42, and Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| |
Collapse
|
8
|
Navarro RE, Coronado A, Inoue M, Orozco Valencia ÁU, Soberanes Y, Salazar-Medina AJ. Gd(III) and Yb(III) Complexes Derived from a New Water-Soluble Dioxopolyazacyclohexane Macrocycle. ACS OMEGA 2023; 8:34575-34582. [PMID: 37779985 PMCID: PMC10536832 DOI: 10.1021/acsomega.3c03454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023]
Abstract
A new macrocyclic ligand was synthesized by a reaction between diethylenetriaminepentaacetic (DTPA) dianhydride and trans-1,4-diaminocyclohexane, and the Gd(III) and Yb(III) complexes were prepared. The compounds were characterized by spectroscopic methods. Structural calculation by DFT shows that the amide linkages are arranged in such a way that a conformational strain is minimized in the macrocyclic frame. The coordination modes of the ligand and water in the metal complexes were also determined by DFT. The longitudinal relaxation time T1 was measured for aqueous solutions of the Gd(III) complex. The T1 relaxivity arises from the structural feature that a water molecule coordinated to the paramagnetic metal is surrounded by a large open space, through which the exchange of water occurs readily to shorten the relaxation time of water in the entire region, as a result of the chelate conformation defined strictly by the amide groups and the cyclohexane ring.
Collapse
Affiliation(s)
- Rosa E. Navarro
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Sonora, México
- Centro
de Investigación en Alimentación y Desarrollo, A. C., Hermosillo 83304, Sonora, México
| | - Alan Coronado
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Sonora, México
| | - Motomichi Inoue
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Sonora, México
| | - Ángel U. Orozco Valencia
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Sonora, México
| | - Yedith Soberanes
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Sonora, México
| | - Alex J. Salazar-Medina
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Sonora, México
| |
Collapse
|
9
|
Xue Y, Xiao B, Xia Z, Dai L, Xia Q, Zhong L, Zhu C, Zhu J. A New OATP-Mediated Hepatobiliary-Specific Mn(II)-Based MRI Contrast Agent for Hepatocellular Carcinoma in Mice: A Comparison With Gd-EOB-DTPA. J Magn Reson Imaging 2023; 58:926-933. [PMID: 36609994 DOI: 10.1002/jmri.28590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Growing concerns about the safety of gadolinium (Gd)-based contrast agents have reinforced the need for the development of Gd-free MRI contrast agents (CAs) that are effective in imaging liver tumors. PURPOSE To evaluate the ability of Mn-BnO-TyEDTA MRI CA to detect hepatocellular carcinoma in a mouse model of implanted liver tumor. STUDY TYPE Prospective. ANIMAL MODEL Thirteen orthotopically implanted liver tumor mice. FIELD STRENGTH/SEQUENCE 3.0 T/precontrast and postcontrast T1-weighted fast spoiled gradient recalled echo and T2-weighted fast recovery fast spin-echo imaging with fat suppression. ASSESSMENT The relative enhancement ratio was calculated and statistically compared. Lesion detection in postcontrast images was analyzed by calculations of area under the curve (AUC, the increases in liver-to-tumor contrast-to-noise ratio [∆CNR] vs. time curve). Mn or Gd levels were measured in the liver and tumoral tissues by inductively coupled plasma-mass spectrometry. Tumor specimens were stained with hematoxylin and eosin (H&E) and the expression of organic anion transfer peptide (OATP)1B1 was evaluated by immunofluorescence (IF) staining and mean fluorescence intensity (MFI) was calculated. STATISTICAL TESTS Unpaired t-test and two-tailed paired t-test. P < 0.05 was considered statistical significance. RESULTS Mn-BnO-TyEDTA and Gd-EOB-DTPA demonstrated nearly identical enhancement patterns in the liver, tumor, and psoas muscle and no difference in lesion detection (AUC10-30, Mn = 851 ∆CR·min, AUC10-30, Gd = 823 ∆CR·min). A Significant higher concentration of metal (Mn or Gd) was found in the liver compared to the tumor ([Mn]liver = 0.88 ± 0.07 μmmol/g, [Mn]tumor = 0.49 ± 0.05 μmmol/g, [Gd]liver = 0.65 ± 0.07 μmmol/g, [Gd]tumor = 0.27 ± 0.04 μmmol/g). IF staining showed significantly decreased expression of OATP1B1 in the tumor core compared to the liver (MFItumor = 5.28 ± 1.54, MFIliver = 25.49 ± 3.41). DATA CONCLUSION Mn-BnO-TyEDTA can provide comparable hepatobiliary tumor contrast enhancement to Gd-EOB-DTPA. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Yuan Xue
- Medical Imaging Key Laboratory of Sichuan Province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Bin Xiao
- Medical Imaging Key Laboratory of Sichuan Province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhiyang Xia
- Medical Imaging Key Laboratory of Sichuan Province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lixiong Dai
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Qian Xia
- Medical Imaging Key Laboratory of Sichuan Province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lei Zhong
- Medical Imaging Key Laboratory of Sichuan Province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chunrong Zhu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jiang Zhu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
10
|
Snoderly HT, Freshwater KA, de la Torre CM, Panchal DM, Vito JN, Redigolo ML, Bennewitz MF. PEGylation of Alternative MRI Contrast Agents Modulate Neutrophil Extracellular Trap Formation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1142-1143. [PMID: 37613199 DOI: 10.1093/micmic/ozad067.584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Hunter T Snoderly
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, United States
| | | | | | - Dhruvi M Panchal
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, United States
| | - Jenna N Vito
- Texas A&M University, College Station, TX, United States
| | - Marcela L Redigolo
- Shared Research Facilities, West Virginia University, Morgantown, WV, United States
| | - Margaret F Bennewitz
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
11
|
Lv J, Roy S, Xie M, Yang X, Guo B. Contrast Agents of Magnetic Resonance Imaging and Future Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2003. [PMID: 37446520 DOI: 10.3390/nano13132003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
In recent times, magnetic resonance imaging (MRI) has emerged as a highly promising modality for diagnosing severe diseases. Its exceptional spatiotemporal resolution and ease of use have established it as an indispensable clinical diagnostic tool. Nevertheless, there are instances where MRI encounters challenges related to low contrast, necessitating the use of contrast agents (CAs). Significant efforts have been made by scientists to enhance the precision of observing diseased body parts by leveraging the synergistic potential of MRI in conjunction with other imaging techniques and thereby modifying the CAs. In this work, our focus is on elucidating the rational designing approach of CAs and optimizing their compatibility for multimodal imaging and other intelligent applications. Additionally, we emphasize the importance of incorporating various artificial intelligence tools, such as machine learning and deep learning, to explore the future prospects of disease diagnosis using MRI. We also address the limitations associated with these techniques and propose reasonable remedies, with the aim of advancing MRI as a cutting-edge diagnostic tool for the future.
Collapse
Affiliation(s)
- Jie Lv
- School of Computer Science and Engineering, Yulin Normal University, Yulin 537000, China
| | - Shubham Roy
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Miao Xie
- School of Computer Science and Engineering, Yulin Normal University, Yulin 537000, China
| | - Xiulan Yang
- School of Computer Science and Engineering, Yulin Normal University, Yulin 537000, China
| | - Bing Guo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
12
|
Huynh PT, Vu HD, Ryu J, Kim HS, Jung H, Youn SW. Gadolinium-Cyclic 1,4,7,10-Tetraazacyclododecane-1,4,7,10-Tetraacetic Acid-Click-Sulfonyl Fluoride for Probing Serine Protease Activity in Magnetic Resonance Imaging. Molecules 2023; 28:molecules28083538. [PMID: 37110769 PMCID: PMC10141219 DOI: 10.3390/molecules28083538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Serine protease is linked to a wide range of diseases, prompting the development of robust, selective, and sensitive protease assays and sensing methods. However, the clinical needs for serine protease activity imaging have not yet been met, and the efficient in vivo detection and imaging of serine protease remain challenging. Here, we report the development of the gadolinium-cyclic 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-click-Sulfonyl Fluoride (Gd-DOTA-click-SF) MRI contrast agent targeting serine protease. The HR-FAB mass spectrum confirmed the successful formation of our designed chelate. The molar longitudinal relaxivity (r1) of the Gd-DOTA-click-SF probe (r1 = 6.82 mM-1 s-1) was significantly higher than that of Dotarem (r1 = 4.63 mM-1 s-1), in the range of 0.01-0.64 mM at 9.4 T. The in vitro cellular study and the transmetallation kinetics study showed that the safety and stability of this probe are comparable to those of conventional Dotarem. Ex vivo abdominal aortic aneurysm (AAA) MRI revealed that this probe has a contrast-agent-to-noise ratio (CNR) that is approximately 51 ± 23 times greater than that of Dotarem. This study of superior visualization of AAA suggests that it has the potential to detect elastase in vivo and supports the feasibility of probing serine protease activity in T1-weighted MRI.
Collapse
Affiliation(s)
- Phuong Tu Huynh
- Department of Radiology, Daegu Catholic University School of Medicine, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 42472, Republic of Korea
| | - Huy Duc Vu
- Department of Radiology, Daegu Catholic University School of Medicine, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 42472, Republic of Korea
| | - Junghwa Ryu
- Department of Radiology, Daegu Catholic University School of Medicine, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 42472, Republic of Korea
| | - Hee Su Kim
- Korea Basic Science Institute (Daegu Center), Kyungpook University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Hoesu Jung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), 88, Dongnae-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Sung Won Youn
- Department of Radiology, Daegu Catholic University School of Medicine, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 42472, Republic of Korea
| |
Collapse
|
13
|
Li L, Liu M, Deng S, Zhu X, Song Y, Song E. A pH-responsive magnetic resonance tuning probe for precise imaging of bacterial infection in vivo. Acta Biomater 2023; 164:487-495. [PMID: 37061111 DOI: 10.1016/j.actbio.2023.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
Accurate and sensitive detection of bacteria is essential for treating bacterial infections. Herein, a pH-responsive magnetic resonance tuning (MRET) probe, whose T1-weighted signal is activated in the bacteria-infected acid microenvironment, is developed for in situ accurately magnetic resonance imaging (MRI) of bacterial infection in vivo. The MRET probe (MDVG-1) is an assembly of paramagnetic enhancer (gadolinium-modified i-motif DNA3, abbreviated as Gd-DNA3-Gd) and the precursor of superparamagnetic quencher (DNA and vancomycin-modified magnetic nanoparticle, abbreviated as MDV). The T1-weighted signal of Gd-DNA3-Gd is quenched once the formation of MDVG-1 (MRET ON). Interestingly, the MDVG-1 probe was disassembled into the monomers of Gd-DNA3-Gd and MDV under the bacteria-infected acid microenvironment, resulting significantly enhanced T1-weighted signal at the infected site (MRET OFF). The pH-responsive MRET probe-based enhanced MRI signal and bacteria targeting significantly improve the distinction between bacterial infectious tissues and sterile inflamed tissues, which provides a promising approach for accurately detecting bacterial infection in vivo. STATEMENT OF SIGNIFICANCE: : Detecting pathogenic bacteria in vivo based on magnetic resonance imaging (MRI) strategy has been exploring recently. Although various bacterial-targeted MRI probes have been developed to image bacteria in vivo, the MRI signal of these MRI probes is always "on", which inevitably generates nonspecific background MRI signals, affecting the accuracy of MRI to a certain extent. In the current study, based on the magnetic resonance tuning (MRET) phenomenon, we present a pH-responsive MRET probe (MDVG-1) with T2-weighted imaging to T1-weighted imaging switchable properties to achieve in situ precise imaging of bacterial infection in vivo.
Collapse
Affiliation(s)
- Linyao Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Maojuan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Siyu Deng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaokang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, CAS, Beijing, 100085, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
14
|
Janasik D, Imielska P, Krawczyk T. Tuning the pH of Activation of Fluorinated Hydrazone-Based Switches─A Pathway to Versatile 19F Magnetic Resonance Imaging Contrast Agents. ACS Sens 2023; 8:721-727. [PMID: 36695323 PMCID: PMC9972467 DOI: 10.1021/acssensors.2c02251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Molecular switches have become an area of great interest in recent years. They are explored as high-density data storage and organic diodes in molecular electronics as well as chemosensors due to their ability to undergo a transition between well-defined structures under the action of external stimuli. One of the types of such switches is hydrazones. They work by changing the configuration from E to Z under the influence of pH or light. The change in configuration is accompanied by a change in the absorption band and changes in the nuclear magnetic resonance (NMR) spectrum. In this publication, the structure-property relationship of fluorinated hydrazone switches was established. A linear relationship between the Hammett substituent constants and the pH where the switching occurs was found. Introduction of strong electron-donating groups allowed obtaining a hydrazone switch of pKa = 6 suitable for application in 19F MRI as contrast agents.
Collapse
Affiliation(s)
- Dawid Janasik
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100Gliwice, Poland
| | - Patrycja Imielska
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100Gliwice, Poland
| | - Tomasz Krawczyk
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100Gliwice, Poland
| |
Collapse
|
15
|
Puskar A, Saadah B, Rauf A, Kasperek SR, Umair M. A primer on contrast agents for magnetic resonance imaging of post‐procedural and follow‐up imaging of islet cell transplant. NANO SELECT 2023. [DOI: 10.1002/nano.202200147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Affiliation(s)
- Anessa Puskar
- Carle Illinois College of Medicine Urbana‐Champaign Urbana Illinois USA
| | - Bara Saadah
- Carle Illinois College of Medicine Urbana‐Champaign Urbana Illinois USA
| | - Asad Rauf
- Carle Illinois College of Medicine Urbana‐Champaign Urbana Illinois USA
| | | | - Muhammad Umair
- Department of Radiology Johns Hopkins Baltimore Maryland USA
- Department of Biomedical Engineering University of Illinois Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
16
|
Markiewicz KH, Marmuse L, Mounsamy M, Billotey C, Destarac M, Mingotaud C, Marty JD. Assembly of Poly(vinylphosphonic acid)-Based Double Hydrophilic Block Copolymers by Gadolinium Ions for the Formation of Highly Stable MRI Contrast Agents. ACS Macro Lett 2022; 11:1319-1324. [PMID: 36343111 DOI: 10.1021/acsmacrolett.2c00489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mixing double-hydrophilic block copolymers containing a poly(vinylphosphonic acid) block with gadolinium ions in water leads to the spontaneous formation of polymeric nanoparticles. With an average diameter near 20 nm, the nanoparticles are stable after dilution or change of pH and ionic strength. High magnetic relaxivities were measured in vitro, and in vivo magnetic resonance imaging on rats demonstrates the high potential of such polymeric assemblies.
Collapse
Affiliation(s)
- Karolina H Markiewicz
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse, Cedex 9, France.,Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Laurence Marmuse
- EMR 3738 Ciblage Thérapeutique en Oncologie, Université de Lyon, Université Jean Monnet, Hospices Civils de Lyon, 42023 Saint-Etienne, Cedex 2, France
| | - Margaux Mounsamy
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse, Cedex 9, France
| | - Claire Billotey
- EMR 3738 Ciblage Thérapeutique en Oncologie, Université de Lyon, Université Jean Monnet, Hospices Civils de Lyon, 42023 Saint-Etienne, Cedex 2, France
| | - Mathias Destarac
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse, Cedex 9, France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse, Cedex 9, France
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse, Cedex 9, France
| |
Collapse
|
17
|
Pradhan RN, Irrera P, Romdhane F, Panda SK, Longo DL, Torres J, Kremer C, Assaiya A, Kumar J, Singh AK. Di-Pyridine-Containing Macrocyclic Triamide Fe(II) and Ni(II) Complexes as ParaCEST Agents. Inorg Chem 2022; 61:16650-16663. [PMID: 36205705 DOI: 10.1021/acs.inorgchem.2c02242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fe(II) and Ni(II) paraCEST contrast agents containing the di-pyridine macrocyclic ligand 2,2',2″-(3,7,10-triaza-1,5(2,6)-dipyridinacycloundecaphane-3,7,10-triyl)triacetamide (DETA) are reported here. Both [Fe(DETA)]2+ and [Ni(DETA)]2+ complexes were structurally characterized. Crystallographic data revealed the seven-coordinated distorted pentagonal bipyramidal geometry of the [Fe(DETA)]·(BF4)2·MeCN complex with five coordinated nitrogen atoms from the macrocyclic ring and two coordinated oxygen atoms from two amide pendant arms. The [Ni(DETA)]·Cl2·2H2O complex was six-coordinated in nature with a distorted octahedral geometry. Four coordinated nitrogen atoms were from the macrocyclic ring, and two coordinated oxygen atoms were from two amide pendant arms. [Fe(DETA)]2+ exhibited well-resolved sharp proton resonances, whereas very broad proton resonances were observed in the case of [Ni(DETA)]2+ due to the long electronic relaxation times. The CEST peaks for the [Fe(DETA)]2+ complex showed one highly downfield-shifted and intense peak at 84 ppm with another shifted but less intense peak at 28 ppm with good CEST contrast efficiency at body temperature, whereas [Ni(DETA)]2+ showed only one highly shifted intense peak at 78 ppm from the bulk water protons. Potentiometric titrations were performed to determine the protonation constants of the ligand and the thermodynamic stability constant of the [M(DETA)]2+ (M = Fe, Co, Ni, Cu, Zn) species at 25.0 °C and I = 0.15 mol·L-1 NaClO4. Metal exchange studies confirmed the stability of the complexes in acidic medium in the presence of physiologically relevant anions and an equimolar concentration of Zn(II) ions.
Collapse
Affiliation(s)
- Rabindra N Pradhan
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar752050, India
| | - Pietro Irrera
- University of Campania "Luigi Vanvitelli", Caserta81100, Italy
| | - Feriel Romdhane
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Torino10126, Italy
| | - Suvam Kumar Panda
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar752050, India
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Torino10126, Italy
| | - Julia Torres
- Área Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Montevideo11800, Uruguay
| | - Carlos Kremer
- Área Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Montevideo11800, Uruguay
| | - Anshul Assaiya
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune411 007, India
| | - Janesh Kumar
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune411 007, India
| | - Akhilesh K Singh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar752050, India
| |
Collapse
|
18
|
Gadolinium Accumulation and Toxicity on In Vitro Grown Stevia rebaudiana: A Case-Study on Gadobutrol. Int J Mol Sci 2022; 23:ijms231911368. [PMID: 36232670 PMCID: PMC9569896 DOI: 10.3390/ijms231911368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Gadolinium-based contrast agents are molecular complexes which are extensively used for diagnostic purposes. Apart from their tremendous contribution to disease diagnostics, there are several issues related to their use. They are extremely stable complexes and potential contaminants of surface and ground waters, an issue which is documented worldwide. The irrigation of fields with contaminated surface waters or their fertilization with sludge from wastewater treatment plants can lead to the introduction of Gd into the human food supply chain. Thus, this study focused on the potential toxicity of Gd on plants. For this purpose, we have studied the molecular effects of gadobutrol (a well-known MRI contrast agent) exposure on in vitro-grown Stevia rebaudiana. The effects of gadobutrol on plant morphology, on relevant plant metabolites such as chlorophylls, carotenoids, ascorbic acids (HPLC), minerals (ICP-OES), and on the generation of free radical species (MDA assay and EPR) were assessed. Exposures of 0.01, 0.05, 0.1, 1, and 3 mM gadobutrol were used. We found a correlation between the gadobutrol dose and the plant growth and concentration of metabolites. Above the 0.1. mM dose of gadobutrol, the toxic effects of Gd+3 ions became significant.
Collapse
|
19
|
Kampmann A, Hiller W, Weberskirch R. Efficient Synthesis of Macromolecular DO3A@Gn Derivatives for Potential Application in MRI Diagnostics: From Polymer Conjugates to Polymer Nanoparticles. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anne‐Larissa Kampmann
- Fakultät für Chemie und Chemische Biologie Otto‐Hahn Str. 6, TU Dortmund, Otto‐Hahn Str. 6 TU, D‐44227 Dortmund Germany
| | - Wolf Hiller
- Fakultät für Chemie und Chemische Biologie Otto‐Hahn Str. 6, TU Dortmund, Otto‐Hahn Str. 6 TU, D‐44227 Dortmund Germany
| | - Ralf Weberskirch
- Fakultät für Chemie und Chemische Biologie Otto‐Hahn Str. 6, TU Dortmund, Otto‐Hahn Str. 6 TU, D‐44227 Dortmund Germany
| |
Collapse
|
20
|
Karan S, Cho MY, Lee H, Park HS, Han EH, Song Y, Lee Y, Kim M, Cho JH, Sessler JL, Hong KS. Hypoxia-Responsive Luminescent CEST MRI Agent for In Vitro and In Vivo Tumor Detection and Imaging. J Med Chem 2022; 65:7106-7117. [PMID: 35580357 DOI: 10.1021/acs.jmedchem.1c01745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hypoxia is a feature of most solid tumors and a key determinant of cancer growth and propagation. Sensing hypoxia effectively could lead to more favorable clinical outcomes. Here, we report a molecular antenna-based bimodal probe designed to exploit the complementary advantages of magnetic resonance (MR)- and optical-based imaging. Specifically, we describe the synthesis and evaluation of a dual-action probe (NO2-Eu) that permits hypoxia-activated chemical exchange saturation transfer (CEST) MR and optical imaging. In CT26 cells, this NO2-Eu probe not only provides an enhanced CEST MRI signal but also turns "on" the optical signal under hypoxic conditions. Time-dependent in vivo CEST imaging in a hypoxic CT26 tumor xenograft mouse model revealed probe-dependent tumor detection by CEST MRI contrast in the tumor area. We thus suggest that dual-action hypoxia probes, like that reported here, could have a role to play in solid tumor diagnosis and monitoring.
Collapse
Affiliation(s)
- Sanu Karan
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Mi Young Cho
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Hyunseung Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Hye Sun Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Eun Hee Han
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Youngkyu Song
- Research Equipment Operations Division, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Youlee Lee
- Research Equipment Operations Division, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Mina Kim
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Science, London WC1N 3BG, United Kingdom
| | - Jee-Hyun Cho
- Research Equipment Operations Division, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Kwan Soo Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
21
|
Jiang G, Fan D, Tian J, Xiang Z, Fang Q. Self-Confirming Magnetosomes for Tumor-Targeted T 1 /T 2 Dual-Mode MRI and MRI-Guided Photothermal Therapy. Adv Healthc Mater 2022; 11:e2200841. [PMID: 35579102 DOI: 10.1002/adhm.202200841] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 12/29/2022]
Abstract
Nanomaterials as T1 /T2 dual-mode magnetic resonance imaging (MRI) contrast agents have great potential in improving the accuracy of tumor diagnosis. Applications of such materials, however, are limited by the complicated chemical synthesis process and potential biosafety issues. In this study, the biosynthesis of manganese (Mn)-doped magnetosomes (MagMn) that not only can be used in T1 /T2 dual-mode MR imaging with self-confirmation for tumor detection, but also improve the photothermal conversion efficiency for MRI-guided photothermal therapy (PTT) is reported. The MagMn nanoparticles (NPs) are naturally produced through the biomineralization of magnetotactic bacteria by doping Mn into the ferromagnetic iron oxide crystals. In vitro and in vivo studies demonstrated that targeting peptides functionalized MagMn enhanced both T1 and T2 MRI signals in tumor tissue and significantly inhibited tumor growth by the further MRI-guided PTT. It is envisioned that the biosynthesized multifunctional MagMn nanoplatform may serve as a potential theranostic agent for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Gexuan Jiang
- Laboratory of Theoretical and Computational Nanoscience CAS Key Laboratory of Nanophotonic Materials and Devices CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Di Fan
- Laboratory of Theoretical and Computational Nanoscience CAS Key Laboratory of Nanophotonic Materials and Devices CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jiesheng Tian
- State Key Laboratories for Agro‐biotechnology and College of Biological Sciences China Agricultural University Beijing 100193 P. R. China
| | - Zhichu Xiang
- Laboratory of Theoretical and Computational Nanoscience CAS Key Laboratory of Nanophotonic Materials and Devices CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education) College of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Qiaojun Fang
- Laboratory of Theoretical and Computational Nanoscience CAS Key Laboratory of Nanophotonic Materials and Devices CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Sino‐Danish Center for Education and Research Beijing 101408 China
| |
Collapse
|
22
|
Di Gregorio E, Arena F, Gianolio E, Ferrauto G, Aime S. The interaction between iodinated X‐ray contrast agents and macrocyclic
GBCAs
provides a signal enhancement in
T
1
‐weighted MR
images: Insights into the renal excretion pathways of
Gd‐HPDO3A
and iodixanol in healthy mice. Magn Reson Med 2022; 88:357-364. [PMID: 35253921 PMCID: PMC9314041 DOI: 10.1002/mrm.29190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/15/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
Purpose This work aims to investigate the supramolecular binding interactions that occur between iodinated X‐ray contrast agents (CAs) and macrocyclic gadolinium (Gd)–based MRI contrast agents (GBCAs). This study provides some new insights in the renal excretion pathways of the two types of imaging probes. Methods The water‐proton relaxivities (r1) of clinically approved macrocyclic and linear GBCAs have been measured in the presence of different iodinated X‐ray contrast agents at different magnetic field strengths in buffer and in serum. The in vivo MRI and X‐ray CT of mice injected with either Gd‐HPDO3A or a Gd‐HPDO3A + iodixanol mixture were then acquired to assess the biodistribution of the two probes. Results A significant increase in r1 (up to approximately 200%) was observed for macrocyclic GBCAs when measured in the presence of an excess of iodinated X‐ray CAs (1:100 mol:mol) in serum. The co‐administration of Gd‐HPDO3A and iodixanol in vivo resulted in a marked increase in the signal intensity of the kidney regions in T1‐weighted MR images. Moreover, the co‐presence of the two agents resulted in the extended persistence of the MRI signal enhancement, suggesting that the Gd‐HPDO3A/iodixanol adduct was eliminated more slowly than the typical washing out of Gd‐HPDO3A. Conclusions The reported results show that it is possible to detect the co‐presence of iodinated agents and macrocyclic GBCAs in contrast‐enhanced MR images. The new information may be useful in the design of novel experiments toward improved diagnostic outcomes.
Collapse
Affiliation(s)
- Enza Di Gregorio
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences University of Turin Turin Italy
| | - Francesca Arena
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences University of Turin Turin Italy
| | - Eliana Gianolio
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences University of Turin Turin Italy
| | - Giuseppe Ferrauto
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences University of Turin Turin Italy
| | - Silvio Aime
- Istituto di ricovero e cura a carattere scientifico Naples Italy
| |
Collapse
|
23
|
Janasik D, Jasiński K, Węglarz W, Nemec I, Jewula P, Krawczyk T. Ratiometric pH-Responsive 19F Magnetic Resonance Imaging Contrast Agents Based on Hydrazone Switches. Anal Chem 2022; 94:3427-3431. [PMID: 35156816 PMCID: PMC8892427 DOI: 10.1021/acs.analchem.1c04978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022]
Abstract
Hydrazone-based molecular switches serve as efficient ratiometric pH-sensitive agents that can be tracked with 19F NMR/MRI and 1H NMR. Structural changes induced between pH 3 and 4 lead to signal appearance and disappearance at 1H and 19F NMR spectra allowing ratiometric pH measurements. The most pronounced are resonances of the CF3 group shifted by 1.8 ppm with 19F NMR and a hydrazone proton shifted by 2 ppm with 1H NMR.
Collapse
Affiliation(s)
- Dawid Janasik
- Department
of Chemical Organic Technology and Petrochemistry, Silesian University of Technology Krzywoustego 4,44-100 Gliwice, Poland
| | - Krzysztof Jasiński
- Institute
of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland
| | | | - Ivan Nemec
- Central
European Institute of Technology Brno University of Technology, Purkyňova 123, 612-00 Brno, Czech
Republic
- Department
of Inorganic Chemistry, Faculty of Science, Palacký University 17. Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Pawel Jewula
- Central
European Institute of Technology Brno University of Technology, Purkyňova 123, 612-00 Brno, Czech
Republic
| | - Tomasz Krawczyk
- Department
of Chemical Organic Technology and Petrochemistry, Silesian University of Technology Krzywoustego 4,44-100 Gliwice, Poland
| |
Collapse
|
24
|
Beck H, Härter M, Haß B, Schmeck C, Baerfacker L. Small molecules and their impact in drug discovery: A perspective on the occasion of the 125th anniversary of the Bayer Chemical Research Laboratory. Drug Discov Today 2022; 27:1560-1574. [PMID: 35202802 DOI: 10.1016/j.drudis.2022.02.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/13/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
The year 2021 marks the 125th anniversary of the Bayer Chemical Research Laboratory in Wuppertal, Germany. A significant number of prominent small-molecule drugs, from aspirin to Xarelto, have emerged from this research site. In this review, we shed light on historic cornerstones of small-molecule drug research, discussing current and future trends in drug discovery as well as providing a personal outlook on the future of drug research with a focus on small molecules.
Collapse
Affiliation(s)
- Hartmut Beck
- Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany.
| | - Michael Härter
- Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Bastian Haß
- Digital & Commercial Innovation, Pharmaceuticals, Bayer AG, Berlin, Germany
| | - Carsten Schmeck
- Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Lars Baerfacker
- Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| |
Collapse
|
25
|
Snoderly HT, Freshwater KA, Martinez de la Torre C, Panchal DM, Vito JN, Bennewitz MF. PEGylation of Metal Oxide Nanoparticles Modulates Neutrophil Extracellular Trap Formation. BIOSENSORS 2022; 12:123. [PMID: 35200382 PMCID: PMC8869785 DOI: 10.3390/bios12020123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/04/2022] [Accepted: 02/13/2022] [Indexed: 06/01/2023]
Abstract
Novel metal oxide nanoparticle (NP) contrast agents may offer safety and functionality advantages over conventional gadolinium-based contrast agents (GBCAs) for cancer diagnosis by magnetic resonance imaging. However, little is known about the behavior of metal oxide NPs, or of their effect, upon coming into contact with the innate immune system. As neutrophils are the body's first line of defense, we sought to understand how manganese oxide and iron oxide NPs impact leukocyte functionality. Specifically, we evaluated whether contrast agents caused neutrophils to release web-like fibers of DNA known as neutrophil extracellular traps (NETs), which are known to enhance metastasis and thrombosis in cancer patients. Murine neutrophils were treated with GBCA, bare manganese oxide or iron oxide NPs, or poly(lactic-co-glycolic acid) (PLGA)-coated metal oxide NPs with different incorporated levels of poly(ethylene glycol) (PEG). Manganese oxide NPs elicited the highest NETosis rates and had enhanced neutrophil uptake properties compared to iron oxide NPs. Interestingly, NPs with low levels of PEGylation produced more NETs than those with higher PEGylation. Despite generating a low rate of NETosis, GBCA altered neutrophil cytokine expression more than NP treatments. This study is the first to investigate whether manganese oxide NPs and GBCAs modulate NETosis and reveals that contrast agents may have unintended off-target effects which warrant further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | - Margaret F. Bennewitz
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA; (H.T.S.); (K.A.F.); (C.M.d.l.T.); (D.M.P.); (J.N.V.)
| |
Collapse
|
26
|
Nabiyan A, Max JB, Schacher FH. Double hydrophilic copolymers - synthetic approaches, architectural variety, and current application fields. Chem Soc Rev 2022; 51:995-1044. [PMID: 35005750 DOI: 10.1039/d1cs00086a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Solubility and functionality of polymeric materials are essential properties determining their role in any application. In that regard, double hydrophilic copolymers (DHC) are typically constructed from two chemically dissimilar but water-soluble building blocks. During the past decades, these materials have been intensely developed and utilised as, e.g., matrices for the design of multifunctional hybrid materials, in drug carriers and gene delivery, as nanoreactors, or as sensors. This is predominantly due to almost unlimited possibilities to precisely tune DHC composition and topology, their solution behavior, e.g., stimuli-response, and potential interactions with small molecules, ions and (nanoparticle) surfaces. In this contribution we want to highlight that this class of polymers has experienced tremendous progress regarding synthesis, architectural variety, and the possibility to combine response to different stimuli within one material. Especially the implementation of DHCs as versatile building blocks in hybrid materials expanded the range of water-based applications during the last two decades, which now includes also photocatalysis, sensing, and 3D inkjet printing of hydrogels, definitely going beyond already well-established utilisation in biomedicine or as templates.
Collapse
Affiliation(s)
- Afshin Nabiyan
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Johannes B Max
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
27
|
Di Girolamo M, Grossi A. Contrast agents for MRI and side effects. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
28
|
Panza N, Tseberlidis G, Caselli A, Vicente R. Recent progresses in the chemistry of 12-membered pyridine-containing tetraazamacrocycles: From synthesis to catalysis. Dalton Trans 2022; 51:10635-10657. [DOI: 10.1039/d2dt00597b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article provides an overview (non-comprehensive) on recent developments regarding pyridine-containing 12-membered tetraazamacrocycles with pyclen or Py2N2 backbones and their metal complexes from 2017 to the present. Firstly, the synthesis...
Collapse
|
29
|
Kastelik-Hryniewiecka A, Jewula P, Bakalorz K, Kramer-Marek G, Kuźnik N. Targeted PET/MRI Imaging Super Probes: A Critical Review of Opportunities and Challenges. Int J Nanomedicine 2022; 16:8465-8483. [PMID: 35002239 PMCID: PMC8733213 DOI: 10.2147/ijn.s336299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Recently, the demand for hybrid PET/MRI imaging techniques has increased significantly, which has sparked the investigation into new ways to simultaneously track multiple molecular targets and improve the localization and expression of biochemical markers. Multimodal imaging probes have recently emerged as powerful tools for improving the detection sensitivity and accuracy-both important factors in disease diagnosis and treatment; however, only a limited number of bimodal probes have been investigated in preclinical models. Herein, we briefly describe the strengths and limitations of PET and MRI modalities and highlight the need for the development of multimodal molecularly-targeted agents. We have tried to thoroughly summarize data on bimodal probes available on PubMed. Emphasis was placed on their design, safety profiles, pharmacokinetics, and clearance properties. The challenges in PET/MR probe development using a number of illustrative examples are also discussed, along with future research directions for these novel conjugates.
Collapse
Affiliation(s)
- Anna Kastelik-Hryniewiecka
- Silesian University of Technology, Faculty of Chemistry, Gliwice, Poland
- Radiopharmacy and Preclinical PET Imaging Unit, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Pawel Jewula
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Karolina Bakalorz
- Silesian University of Technology, Faculty of Chemistry, Gliwice, Poland
| | - Gabriela Kramer-Marek
- Radiopharmacy and Preclinical PET Imaging Unit, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Nikodem Kuźnik
- Silesian University of Technology, Faculty of Chemistry, Gliwice, Poland
| |
Collapse
|
30
|
Mihajlović-Lalić LE, Poljarević J, Grgurić-Šipka S. Metal complexes with α-picolinic acid frameworks and their antitumor activity. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Abstract
Magnetic resonance imaging (MRI) is one of the most powerful imaging tools today, capable of displaying superior soft-tissue contrast. This review discusses developments in the field of 19 F MRI multimodal probes in combination with optical fluorescence imaging (OFI), 1 H MRI, chemical exchange saturation transfer (CEST) MRI, ultrasonography (USG), X-ray computed tomography (CT), single photon emission tomography (SPECT), positron emission tomography (PET), and photoacoustic imaging (PAI). In each case, multimodal 19 F MRI probes compensate for the deficiency of individual techniques and offer improved sensitivity or accuracy of detection over unimodal counterparts. Strategies for designing 19 F MRI multimodal probes are described with respect to their structure, physicochemical properties, biocompatibility, and the quality of images.
Collapse
Affiliation(s)
- Dawid Janasik
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego, 4, 44-100, Gliwice, Poland
| | - Tomasz Krawczyk
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego, 4, 44-100, Gliwice, Poland
| |
Collapse
|
32
|
Garifo S, Stanicki D, Boutry S, Larbanoix L, Ternad I, Muller RN, Laurent S. Functionalized silica nanoplatform as a bimodal contrast agent for MRI and optical imaging. NANOSCALE 2021; 13:16509-16524. [PMID: 34590110 DOI: 10.1039/d1nr04972k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The preparation of an efficient bimodal single probe for magnetic resonance (MRI) and optical imaging (OI) is reported. Paramagnetic properties have been obtained by the non-covalent encapsulation of the clinically used Gd3+ chelate (i.e., Gd-HP-DO3A) within silica nanoparticles through a water-in-oil microemulsion process. To ensure colloidal stability, the surface of the particles was modified by means of treatment using PEG-silane, and further functionalized photochemically using a diazirine linker bearing carboxylic functions. Optical properties were obtained by the covalent grafting of a near-infrared emitting probe (NIR) on the resulting surface. The confinement of Gd complexes within the permeable matrix resulted in a significant increase in longitudinal relaxivities (>500% at 20 MHz) in comparison with the relaxivities of free chelate, while the post-functionalization process of PEG with fluorescent compounds appeared promising for the derivatization procedure. Several physico-chemical properties attested to the efficient surface modification and confirmed covalent grafting. Preliminary imaging experiments complete this study and confirm the potential of the presented system for preclinical imaging experiments.
Collapse
Affiliation(s)
- Sarah Garifo
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000 Mons, Belgium.
| | - Dimitri Stanicki
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000 Mons, Belgium.
| | - Sébastien Boutry
- Center for Microscopy and Molecular Imaging (CMMI), 8 rue Adrienne Bolland, 6041 Gosselies, Belgium
| | - Lionel Larbanoix
- Center for Microscopy and Molecular Imaging (CMMI), 8 rue Adrienne Bolland, 6041 Gosselies, Belgium
| | - Indiana Ternad
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000 Mons, Belgium.
| | - Robert N Muller
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000 Mons, Belgium.
- Center for Microscopy and Molecular Imaging (CMMI), 8 rue Adrienne Bolland, 6041 Gosselies, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000 Mons, Belgium.
- Center for Microscopy and Molecular Imaging (CMMI), 8 rue Adrienne Bolland, 6041 Gosselies, Belgium
| |
Collapse
|
33
|
Geraldes CF, Castro MMC, Peters JA. Mn(III) porphyrins as potential MRI contrast agents for diagnosis and MRI-guided therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Palagi L, Di Gregorio E, Costanzo D, Stefania R, Cavallotti C, Capozza M, Aime S, Gianolio E. Fe(deferasirox) 2: An Iron(III)-Based Magnetic Resonance Imaging T1 Contrast Agent Endowed with Remarkable Molecular and Functional Characteristics. J Am Chem Soc 2021; 143:14178-14188. [PMID: 34432442 DOI: 10.1021/jacs.1c04963] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The search for alternatives to Gd-containing magnetic resonance imaging (MRI) contrast agents addresses the field of Fe(III)-bearing species with the expectation that the use of an essential metal ion may avoid the issues raised by the exogenous Gd. Attention is currently devoted to highly stable Fe(III) complexes with hexacoordinating ligands, although they may lack any coordinated water molecule. We found that the hexacoordinated Fe(III) complex with two units of deferasirox, a largely used iron sequestering agent, owns properties that can make it a viable alternative to Gd-based agents. Fe(deferasirox)2 displays an outstanding thermodynamic stability, a high binding affinity to human serum albumin (three molecules of complex are simultaneously bound to the protein), and a good relaxivity that increases in the range 20-80 MHz. The relaxation enhancement is due to second sphere water molecules likely forming H-bonds with the coordinating phenoxide oxygens. A further enhancement was observed upon the formation of the supramolecular adduct with albumin. The binding sites of Fe(deferasirox)2 on albumin were characterized by relaxometric competitive assays. Preliminary in vivo imaging studies on a tumor-bearing mouse model indicate that, on a 3 T MRI scanner, the contrast ability of Fe(deferasirox)2 is comparable to the one shown by the commercial Gd(DTPA) agent. ICP-MS analyses on blood samples withdrawn from healthy mice administered with a dose of 0.1 mmol/kg of Fe(deferasirox)2 showed that the complex is completely removed in 24 h.
Collapse
Affiliation(s)
- Lorenzo Palagi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Diana Costanzo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Rachele Stefania
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | | | - Martina Capozza
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
- IRCCS SDN, Via E. Gianturco 113, Napoli 80143, Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| |
Collapse
|
35
|
Dasari S, Singh S, Abbas Z, Sivakumar S, Patra AK. Luminescent lanthanide(III) complexes of DTPA-bis(amido-phenyl-terpyridine) for bioimaging and phototherapeutic applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119709. [PMID: 33823402 DOI: 10.1016/j.saa.2021.119709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/31/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
We report here a series of coordinatively-saturated and thermodynamically stable luminescent [Ln(dtntp)(H2O)] [Ln(III) = Eu (1), Tb (2), Gd (3), Sm (4) and Dy (5)] complexes using an aminophenyl-terpyridine appended-DTPA (dtntp) chelating ligand as cell imaging and photocytotoxic agents. The N,N″-bisamide derivative of H5DTPA named as dtntp is based on 4'-(4-aminophenyl)-2,2':6',2″-terpyridine conjugated to diethylenetriamine-N,N',N″-pentaacetic acid. The structure, physicochemical properties, detailed photophysical aspects, interaction with DNA and serum proteins, and photocytotoxicity were studied. The intrinsic luminescence of Eu(III) and Tb(III) complexes due to f → f transitions used to evaluate their cellular uptake and distribution in cancer cells. The solid-state structure of [Eu(dtntp)(DMF)] (1·DMF) shows a discrete mononuclear molecule with nine-coordinated {EuN3O6} distorted tricapped-trigonal prism (TTP) coordination geometry around the Eu(III). The {EuN3O6} core results from three nitrogen atoms and three carboxylate oxygen atoms, and two carbonyl oxygen atoms of the amide groups of dtntp ligand. The ninth coordination site is occupied by an oxygen atom of DMF as a solvent from crystallization. The designed probes have two aromatic pendant phenyl-terpyridine (Ph-tpy) moieties as photo-sensitizing antennae to impart the desirable optical properties for cellular imaging and photocytotoxicity. The photostability, coordinative saturation, and energetically rightly poised triplet states of dtntp ligand allow the efficient energy transfer (ET) from Ph-tpy to the emissive excited states of the Eu(III)/Tb(III), makes them luminescent cellular imaging probes. The Ln(III) complexes show significant binding tendency to DNA (K ~ 104 M-1), and serum proteins (BSA and HSA) (K ~ 105 M-1). The luminescent Eu(III) (1) and Tb(III) (2) complexes were utilized for cellular internalization and cytotoxicity studies due to their optimal photophysical properties. The cellular uptake studies using fluorescence imaging displayed intracellular (cytosolic and nuclear) localization in cancer cells. The complexes 1 and 2 displayed significant photocytotoxicity in HeLa cells. These results offer a modular design strategy with further scope to utilize appended N,N,N-donor tpy moiety for developing light-responsive luminescent Ln(III) bioprobes for theranostic applications.
Collapse
Affiliation(s)
- Srikanth Dasari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Swati Singh
- Department of Chemical Engineering and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Zafar Abbas
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Sri Sivakumar
- Department of Chemical Engineering and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.
| |
Collapse
|
36
|
Dai L, Zhang J, Wong CT, Chan WTK, Ling X, Anderson CJ, Law GL. Design of Functional Chiral Cyclen-Based Radiometal Chelators for Theranostics. Inorg Chem 2021; 60:7082-7088. [PMID: 33689299 DOI: 10.1021/acs.inorgchem.0c03734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of water-soluble chiral cyclen-based chelators with chemical handles for selective targeting have been synthesized (cyclen = 1,4,7,10-Tetraazacyclododecane). Optical studies, relaxivity measurements, and competitive titrations were performed to show the versatility of these chiral chelators. The complexations of L3, L4, and L5 with Lu3+, Y3+, Sc3+, and Cu2+ were successfully demonstrated in around 90% to 100% yields. Efficient and rapid radiolabeling of L5 with 177Lu was achieved under mild conditions with 96% yield. The chelators exhibit near quantitative labeling efficiencies with a wide range of radiometal ions, which are promising for the development of targeting specific radiopharmaceutical and molecular magnetic resonance imaging contrast agents.
Collapse
Affiliation(s)
- Lixiong Dai
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| | - Junhui Zhang
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| | - Carlos Tinlong Wong
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| | - Wesley Ting Kwok Chan
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| | - Xiaoxi Ling
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Carolyn J Anderson
- Departments of Medicine, Radiology, Pharmacology and Chemical Biology, Chemistry, and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Departments of Chemistry and Radiology, University of Missouri, Columbia, Missouri 65211, United States
| | - Ga-Lai Law
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| |
Collapse
|
37
|
Ferrauto G, Tripepi M, Di Gregorio E, Bitonto V, Aime S, Delli Castelli D. Detection of U-87 Tumor Cells by RGD-Functionalized/Gd-Containing Giant Unilamellar Vesicles in Magnetization Transfer Contrast Magnetic Resonance Images. Invest Radiol 2021; 56:301-312. [PMID: 33273375 DOI: 10.1097/rli.0000000000000742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The targeting of tumor cells and their visualization with magnetic resonance imaging (MRI) is an important task in biomedicine. The low sensitivity of this technique is a significant drawback and one that may hamper the detection of the imaging reporters used.To overcome this sensitivity issue, this work explores the synergy between 2 strategies: (1) arginine, glycine, aspartic acid peptide (RGD)-functionalized giant unilamellar vesicles (GUVs) loaded with Gd complexes to accumulate large amounts of MRI contrast agent at the targeting site; and (2) the use of magnetization transfer contrast (MTC), which is a sensitive MRI technique for the detection of Gd complexes in the tumor region. MATERIALS AND METHODS Giant unilamellar vesicles were prepared using the gentle swelling method, and the cyclic RGD targeting moiety was introduced onto the external membrane. Paramagnetic Gd-containing complexes and the fluorescent probe rhodamine were both part of the vesicle membranes and Gd-complexes were also the payload within the inner aqueous cavity. Giant unilamellar vesicles that were loaded with the imaging reporters, but devoid of the RGD targeting moiety, were used as controls. U-87 MG human glioblastoma cells, which are known to overexpress the targets for RGD moieties, were used. In the in vivo experiments, U-87 MG cells were subcutaneously injected into nu/nu mice, and the generated tumors were imaged using MRI, 15 days after cell administration. Magnetic resonance imaging was carried out at 7 T, and T2W, T1W, and MTC/Z-spectra were acquired. Confocal microscopy images and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) were used for result validation. RESULTS In vitro results show that RGD GUVs specifically bind to U-87 MG cells. Microscopy demonstrates that (1) RGD GUVs were anchored onto the external surface of the tumor cells without any internalization; (2) a low number of GUVs per cell were clustered at specific regions; and (3) there is no evidence for macrophage uptake or cell toxicity. The MRI of cell pellets after incubation with RGD GUVs and untargeted ctrl-GUVs was performed. No difference in T1 signal was detected, whereas a 15% difference in MT contrast is present between the RGD GUV-treated cells and the ctrl-GUV-treated cells.Magnetic resonance imaging scans of tumor-bearing mice were acquired before and after (t = 0, 4 hours and 24 hours) the administration of RGD GUVs and ctrl-GUVs. A roughly 16% MTC difference between the 2 groups was observed after 4 hours. Immunofluorescence analyses and ICP-MS analyses (for Gd-detection) of the explanted tumors confirmed the specific accumulation of RGD GUVs in the tumor region. CONCLUSIONS RGD GUVs seem to be interesting carriers that can facilitate the specific accumulation of MRI contrast agents at the tumor region. However, the concentration achieved is still below the threshold needed for T1w-MRI visualization. Conversely, MTC proved to be sufficiently sensitive for the visualization of detectable contrast between pretargeting and posttargeting images.
Collapse
Affiliation(s)
- Giuseppe Ferrauto
- From the Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Turin, Turin, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Devreux M, Henoumont C, Dioury F, Boutry S, Vacher O, Elst LV, Port M, Muller RN, Sandre O, Laurent S. Mn 2+ Complexes with Pyclen-Based Derivatives as Contrast Agents for Magnetic Resonance Imaging: Synthesis and Relaxometry Characterization. Inorg Chem 2021; 60:3604-3619. [PMID: 33625836 DOI: 10.1021/acs.inorgchem.0c03120] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetic resonance imaging (MRI) has a leading place in medicine as an imaging tool of high resolution for anatomical studies and diagnosis of diseases, in particular for soft tissues that cannot be accessible by other modalities. Many research works are thus focused on improving the images obtained with MRI. This technique has indeed poor sensitivity, which can be compensated by using a contrast agent (CA). Today, the clinically approved CAs on market are solely based on gadolinium complexes that may induce nephrogenic systemic fibrosis for patients with kidney failure, whereas more recent studies on healthy rats also showed Gd retention in the brain. Consequently, researchers try to elaborate other types of safer MRI CAs like manganese-based complexes. In this context, the synthesis of Mn2+ complexes of four 12-membered pyridine-containing macrocyclic ligands based on the pyclen core was accomplished and described herein. Then, the properties of these Mn(II) complexes were studied by two relaxometric methods, 17O NMR spectroscopy and 1H NMR dispersion profiles. The time of residence (τM) and the number of water molecules (q) present in the inner sphere of coordination were determined by these two experiments. The efficacy of the pyclen-based Mn(II) complexes as MRI CAs was evaluated by proton relaxometry at a magnetic field intensity of 1.41 T near those of most medical MRI scanners (1.5 T). Both the 17O NMR and the nuclear magnetic relaxation dispersion profiles indicated that the four hexadentate ligands prepared herein left one vacant coordination site to accommodate one water molecule, rapidly exchanging, in around 6 ns. Furthermore, it has been shown that the presence of an additional amide bond formed when the paramagnetic complex is conjugated to a molecule of interest does not alter the inner sphere of coordination of Mn, which remains monohydrated. These complexes exhibit r1 relaxivities, large enough to be used as clinical MRI CAs (1.7-3.4 mM-1·s-1, at 1.41 T and 37 °C).
Collapse
Affiliation(s)
- Marie Devreux
- General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium.,University of Bordeaux, CNRS, Bordeaux INP, ENSCBP, Laboratory of Organic Polymer Chemistry (LCPO), 33607 Pessac, France
| | - Céline Henoumont
- General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Fabienne Dioury
- Conservatoire National des Arts et Métiers (CNAM), GBCM Laboratory, HESAM Université, EA 7528, 2 rue Conté, 75003 Paris,France
| | - Sébastien Boutry
- Center for Microscopy and Molecular Imaging (CMMI), 8 rue Adrienne Bolland, 6041 Charleroi, Belgium
| | - Olivier Vacher
- Conservatoire National des Arts et Métiers (CNAM), GBCM Laboratory, HESAM Université, EA 7528, 2 rue Conté, 75003 Paris,France
| | - Luce Vander Elst
- General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Marc Port
- Conservatoire National des Arts et Métiers (CNAM), GBCM Laboratory, HESAM Université, EA 7528, 2 rue Conté, 75003 Paris,France
| | - Robert N Muller
- General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), 8 rue Adrienne Bolland, 6041 Charleroi, Belgium
| | - Olivier Sandre
- University of Bordeaux, CNRS, Bordeaux INP, ENSCBP, Laboratory of Organic Polymer Chemistry (LCPO), 33607 Pessac, France
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), 8 rue Adrienne Bolland, 6041 Charleroi, Belgium
| |
Collapse
|
39
|
Kiraga Ł, Kucharzewska P, Strzemecki D, Rygiel TP, Król M. Non-radioactive imaging strategies for in vivo immune cell tracking. PHYSICAL SCIENCES REVIEWS 2021; 8:385-403. [PMID: 36975764 PMCID: PMC10037928 DOI: 10.1515/psr-2020-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In vivo tracking of administered cells chosen for specific disease treatment may be conducted by diagnostic imaging techniques preceded by cell labeling with special contrast agents. The most commonly used agents are those with radioactive properties, however their use in research is often impossible. This review paper focuses on the essential aspect of cell tracking with the exclusion of radioisotope tracers, therefore we compare application of different types of non-radioactive contrast agents (cell tracers), methods of cell labeling and application of various techniques for cell tracking, which are commonly used in preclinical or clinical studies. We discuss diagnostic imaging methods belonging to three groups: (1) Contrast-enhanced X-ray imaging, (2) Magnetic resonance imaging, and (3) Optical imaging. In addition, we present some interesting data from our own research on tracking immune cell with the use of discussed methods. Finally, we introduce an algorithm which may be useful for researchers planning leukocyte targeting studies, which may help to choose the appropriate cell type, contrast agent and diagnostic technique for particular disease study.
Collapse
Affiliation(s)
- Łukasz Kiraga
- Department of Cancer Biology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
- Cellis AG, 80002 Zurich, Switzerland
| | - Paulina Kucharzewska
- Department of Cancer Biology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
- Cellis AG, 80002 Zurich, Switzerland
| | | | - Tomasz P. Rygiel
- Cellis AG, 80002 Zurich, Switzerland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Magdalena Król
- Department of Cancer Biology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
- Cellis AG, 80002 Zurich, Switzerland
| |
Collapse
|
40
|
Marasini R, Rayamajhi S, Moreno-Sanchez A, Aryal S. Iron(iii) chelated paramagnetic polymeric nanoparticle formulation as a next-generation T1-weighted MRI contrast agent. RSC Adv 2021; 11:32216-32226. [PMID: 35495502 PMCID: PMC9041822 DOI: 10.1039/d1ra05544e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
In pursuit of safer alternatives to Gd-based MRI contrast agents due to its toxicity and organ deposition, herein, we developed a safer and efficient clinically relevant iron(iii) chelated polymeric nanoparticle as a T1-weighted MRI contrast agent.
Collapse
Affiliation(s)
- Ramesh Marasini
- Department of Chemistry, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506, USA
- Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Sagar Rayamajhi
- Department of Chemistry, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506, USA
- Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Anthony Moreno-Sanchez
- Department of Chemistry, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506, USA
- Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Santosh Aryal
- Department of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, The University of Texas, Tyler, TX 75799, USA
| |
Collapse
|
41
|
An analytical study of Trastuzumab-dendrimer-fluorine drug delivery system in breast cancer therapy in vitro. Biomed Pharmacother 2021; 133:111053. [DOI: 10.1016/j.biopha.2020.111053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/07/2020] [Accepted: 11/19/2020] [Indexed: 11/24/2022] Open
|
42
|
Joosten L, Boss M, Jansen T, Brom M, Buitinga M, Aarntzen E, Eriksson O, Johansson L, de Galan B, Gotthardt M. Molecular Imaging of Diabetes. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
43
|
Pedersen M, Irrera P, Dastrù W, Zöllner FG, Bennett KM, Beeman SC, Bretthorst GL, Garbow JR, Longo DL. Dynamic Contrast Enhancement (DCE) MRI-Derived Renal Perfusion and Filtration: Basic Concepts. Methods Mol Biol 2021; 2216:205-227. [PMID: 33476002 DOI: 10.1007/978-1-0716-0978-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dynamic contrast-enhanced (DCE) MRI monitors the transit of contrast agents, typically gadolinium chelates, through the intrarenal regions, the renal cortex, the medulla, and the collecting system. In this way, DCE-MRI reveals the renal uptake and excretion of the contrast agent. An optimal DCE-MRI acquisition protocol involves finding a good compromise between whole-kidney coverage (i.e., 3D imaging), spatial and temporal resolution, and contrast resolution. By analyzing the enhancement of the renal tissues as a function of time, one can determine indirect measures of clinically important single-kidney parameters as the renal blood flow, glomerular filtration rate, and intrarenal blood volumes. Gadolinium-containing contrast agents may be nephrotoxic in patients suffering from severe renal dysfunction, but otherwise DCE-MRI is clearly useful for diagnosis of renal functions and for assessing treatment response and posttransplant rejection.Here we introduce the concept of renal DCE-MRI, describe the existing methods, and provide an overview of preclinical DCE-MRI applications to illustrate the utility of this technique to measure renal perfusion and glomerular filtration rate in animal models.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction is complemented by two separate publications describing the experimental procedure and data analysis.
Collapse
Affiliation(s)
- Michael Pedersen
- Department of Clinical Medicine - Comparative Medicine Lab, Aarhus University, Aarhus, Denmark
| | - Pietro Irrera
- University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Walter Dastrù
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kevin M Bennett
- Washington University School of Medicine, St. Louis, MO, USA
| | - Scott C Beeman
- Washington University School of Medicine, St. Louis, MO, USA
| | | | - Joel R Garbow
- Washington University School of Medicine, St. Louis, MO, USA
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Torino, Italy.
| |
Collapse
|
44
|
Di Gregorio E, Lattuada L, Maiocchi A, Aime S, Ferrauto G, Gianolio E. Supramolecular adducts between macrocyclic Gd(iii) complexes and polyaromatic systems: a route to enhance the relaxivity through the formation of hydrophobic interactions. Chem Sci 2020; 12:1368-1377. [PMID: 34163900 PMCID: PMC8179163 DOI: 10.1039/d0sc03504a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The set-up of reversible binding interactions between the hydrophobic region of macrocyclic GBCAs (Gadolinium Based Contrast Agents) and SO3 -/OH containing pyrene derivatives provides new insights for pursuing relaxivity enhancements of this class of MRI contrast agents. The strong binding affinity allows attaining relaxation enhancements up to 50% at pyrene/GBCA ratios of 3 : 1. High resolution NMR spectra of the Yb-HPDO3A/pyrene system fully support the formation of a supramolecular adduct based on the set-up of hydrophobic interactions. The relaxation enhancement may be accounted for in terms of the increase of the molecular reorientation time (τ R) and the number of second sphere water molecules. This effect is maintained in blood serum and in vivo, as shown by the enhancement of contrast in T 1w-MR images obtained by simultaneous injection of GBCA and pyrene derivatives in mice.
Collapse
Affiliation(s)
- Enza Di Gregorio
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino Via Nizza 52 Torino 10126 Italy
| | - Luciano Lattuada
- Bracco Imaging Spa, Bracco Research Centre Via Ribes 5 Colleretto Giacosa TO 10010 Italy
| | - Alessandro Maiocchi
- Bracco Imaging Spa, Bracco Research Centre Via Ribes 5 Colleretto Giacosa TO 10010 Italy
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino Via Nizza 52 Torino 10126 Italy
| | - Giuseppe Ferrauto
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino Via Nizza 52 Torino 10126 Italy
| | - Eliana Gianolio
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino Via Nizza 52 Torino 10126 Italy
| |
Collapse
|
45
|
Tuchina DK, Meerovich IG, Sindeeva OA, Zherdeva VV, Savitsky AP, Bogdanov AA, Tuchin VV. Magnetic resonance contrast agents in optical clearing: Prospects for multimodal tissue imaging. JOURNAL OF BIOPHOTONICS 2020; 13:e201960249. [PMID: 32687263 DOI: 10.1002/jbio.201960249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Skin optical clearing effect ex vivo and in vivo was achieved by topical application of low molecular weight paramagnetic magnetic resonance contrast agents. This novel feature has not been explored before. By using collimated transmittance the diffusion coefficients of three clinically used magnetic resonance contrast agents, that is Gadovist, Magnevist and Dotarem as well as X-ray contrast agent Visipaque in mouse skin were determined ex vivo as (4.29 ± 0.39) × 10-7 cm2 /s, (5.00 ± 0.72) × 10-7 cm2 /s, (3.72 ± 0.67) × 10-7 cm2 /s and (1.64 ± 0.18) × 10-7 cm2 /s, respectively. The application of gadobutrol (Gadovist) resulted in efficient optical clearing that in general, was superior to other contrast agents tested and allowed to achieve: (a) more than 12-fold increase of transmittance over 10 minutes after application ex vivo; (b) markedly improved images of skin architecture obtained with optical coherence tomography; (c) an increase of the fluorescence intensity/background ratio in TagRFP-red fluorescent marker protein expressing tumor by five times after 15 minutes application into the skin in vivo. The obtained results have immediate implications for multimodality imaging because many contrast agents are capable of simultaneously enhancing the contrast of multiple imaging modalities.
Collapse
Affiliation(s)
- Daria K Tuchina
- Saratov State University, Saratov, Russia
- Tomsk State University, Tomsk, Russia
- А.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Irina G Meerovich
- А.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | | | - Victoria V Zherdeva
- А.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander P Savitsky
- А.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexei A Bogdanov
- А.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Valery V Tuchin
- Saratov State University, Saratov, Russia
- Tomsk State University, Tomsk, Russia
- А.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
46
|
Peters JA. Relaxivity of manganese ferrite nanoparticles. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 120-121:72-94. [PMID: 33198969 DOI: 10.1016/j.pnmrs.2020.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 05/27/2023]
Abstract
Manganese ferrite nanoparticles are superparamagnetic and have very high saturation magnetization, which makes them candidates for application as MRI contrast agents. Because these nanoparticles are very effective enhancers of transverse relaxation, they are particularly suitable as negative (T2-weighted) contrast agents. The magnitude of the relaxivity of nanoparticulate Mn ferrites seems to be determined mainly by the method of preparation, their dimensions, and their saturation magnetization.
Collapse
Affiliation(s)
- Joop A Peters
- Biocatalysis, Department of Biotechnology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
47
|
Nguyen HVT, Detappe A, Harvey P, Gallagher N, Mathieu C, Agius MP, Zavidij O, Wang W, Jiang Y, Rajca A, Jasanoff A, Ghobrial IM, Ghoroghchian PP, Johnson JA. Pro-organic radical contrast agents ("pro-ORCAs") for real-time MRI of pro-drug activation in biological systems. Polym Chem 2020; 11:4768-4779. [PMID: 33790990 PMCID: PMC8009311 DOI: 10.1039/d0py00558d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nitroxide-based organic-radical contrast agents (ORCAs) are promising as safe, next-generation magnetic resonance imaging (MRI) tools. Nevertheless, stimuli-responsive ORCAs that enable MRI monitoring of prodrug activation have not been reported; such systems could open new avenues for prodrug validation and image-guided drug delivery. Here, we introduce a novel "pro-ORCA" concept that addresses this challenge. By covalent conjugation of nitroxides and drug molecules (doxorubicin, DOX) to the same brush-arm star polymer (BASP) through chemically identical cleavable linkers, we demonstrate that pro-ORCA and prodrug activation, i.e., ORCA and DOX release, leads to significant changes in MRI contrast that correlate with cytotoxicity. This approach is shown to be general for a range of commonly used linker cleavage mechanisms (e.g., photolysis and hydrolysis) and release rates. Pro-ORCAs could find applications as research tools or clinically viable "reporter theranostics" for in vitro and in vivo MRI-correlated prodrug activation.
Collapse
Affiliation(s)
- Hung V.-T. Nguyen
- Department of Chemistry, Massachusetts Institute of Technology (MIT)
- David H. Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
- These authors contributed equally
| | - Alexandre Detappe
- David H. Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
- Centre Paul Strauss, 3 Rue de la Porte de l’Hopital, 67000 Strasbourg, France
- These authors contributed equally
| | | | - Nolan Gallagher
- Department of Chemistry, Massachusetts Institute of Technology (MIT)
| | - Clelia Mathieu
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| | - Michael P. Agius
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| | - Oksana Zavidij
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| | - Wencong Wang
- Department of Chemistry, Massachusetts Institute of Technology (MIT)
| | - Yivan Jiang
- Department of Chemistry, Massachusetts Institute of Technology (MIT)
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Alan Jasanoff
- Department of Biological Engineering, MIT
- Department of Brain and Cognitive Sciences, MIT
- Department of Nuclear Science and Engineering, MIT
| | - Irene M. Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| | - P. Peter Ghoroghchian
- David H. Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| | - Jeremiah A. Johnson
- Department of Chemistry, Massachusetts Institute of Technology (MIT)
- David H. Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
48
|
Suciu M, Ionescu CM, Ciorita A, Tripon SC, Nica D, Al-Salami H, Barbu-Tudoran L. Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1092-1109. [PMID: 32802712 PMCID: PMC7404288 DOI: 10.3762/bjnano.11.94] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/07/2020] [Indexed: 05/13/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have unique properties with regard to biological and medical applications. SPIONs have been used in clinical settings although their safety of use remains unclear due to the great differences in their structure and in intra- and inter-patient absorption and response. This review addresses potential applications of SPIONs in vitro (formulations), ex vivo (in biological cells and tissues) and in vivo (preclinical animal models), as well as potential biomedical applications in the context of drug targeting, disease treatment and therapeutic efficacy, and safety studies.
Collapse
Affiliation(s)
- Maria Suciu
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, 5–7 Clinicilor Str., Cluj-Napoca, Cluj County, 400006, Romania
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Str., Cluj-Napoca, Cluj County, 400293, Romania
| | - Corina M Ionescu
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, 5–7 Clinicilor Str., Cluj-Napoca, Cluj County, 400006, Romania
| | - Alexandra Ciorita
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, 5–7 Clinicilor Str., Cluj-Napoca, Cluj County, 400006, Romania
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Str., Cluj-Napoca, Cluj County, 400293, Romania
| | - Septimiu C Tripon
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, 5–7 Clinicilor Str., Cluj-Napoca, Cluj County, 400006, Romania
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Str., Cluj-Napoca, Cluj County, 400293, Romania
| | - Dragos Nica
- Functional Sciences Department, Medical Faculty, University of Medicine and Pharmacy “Victor Babes”, 2 Eftimie Murgu, Timisoara, Timis County, 300041, Romania
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, the School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth Western Australia 6845, Australia
| | - Lucian Barbu-Tudoran
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, 5–7 Clinicilor Str., Cluj-Napoca, Cluj County, 400006, Romania
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Str., Cluj-Napoca, Cluj County, 400293, Romania
| |
Collapse
|
49
|
Zheng C, Tian X, Cai J, Huang L, Wang S, Yang F, Ma Y, Xie F, Li L. In vivo immunotoxicity of Gd 2 O 3 :Eu 3+ nanoparticles and the associated molecular mechanism. J Biochem Mol Toxicol 2020; 34:e22562. [PMID: 32659858 DOI: 10.1002/jbt.22562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/13/2020] [Accepted: 05/29/2020] [Indexed: 01/16/2023]
Abstract
The in vivo toxicity of Gd2 O3 :Eu3+ nanoparticles (NPs) used as dual-modal nanoprobes for molecular imaging has not been studied, and the corresponding molecular mechanism of immunotoxicity remains unknown. In this study, we investigated the cytotoxicity, in vitro apoptosis, and in vivo immunotoxicity of Gd2 O3 :Eu3+ NPs. The NPs showed little immunotoxicity to BALB/c mice. We explored the possible role of the phosphoinositide 3-kinase (PI3K) signaling pathway and found that reactive oxygen species could act as secondary messengers in cellular signaling, inhibiting PI3K expression in the liver. The immune suppression caused by PI3K inhibition helped the mice adapt to stress. The immunotoxicities caused by Gd2 O3 :Eu3+ and gadodiamide, a commonly used contrast agent, were not significantly different, and the mice were able to tolerate the immunotoxicity caused Gd2 O3 :Eu3+ NPs in vitro and in vivo experiments. The results suggest that Gd2 O3 :Eu3+ NPs are sufficiently biocompatible to be used safely in preclinical applications and show promise as bio-imaging agents. Moreover, the in vivo molecular mechanism of immunotoxicity caused by the Gd2 O3 :Eu3+ NPs provides a platform for further research on the immunotoxicity of nano-sized biomaterials.
Collapse
Affiliation(s)
- Cunjing Zheng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiumei Tian
- Affiliated Stomatology Hospital and Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Jing Cai
- State Key Laboratory of Oncology in South China, Imaging Diagnosis and Interventional Center, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Long Huang
- Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shunxin Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Fanwen Yang
- Affiliated Stomatology Hospital and Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Yanping Ma
- Affiliated Stomatology Hospital and Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Fukang Xie
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Li Li
- State Key Laboratory of Oncology in South China, Imaging Diagnosis and Interventional Center, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
50
|
Xu K, Wang M, Tang W, Ding Y, Hu A. Flash nanoprecipitation with Gd(III)‐based metallosurfactants to fabricate polylactic acid nanoparticles as highly efficient contrast agents for magnetic resonance imaging. Chem Asian J 2020; 15:2475-2479. [DOI: 10.1002/asia.202000624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/14/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Kehan Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Mingwei Wang
- State Key Laboratory of Chemical Engineering School of Chemical EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Weijun Tang
- Department of RadiologyHuashan Hospital Affiliated to Fudan University Shanghai 200040 China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|