1
|
Caković A, Ćoćić D, Živanović M, Janković N, Milivojević N, Delibašić M, Kostić M, Radojević I, Grujović M, Marković KG, Klisurić OR, Vraneš M, Bogojeski J. Enhancing Bioactivity of N,N,N-Chelating Rhodium(III) Complexes with Ionic Liquids: Toward Targeted Cancer Therapy. J Med Chem 2024. [PMID: 39058952 DOI: 10.1021/acs.jmedchem.4c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
This study investigates the potential of using ionic liquids as cosolvents to enhance the solubility and activity of poorly soluble rhodium(III) complexes, particularly those with diene, pyridine derivatives, and camphor-derived bis-pyrazolylpyridine ligands, in relation to 5'-GMP, CT-DNA, and HSA as well as their biological activity. Findings indicate that ionic liquids significantly increase the substitution activity of these complexes toward 5'-GMP while only marginally affecting DNA/HSA binding affinities with molecular docking, further confirming the experimental results. Lipophilicity assessments indicated good lipophilicity. Notably, cytotoxicity studies show that Rh2 is selectively effective against HeLa cancer cells, with IL1 and IL10 modulating the cytotoxic effects. Redox evaluations indicate that rhodium complexes induce oxidative stress in cancerous cells while maintaining redox balance in noncancerous cells. By elucidating the role of ionic liquids in modulating these effects, the study proposes a promising avenue for augmenting the efficacy and selectivity of cancer treatments, thus opening new horizons in cancer therapeutics.
Collapse
Affiliation(s)
- Angelina Caković
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Dušan Ćoćić
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Marko Živanović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Nenad Janković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Nevena Milivojević
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Marija Delibašić
- University of Belgrade, Faculty of Biology, Center for Forensic and Applied Molecular Genetics, Studentski trg 16, 11000 Belgrade, Serbia
| | - Marina Kostić
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Ivana Radojević
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Mirjana Grujović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Katarina G Marković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Olivera R Klisurić
- University of Novi Sad, Faculty of Sciences, Department of Physics, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| | - Milan Vraneš
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jovana Bogojeski
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
2
|
Pivarcsik T, Kiss MA, Rapuš U, Kljun J, Spengler G, Frank É, Turel I, Enyedy ÉA. Organometallic Ru(II), Rh(III) and Re(I) complexes of sterane-based bidentate ligands: synthesis, solution speciation, interaction with biomolecules and anticancer activity. Dalton Trans 2024; 53:4984-5000. [PMID: 38406993 DOI: 10.1039/d3dt04138g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In this study, we present the synthesis, characterization and in vitro cytotoxicity of six organometallic [Ru(II)(η6-p-cymene)(N,N)Cl]Cl, [Rh(III)(η5-C5Me5)(N,N)Cl]Cl and [Re(I)(CO)3(N,N)Cl] complexes, in which the (N,N) ligands are sterane-based 2,2'-bipyridine derivatives (4-Me-bpy-St-OH, 4-Ph-bpy-St-OH). The solution chemical behavior of the ligands and the complexes was explored by UV-visible spectrophotometry and 1H NMR spectroscopy. The ligands and their Re(I) complexes are neutral at pH = 7.40; this contributes to their highly lipophilic character (log D7.40 > +3). The Ru(II) and Rh(III) half-sandwich complexes are much more hydrophilic, and this property is greatly affected by the actual chloride ion content of the medium. The half-sandwich Ru and Rh complexes are highly stable in 30% (v/v) DMSO/water (<5% dissociation at pH = 7.40); this is further increased in water. The Rh(III)(η5-C5Me5) complexes were characterized by higher water/chloride exchange and pKa constants compared to their Ru(II)(η6-p-cymene) counterparts. The Re(I)(CO)3 complexes are also stable in solution over a wide pH range (2-12) without the release of the bidentate ligand; only the chlorido co-ligand can be replaced with OH- at higher pH values. A comprehensive discussion of the binding affinity of the half-sandwich Ru(II) and Rh(III) complexes toward human serum albumin and calf-thymus DNA is also provided. The Ru(II)(η6-p-cymene) complexes interact with human serum albumin via intermolecular forces, while for the Rh(III)(η5-C5Me5) complexes the coordinative binding mode is suggested as well. They are also able to interact with calf-thymus DNA, most likely via the coordination of the guanine nitrogen. The Ru(II)(η6-p-cymene) complexes were found to be the most promising among the tested compounds as they exhibited moderate-to-strong cytotoxic activity (IC50 = 3-11 μM) in LNCaP as well as in PC3 prostate cells in an androgen receptor-independent manner. They were also significantly cytotoxic in breast and colon adenocarcinoma cancer cell lines and showed good selectivity for cancer cells.
Collapse
Affiliation(s)
- Tamás Pivarcsik
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary.
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary
| | - Márton A Kiss
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary
| | - Uroš Rapuš
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary.
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Éva Frank
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary.
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Teixeira RG, Mészáros JP, Matos B, Côrte-Real L, Xavier CPR, Fontrodona X, Garcia MH, Romero I, Spengler G, Vasconcelos MH, Tomaz AI, Enyedy ÉA, Valente A. Novel family of [RuCp(N,N)(P)] + compounds with simultaneous anticancer and antibacterial activity: Biological evaluation and solution chemistry studies. Eur J Med Chem 2023; 262:115922. [PMID: 37944388 DOI: 10.1016/j.ejmech.2023.115922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
A family of ten novel ruthenium(II)-cyclopentadienyl organometallics of general formula [Ru(η5-C5H5)(N,N)(PPh2(C6H4COOR)][CF3SO3] (1-10) in which (N,N) = 4,4'-R'-2,2'-bipyridyl (R = -H or -CH2CH2OH; R' = -H, -CH3, -OCH3, -CH2OH, and -CH2-biotin) was prepared from [Ru(η5-C5H5)(PPh2(C6H4COOH))2Cl]. All compounds were fully characterized by means of several spectroscopic and analytical techniques, and the molecular structures of [Ru(η5-C5H5)(PPh2(C6H4COOH))2Cl], 1, 3 and 4 have been additionally studied by single-crystal X-ray diffraction. The anticancer activity of all compounds was evaluated in sensitive and multidrug-resistant counterpart cell lines from human colorectal cancer (Colo 205 and Colo 320) and non-small cell lung cancer NSCLC (A549, NCI-H460 versus NCI-H460/R) as well. Notably, compounds 6 and 7 (R CH2CH2OH and (N,N) = bipy or Me2bipy, respectively) showed antiproliferative effect against both cell lines with high intrinsic selectivity towards cancer cells. The antibacterial activity of all compounds was also evaluated against both Gram negative and Gram positive strains, and some compounds in the series showed potent antibacterial activity against Staphylococcus aureus strains, including the methicillin-resistant MRSA strains. Solution speciation studies revealed that the complexes bearing the PPh2(C6H4COO-) ligand are neutral at physiological pH (7.4) in contrast with their ethylene glycol derivatives that have a permanent positive charge. While all compounds are lipophilic, the difference in the distribution coefficient for neutral and charged complexes is around one order of magnitude. Complexes 6 and 7 exhibited excellent biological activity and were selected for further studies. Spectrofluorometric methods were used to investigate their interaction with biomolecules such as human serum albumin (HSA) and calf thymus DNA (ct-DNA). For these complexes, binding site II of HSA is a possible binding pocket through non-covalent interactions. The release of ethidium from the DNA adduct by the charged complexes proves their interaction with DNA in contrast to the neutral ones. In conclusion, Ru(II)-cyclopentadienyl complexes with 2,2'-bipyridyl-derivatives and an ethylene glycol moiety tethered to the phenylphosphane co-ligand are very promising from a therapeutic perspective, in particular complexes 6 and 7 that display remarkable antibacterial activity with a high anti-proliferative effect against colon and non-small cell lung cancers, both clinically challenging neoplasias in need of effective solutions.
Collapse
Affiliation(s)
- Ricardo G Teixeira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - János P Mészáros
- Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary; MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Beatriz Matos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135, Porto, Portugal
| | - Leonor Côrte-Real
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Cristina P R Xavier
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135, Porto, Portugal
| | - Xavier Fontrodona
- Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/ M. Aurèlia Campmany, 69, E-17003, Girona, Spain
| | - M Helena Garcia
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Isabel Romero
- Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/ M. Aurèlia Campmany, 69, E-17003, Girona, Spain
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary; Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, 6725, Szeged, Hungary
| | - M Helena Vasconcelos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135, Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Ana Isabel Tomaz
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Éva A Enyedy
- Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary; MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Andreia Valente
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
4
|
Ashraf S, Qaiser H, Tariq S, Khalid A, Makeen HA, Alhazmi HA, Ul-Haq Z. Unraveling the versatility of human serum albumin - A comprehensive review of its biological significance and therapeutic potential. Curr Res Struct Biol 2023; 6:100114. [PMID: 38111902 PMCID: PMC10726258 DOI: 10.1016/j.crstbi.2023.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Human serum albumin (HSA) is a multi-domain macromolecule with diverse ligand binding capability because of its ability to allow allosteric modulation despite being a monomeric protein. Physiologically, HSA act as the primary carrier for various exogenous and endogenous compounds and fatty acids, and alter the pharmacokinetic properties of several drugs. It has antioxidant properties and is utilized therapeutically to improve the drug delivery of pharmacological agents for the treatment of several disorders. The flexibility of albumin in holding various types of drugs coupled with a variety of modifications makes this protein a versatile drug carrier with incalculable potential in therapeutics. This review provides a brief outline of the different structural properties of HSA, and its various binding sites, moreover, an overview of the genetic, biomedical, and allosteric modulation of drugs and drug delivery aspects of HSA is also included, which may be helpful in guiding advanced clinical applications and further research on the therapeutic potential of this extraordinary protein.
Collapse
Affiliation(s)
- Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75210, Pakistan
| | - Hina Qaiser
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75210, Pakistan
| | - Sumayya Tariq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75210, Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum, 11111, Sudan
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75210, Pakistan
| |
Collapse
|
5
|
Althobaiti F, Sahyon HA, Shanab MMAH, Aldhahrani A, Helal MA, Khireldin A, Shoair AGF, Almalki ASA, Fathy AM. A comparative study of novel ruthenium(III) and iron(III) complexes containing uracil; docking and biological studies. J Inorg Biochem 2023; 247:112308. [PMID: 37441923 DOI: 10.1016/j.jinorgbio.2023.112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Structural and biological studies were conducted on the novel complexes [Fe(U)2(H2O)2]Cl3 (FeU) and [Ru(U)2(H2O)2]Cl3 (RuU) (U = 5,6-Diamino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione) to develop an anticancer drug candidate. The two complexes have been synthesized and characterized. Based on our findings, these complexes have octahedral geometry. The DNA-binding study proved that both complexes coordinated with CT-DNA. The docking study confirmed the potency of both complexes in downregulating the topoisomerase I protein through their high binding affinity. Biological studies have established that both complexes can act as potent anticancer agents against three cancer cell lines. RuU or FeU complexes induce apoptosis in breast cancer cells by increasing caspase9 protein and inhibiting proliferating cell nuclear antigen (PCNA) activity. In addition, both complexes down-regulate topoisomerase I expression in breast cancer cells. Therefore, the RuU and FeU complexes' anticancer activities were mediated via both apoptosis induction and topoisomerase I down-regulation. In conclusion, both complexes have dual anticancer activity pathways that may be responsible for the selective cytotoxicity of the complexes. This makes them more suitable for the development of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Heba A Sahyon
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| | - Mai M A H Shanab
- Department of Chemistry, College of Sciences and Humanities Studies (Girls section), Hawtat Bani Tamim 11149, Prince Sattam Bin Abdulaziz University, P.O. Box:13, Saudi Arabia.
| | - Adil Aldhahrani
- Clinical Laboratory Science Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia.
| | - Marihan A Helal
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Awad Khireldin
- Air transport management, Singapore Institute of Technology (SIT), Singapore.
| | - Abdel Ghany F Shoair
- Department of Science and Technology, University College-Ranyah, postcode 21975, Taif University, Saudi Arabia; High Altitude Research Center, Taif University, 21944, Saudi Arabia.
| | | | - Ahmed M Fathy
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Yuan F, Liu X, Li J, Tan L. Interactions of arene ruthenium(II) complexes [η 6-(C 6H 6)Ru(pprip)Cl] + and [η 6-(C 6H 6)Ru(H 2iiP)Cl] + with RNA triplex poly(U)•poly(A)*poly(U). J Biol Inorg Chem 2023; 28:559-570. [PMID: 37477757 DOI: 10.1007/s00775-023-02008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
Two arene ruthenium(II) complexes [η6-(C6H6)Ru(pprip)Cl]PF6 (Ru1; pprip = 2-(3-phenyl-1H-pyrazol-4-yl)-imidazolo[4,5-f][1,10]phenanthroline) and [η6-(C6H6)Ru(H2iiP)Cl]PF6 (Ru2; H2iiP = 2-(indole-3-yl)-imidazolo[4,5-f][1,10]phenanthroline) have been synthesized and characterized in this work. Binding properties of Ru1 and Ru2 with the triplex RNA poly(U)•poly(A)*poly(U) were investigated by spectrophotometry and spectrofluorometry as well as viscosimetry. Analysis of spectroscopic titrations and viscosity measurements show that the two complexes bind with the triplex through intercalation, while the binding affinity for Ru2 toward the triplex is stronger than that for Ru1. Melting experiments indicate that the stabilizing effects of Ru1 and Ru2 toward the triplex differ from each other. Under the conditions used herein, Ru1 only stabilizes the Hoogsteen base-paired strand (third strand) without affecting stabilization of the Watson-Crick base-paired strand (the template duplex) of the triplex, while Ru2 stabilizes both the template duplex and the third strand. Although the two complexes prefer to stabilizing the third strand rather than the template duplex, the third-strand stabilization effect of Ru2 is stronger than that of Ru1. The obtained results of this work reveal that the planarity of the intercalative ligands plays an important role in the triplex stabilization by arene Ru(II) complexes.
Collapse
Affiliation(s)
- Feng Yuan
- College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Xiaohua Liu
- Academic Affairs Office, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Juan Li
- Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Lifeng Tan
- Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| |
Collapse
|
7
|
Muralisankar M, Chen JR, Haribabu J, Ke SC. Effective and Selective Ru(II)-Arene Complexes Containing 4,4'-Substituted 2,2' Bipyridine Ligands Targeting Human Urinary Bladder Cancer Cells. Int J Mol Sci 2023; 24:11896. [PMID: 37569273 PMCID: PMC10418970 DOI: 10.3390/ijms241511896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Cisplatin-based chemotherapy is a common regimen for bladder cancer, a life-threatening cancer with more than 500,000 new cases worldwide annually. Like many other metallodrugs, cisplatin causes severe side effects for its general toxicity. Organoruthenium is known for its structural stability, good anticancer activity, and possible low general toxicity. Here, we have prepared and characterized a series of water-soluble ruthenium-arene complexes with N,N'-chelating ligands: [Ru(II)-η6-arene-(4,4'-(X)2-2,2'-bipyridine)Cl]Cl (arene = p-cymene, X = C4H9 (1), COOH (2), COOCH3 (3), COOC2H5 (4); arene = benzene, X = C4H9 (5), COOCH3 (6), COOC2H5 (7)). These complexes are carefully characterized using single-crystal X-ray diffraction, UV-vis, IR, 1H NMR, and MALDI-TOF MS spectroscopy. Their DFT-calculated structural and thermodynamic properties are consistent with the experimental observations. Biophysicochemical studies of complex interaction with CTDNA and BSA supported by molecular docking simulations reveal suitable properties of 1-7 as anticancer agents. Cytotoxicities of 1-7 are evaluated on healthy human MCF-10a-breast epithelial and African green monkey Vero cells, and carcinoma human HepG-2-hepatic, T24-bladder, and EAhy-926-endothelial cells. All complexes exhibit much higher cytotoxicity for T24 than cisplatin. Particularly, 1 and 2 are also highly selective toward T24. Fluorescence imaging and flow cytometry demonstrate that 1 and 2 penetrate T24 cell membrane and induce early apoptosis at their respective IC50 concentrations, which ultimately lead to cell death. Statistical analysis suggests that the order of importance for T24 cell antiproliferation is protein binding, Log p, Ru-Cl bond length, while DNA binding is the least important. This study is the first to report the anti-bladder cancer efficacy of Ru-arene-2,2'-bipyridine complexes, and may provide insights for rational design of organoruthenium drugs in the enduring search for new chemotherapeutic agents.
Collapse
Affiliation(s)
- Mathiyan Muralisankar
- Physics Department, National Dong Hwa University, Hualien 97401, Taiwan; (M.M.); (J.-R.C.)
| | - Jun-Ru Chen
- Physics Department, National Dong Hwa University, Hualien 97401, Taiwan; (M.M.); (J.-R.C.)
| | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Copayapu 485, Copiapo 1531772, Chile;
| | - Shyue-Chu Ke
- Physics Department, National Dong Hwa University, Hualien 97401, Taiwan; (M.M.); (J.-R.C.)
| |
Collapse
|
8
|
Mészáros JP, Kovács H, Spengler G, Kovács F, Frank É, Enyedy ÉA. A comparative study on the metal complexes of an anticancer estradiol-hydroxamate conjugate and salicylhydroxamic acid. J Inorg Biochem 2023; 244:112223. [PMID: 37084580 DOI: 10.1016/j.jinorgbio.2023.112223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Hydroxamic acids bearing an (O,O) donor set are well-known metal-chelating compounds with diverse biological activities including anticancer activity. Since steroid conjugation with a pharmacophoric moiety may have the potential to improve this effect, a salicylhydroxamic acid-estradiol hybrid molecule (E2HA) was synthesized. Only minimal effect of the conjugation on the proton dissociation constants was observed in comparison to salicylhydroxamic acid (SHA). The complexation with essential metal ions (iron, copper) was characterized, since E2HA may exert its cytotoxicity through the binding of these ions in cells. UV-visible spectrophotometric and pH-potentiometric titrations revealed the formation of high-stability complexes, while the Fe(III) preference over Fe(II) was proved by cyclic voltammetry and spectroelectrochemical measurements. Complex formation with half-sandwich Rh(III)(η5-Cp*) and Ru(II)(η6-p-cymene) organometallic cations was also studied as it may improve the anticancer effect and the pharmacokinetic profile of the ligand. At equimolar concentration the speciation is complicated because of the presence of mononuclear and binuclear complexes. The complexes readily react with small molecules e.g. glutathione, 1-methylimidazole and nucleosides, having major effect on solution speciation, namely mixed-ligand complex formation and ligand displacement occur. These processes serve as models for the interactions with biomolecules in the body. E2HA exerted moderate anticancer activity (IC50 = 25-59 μM) in the tested three human cancer cell lines (Colo205, Colo320 and MCF-7), while being non-toxic on non-cancerous MRC-5 cells. Meanwhile, SHA was inactive in the same cells. Complexation with half-sandwich Rh(III) and Ru(II) cations had only a minor improvement on the cytotoxic effect of E2HA.
Collapse
Affiliation(s)
- János P Mészáros
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Hilda Kovács
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Ferenc Kovács
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Éva Frank
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.
| |
Collapse
|
9
|
Merlino A. Metallodrug binding to serum albumin: Lessons from biophysical and structural studies. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Evaluation of In Vitro Distribution and Plasma Protein Binding of Selected Antiviral Drugs (Favipiravir, Molnupiravir and Imatinib) against SARS-CoV-2. Int J Mol Sci 2023; 24:ijms24032849. [PMID: 36769193 PMCID: PMC9917862 DOI: 10.3390/ijms24032849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
There are a number of uncertainties regarding plasma protein binding and blood distribution of the active drugs favipiravir (FAVI), molnupiravir (MOLNU) and imatinib (IMA), which were recently proposed as therapeutics for the treatment of COVID-19 disease. Therefore, proton dissociation processes, solubility, lipophilicity, and serum protein binding of these three substances were investigated in detail. The drugs display various degrees of lipophilicity at gastric (pH 2.0) and blood pH (pH 7.4). The determined pKa values explain well the changes in lipophilic character of the respective compounds. The serum protein binding was studied by membrane ultrafiltration, frontal analysis capillary electrophoresis, steady-state fluorometry, and fluorescence anisotropy techniques. The studies revealed that the ester bond in MOLNU is hydrolyzed by protein constituents of blood serum. Molnupiravir and its hydrolyzed form do not bind considerably to blood proteins. Likewise, FAVI does not bind to human serum albumin (HSA) and α1-acid glycoprotein (AGP) and shows relatively weak binding to the protein fraction of whole blood serum. Imatinib binds to AGP with high affinity (logK' = 5.8-6.0), while its binding to HSA is much weaker (logK' ≤ 4.0). The computed constants were used to model the distribution of IMA in blood plasma under physiological and 'acute-phase' conditions as well.
Collapse
|
11
|
Dömötör O, Teixeira RG, Spengler G, Avecilla F, Marques F, Lenis-Rojas OA, Matos CP, de Almeida RFM, Enyedy ÉA, Tomaz AI. Ruthenium(II) polypyridyl complexes with benzothiophene and benzimidazole derivatives: Synthesis, antitumor activity, solution studies and biospeciation. J Inorg Biochem 2023; 238:112058. [PMID: 36375357 DOI: 10.1016/j.jinorgbio.2022.112058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
Abstract
With the aim to incorporate pharmacophore motifs into the Ru(II)-polypyridyl framework, compounds [Ru(II)(1,10-phenantroline)2(2-(2-pyridyl)benzo[b]thiophene)](CF3SO3)2 (1) and [Ru(II)(1,10-phenantroline)2(2-(2-pyridyl)benzimidazole)](CF3SO3)2 (2) were prepared, characterized and tested for their antitumor potential. The solid-state structure of the compounds was confirmed by single-crystal X-ray diffraction analysis. The solution behavior of both complexes was investigated, namely their solubility, stability, and lipophilicity in physiological mimetic conditions, as well as an eventual uptake by passive diffusion. In vitro anticancer activity of the complexes on ovarian and different colon cancer cells and apoptosis induction by the complexes were studied. A slow transformation process was observed for complex 1 in aqueous solution when exposed to sunlight, while complex 2 undergoes deprotonation (pKa = 7.59). The lipophilicity of this latter complex depends strongly on the pH and ionic strength. In contrast, 1 is rather hydrophilic under various conditions. Complex 1 was highly cytotoxic on Colo-205 human colon (IC50 = 7.87 μM) and A2780 ovarian (IC50 = 2.2 μM) adenocarcinoma cell lines, while 2 displayed moderate anticancer activity (30.9 μM and 18.0 μM, respectively). The complexes induced late apoptosis and necrosis. Only a weak binding of the complexes to human serum albumin, the main transport protein in blood serum, was found. However, a more significant binding to calf thymus DNA was observed in UV-visible titrations and fluorometric dye displacement studies. Detailed analysis of fluorescence lifetime data collected for the latter systems reveals not only the partial intercalation of the complexes, but goes beyond the usual simplified interpretations.
Collapse
Affiliation(s)
- Orsolya Dömötör
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.
| | - Ricardo G Teixeira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Fernando Avecilla
- Universidade da Coruña, Grupo NanoToxGen, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Campus de A Coruña, 15071A Coruña, Spain
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares and Departamento de Ciências e Engenharia Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN 10 (km 139,7), 2695-066 Bobadela, Loures, Portugal
| | - Oscar A Lenis-Rojas
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal
| | - Cristina P Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal
| | - Éva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Ana Isabel Tomaz
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal.
| |
Collapse
|
12
|
DNA/protein binding and anticancer activity of ruthenium (II) arene complexes based on quinoline dipyrrin. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Pivarcsik T, Pósa V, Kovács H, May NV, Spengler G, Pósa SP, Tóth S, Nezafat Yazdi Z, Özvegy-Laczka C, Ugrai I, Szatmári I, Szakács G, Enyedy ÉA. Metal Complexes of a 5-Nitro-8-Hydroxyquinoline-Proline Hybrid with Enhanced Water Solubility Targeting Multidrug Resistant Cancer Cells. Int J Mol Sci 2022; 24:ijms24010593. [PMID: 36614037 PMCID: PMC9820345 DOI: 10.3390/ijms24010593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Multidrug resistance (MDR) in cancer is one of the major obstacles of chemotherapy. We have recently identified a series of 8-hydroxyquinoline Mannich base derivatives with MDR-selective toxicity, however with limited solubility. In this work, a novel 5-nitro-8-hydroxyquinoline-proline hybrid and its Rh(η5-C5Me5) and Ru(η6-p-cymene) complexes with excellent aqueous solubility were developed, characterized, and tested against sensitive and MDR cells. Complex formation of the ligand with essential metal ions was also investigated using UV-visible, circular dichroism, 1H NMR (Zn(II)), and electron paramagnetic resonance (Cu(II)) spectroscopic methods. Formation of mono and bis complexes was found in all cases with versatile coordination modes, while tris complexes were also formed with Fe(II) and Fe(III) ions, revealing the metal binding affinity of the ligand at pH 7.4: Cu(II) > Zn(II) > Fe(II) > Fe(III). The ligand and its Rh(III) complex displayed enhanced cytotoxicity against the resistant MES-SA/Dx5 and Colo320 human cancer cell lines compared to their chemosensitive counterparts. Both organometallic complexes possess high stability in solution, however the Ru(II) complex has lower chloride ion affinity and slower ligand exchange processes, along with the readiness to lose the arene ring that is likely connected to its inactivity.
Collapse
Affiliation(s)
- Tamás Pivarcsik
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Vivien Pósa
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Hilda Kovács
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Nóra V. May
- Centre for Structural Science, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Szonja P. Pósa
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
- National Laboratory for Drug Research and Development, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Szilárd Tóth
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
- National Laboratory for Drug Research and Development, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Zeinab Nezafat Yazdi
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Imre Ugrai
- Institute of Pharmaceutical Chemistry and Stereochemistry Research Group, Eötvös Loránd Research Network, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and Stereochemistry Research Group, Eötvös Loránd Research Network, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Gergely Szakács
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Éva A. Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
- Correspondence:
| |
Collapse
|
14
|
Li JX, Xia YQ, Cheng LM, Feng X. One-pot hydrothermal synthesis of a mononuclear cobalt(II) complex and an organic-inorganic supramolecular adduct: Structures, properties and hirshfeld surface analyses. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
CORM-3 induces DNA damage through Ru(II) binding to DNA. Biochem J 2022; 479:1429-1439. [PMID: 35726678 PMCID: PMC9342897 DOI: 10.1042/bcj20220254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022]
Abstract
When the ‘CO-releasing molecule-3’, CORM-3 (Ru(CO)3Cl(glycinate)), is dissolved in water it forms a range of ruthenium complexes. These are taken up by cells and bind to intracellular ligands, notably thiols such as cysteine and glutathione, where the Ru(II) reaches high intracellular concentrations. Here, we show that the Ru(II) ion also binds to DNA, at exposed guanosine N7 positions. It therefore has a similar cellular target to the anticancer drug cisplatin, but not identical, because Ru(II) shows no evidence of forming intramolecular crossbridges in the DNA. The reaction is slow, and with excess Ru, intermolecular DNA crossbridges are formed. The addition of CORM-3 to human colorectal cancer cells leads to strand breaks in the DNA, as assessed by the alkaline comet assay. DNA damage is inhibited by growth media containing amino acids, which bind to extracellular Ru and prevent its entry into cells. We conclude that the cytotoxicity of Ru(II) is different from that of platinum, making it a promising development target for cancer therapeutics.
Collapse
|
16
|
Piano-stool type (η6-p-cymene)Ruthenium(II) Thiazole-derived motifs complexes: Synthesis, Crystal Structures, DFT Studies, Molecular Docking and in-vitro Binding Studies with HSA and Cytotoxicity. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Wittmann C, Bacher F, Enyedy EA, Dömötör O, Spengler G, Madejski C, Reynisson J, Arion VB. Highly Antiproliferative Latonduine and Indolo[2,3- c]quinoline Derivatives: Complex Formation with Copper(II) Markedly Changes the Kinase Inhibitory Profile. J Med Chem 2022; 65:2238-2261. [PMID: 35104137 PMCID: PMC8842277 DOI: 10.1021/acs.jmedchem.1c01740] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
A series of latonduine
and indoloquinoline derivatives HL1–HL8 and their copper(II)
complexes (1–8) were synthesized and comprehensively
characterized. The structures of five compounds (HL6, [CuCl(L1)(DMF)]·DMF, [CuCl(L2)(CH3OH)], [CuCl(L3)]·0.5H2O, and [CuCl2(H2L5)]Cl·2DMF) were elucidated
by single crystal X-ray diffraction. The copper(II) complexes revealed
low micro- to sub-micromolar IC50 values with promising
selectivity toward human colon adenocarcinoma multidrug-resistant
Colo320 cancer cells as compared to the doxorubicin-sensitive Colo205
cell line. The lead compounds HL4 and 4 as well as HL8 and 8 induced apoptosis efficiently in Colo320 cells. In addition, the
copper(II) complexes had higher affinity to DNA than their metal-free
ligands. HL8 showed selective inhibition for
the PIM-1 enzyme, while 8 revealed strong inhibition
of five other enzymes, i.e., SGK-1, PKA, CaMK-1, GSK3β, and
MSK1, from a panel of 50 kinases. Furthermore, molecular modeling
of the ligands and complexes showed a good fit to the binding pockets
of these targets.
Collapse
Affiliation(s)
- Christopher Wittmann
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse, 42, Vienna A1090, Austria
| | - Felix Bacher
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse, 42, Vienna A1090, Austria
| | - Eva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary.,MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Orsolya Dömötör
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary.,MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary.,Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Christian Madejski
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse, 42, Vienna A1090, Austria
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, United Kingdom
| | - Vladimir B Arion
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse, 42, Vienna A1090, Austria
| |
Collapse
|
18
|
Grawe GF, Oliveira KM, Leite CM, de Oliveira TD, Honorato J, Ferreira AG, Castellano EE, Cominetti MR, Correa RS, Batista AA. Ruthenium(II)-diphosphine complexes containing acylthiourea ligands are effective against lung and breast cancers. Dalton Trans 2022; 51:1489-1501. [PMID: 34989381 DOI: 10.1039/d1dt02851k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have synthesized and characterized three new ruthenium(II) diphosphine complexes containing an acylthiourea ligand, with the general formula [Ru(DPEPhos)(O,S)(bipy)]PF6, where DPEPhos = bis(2-(diphenylphosphino)phenyl)ether, bipy = 2,2'-bipyridine, and O,S = N,N-dimethyl-N'-(benzoyl)thiourea (1), N,N-dimethyl-N'-(furoyl)thiourea (2), and N,N-dimethyl-N'-(thiophenyl)thiourea (3), by several physicochemical techniques. We evaluated the ruthenium complexes for their cytotoxicity against two human cancer cell lines, A549 (lung) and MDA-MB-231 (breast), and two corresponding lines of non-cancer cells, MRC-5 (lung) and MCF-10A (breast). All the complexes are cytotoxic against the cancer cell lines; the IC50 values lie in the micromolar range (0.07-0.70 μM). Ruthenium complex 1 is more selective (7 times more active) toward lung cancer cells (A549) than toward non-cancer cells (MRC-5) and is 160 times more cytotoxic than cisplatin against A549 cells. Investigations of the mechanism of action of complex 1 in A549 cells demonstrated that it inhibits colony formation and promotes cell cycle arrest in the G1 phase and apoptotic cell death. DNA binding studies revealed that complexes 1-3 interact with the biomolecule via minor grooves. These complexes also interact with human serum albumin (HSA) and have affinity for site I by hydrophobic forces. Therefore, this new class of ruthenium complexes can act as cytotoxic agents, mainly for lung cancer treatment.
Collapse
Affiliation(s)
- Gregory F Grawe
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, CP 676, CEP 13561-901, São Carlos, SP, Brazil.
| | - Katia M Oliveira
- Departamento de Química, ICEB, Universidade Federal de Ouro Preto - UFOP, CEP 35400-000, Ouro Preto, MG, Brazil.
| | - Celisnolia M Leite
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, CP 676, CEP 13561-901, São Carlos, SP, Brazil.
| | - Tamires D de Oliveira
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, CP 676, CEP 13561-901, São Carlos, SP, Brazil.
| | - João Honorato
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, CP 676, CEP 13561-901, São Carlos, SP, Brazil.
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, CP 676, CEP 13561-901, São Carlos, SP, Brazil.
| | - Eduardo E Castellano
- Instituto de Física de São Carlos, Universidade de São Paulo - USP, CP 369, CEP 13560-970, São Carlos, SP, Brazil
| | - Marcia R Cominetti
- Departamento de Gerontologia, Universidade Federal de São Carlos - UFSCar, CP 676, CEP 13565-905, São Carlos, SP, Brazil
| | - Rodrigo S Correa
- Departamento de Química, ICEB, Universidade Federal de Ouro Preto - UFOP, CEP 35400-000, Ouro Preto, MG, Brazil.
| | - Alzir A Batista
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, CP 676, CEP 13561-901, São Carlos, SP, Brazil. .,Instituto de Química, Universidade Federal de Goiás - UFG, CEP 74690-900, Goiânia, GO, Brazil
| |
Collapse
|
19
|
Pivarcsik T, Dömötör O, Mészáros JP, May NV, Spengler G, Csuvik O, Szatmári I, Enyedy ÉA. 8-Hydroxyquinoline-Amino Acid Hybrids and Their Half-Sandwich Rh and Ru Complexes: Synthesis, Anticancer Activities, Solution Chemistry and Interaction with Biomolecules. Int J Mol Sci 2021; 22:ijms222011281. [PMID: 34681939 PMCID: PMC8570331 DOI: 10.3390/ijms222011281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
Solution chemical properties of two novel 8-hydroxyquinoline-D-proline and homo-proline hybrids were investigated along with their complex formation with [Rh(η5-C5Me5)(H2O)3]2+ and [Ru(η6-p-cymene)(H2O)3]2+ ions by pH-potentiometry, UV-visible spectrophotometry and 1H NMR spectroscopy. Due to the zwitterionic structure of the ligands, they possess excellent water solubility as well as their complexes. The complexes exhibit high solution stability in a wide pH range; no significant dissociation occurs at physiological pH. The hybrids and their Rh(η5-C5Me5) complexes displayed enhanced cytotoxicity in human colon adenocarcinoma cell lines and exhibited multidrug resistance selectivity. In addition, the Rh(η5-C5Me5) complexes showed increased selectivity to the chemosensitive cancer cells over the normal cells; meanwhile, the Ru(η6-p-cymene) complexes were inactive, most likely due to arene loss. Interaction of the complexes with human serum albumin (HSA) and calf-thymus DNA (ct-DNA) was investigated by capillary electrophoresis, fluorometry and circular dichroism. The complexes are able to bind strongly to HSA and ct-DNA, but DNA cleavage was not observed. Changing the five-membered proline ring to the six-membered homoproline resulted in increased lipophilicity and cytotoxicity of the Rh(η5-C5Me5) complexes while changing the configuration (L vs. D) rather has an impact on HSA or ct-DNA binding.
Collapse
Affiliation(s)
- Tamás Pivarcsik
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (O.D.); (J.P.M.); (G.S.)
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary
| | - Orsolya Dömötör
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (O.D.); (J.P.M.); (G.S.)
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary
| | - János P. Mészáros
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (O.D.); (J.P.M.); (G.S.)
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary
| | - Nóra V. May
- Centre for Structural Science, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary;
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (O.D.); (J.P.M.); (G.S.)
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis U. 6, H-6725 Szeged, Hungary
| | - Oszkár Csuvik
- Institute of Pharmaceutical Chemistry and Stereochemistry Research Group of Hungarian Academy of Sciences, University of Szeged, Eötvös U. 6, H-6720 Szeged, Hungary; (O.C.); (I.S.)
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and Stereochemistry Research Group of Hungarian Academy of Sciences, University of Szeged, Eötvös U. 6, H-6720 Szeged, Hungary; (O.C.); (I.S.)
| | - Éva A. Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (O.D.); (J.P.M.); (G.S.)
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary
- Correspondence:
| |
Collapse
|
20
|
Dömötör O, Pivarcsik T, Mészáros JP, Szatmári I, Fülöp F, Enyedy ÉA. Critical factors affecting the albumin binding of half-sandwich Ru(ii) and Rh(iii) complexes of 8-hydroxyquinolines and oligopyridines. Dalton Trans 2021; 50:11918-11930. [PMID: 34374386 DOI: 10.1039/d1dt01700d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is significant interest today in the interaction of half-sandwich anticancer organometallic complexes with proteins. It is considered as a crucial factor in the transport and mode of action of these compounds; thus it can affect their overall pharmacological and toxicological profiles. Albumin binding of high stability Ru(ii)(η6-p-cymene) and Rh(iii)(η5-C5Me5) complexes formed with 8-hydroxyquinoline, its 5-chloro-7-((proline-1-yl)methyl) substituted derivative, 2,2'-bipyridine and 1,10-phenanthroline is discussed herein. The interaction with human serum albumin in terms of kinetic aspects, binding strength and possible binding sites was studied in detail by means of various methods such as 1H NMR spectroscopy, UV-visible spectrophotometry, steady-state and time-resolved fluorometry, ultrafiltration and capillary zone electrophoresis. Ru(ii)(η6-p-cymene)(2,2'-bipyridine) and Ru(ii)(η6-p-cymene)(1,10-phenanthroline) complexes do not bind to the protein measurably, most probably due to kinetic reasons. However, other complexes bind significantly to albumin with fairly different kinetics to albumin. The binding affinity towards hydrophobic binding pockets shows correlation with lipophilicity along with the actual charge of the respective complexes. The studied complexes preserve their original structure upon interaction with albumin. Formation constants computed for the binding of these metal complexes to histidine-containing model oligopeptides demonstrated significant ternary complex formation, pointing out the importance of histidine coordination in the binding of these types of complexes.
Collapse
Affiliation(s)
- Orsolya Dömötör
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
21
|
Żołek T, Dömötör O, Rezler M, Enyedy ÉA, Maciejewska D. Deposition of pentamidine analogues in the human body - spectroscopic and computational approaches. Eur J Pharm Sci 2021; 161:105779. [PMID: 33667666 DOI: 10.1016/j.ejps.2021.105779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022]
Abstract
Bis-benzamidines are a diverse group of compounds with high potential in pharmacotherapy, and among them, pentamidine is a drug of great therapeutic significance in Pneumocystis jiroveci pneumonia (PJP) prophylaxis and therapy. Pharmacokinetic properties of these cationic species such as transport, acid/base equilibria, and interactions with potential target molecules are still of interest, especially for recently designed compounds. To broaden our knowledge drug-likeness, human serum albumin binding, and acidity constants (Ka) were experimentally and theoretically examined for five pentamidine analogues 1 - 5 with -NH-CO-chain-CO-NH-bridges of increasing length and O, N, and S atoms in the chain. The studied analogues display very marked activity against Pneumocystis carinii without cytotoxicity that inspired us to perform an in silico analysis of their mode of action based on the hypothesis that the small DNA groove of rich in adenine-thymine pairs is their molecular target. These studies allowed us to classify them as very promising lead molecules.
Collapse
Affiliation(s)
- Teresa Żołek
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| | - Orsolya Dömötör
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7. H-6720 Szeged, Hungary; MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Mateusz Rezler
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Éva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7. H-6720 Szeged, Hungary; MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Dorota Maciejewska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| |
Collapse
|
22
|
Pivarcsik T, Tóth G, Szemerédi N, Bogdanov A, Spengler G, Kljun J, Kladnik J, Turel I, Enyedy ÉA. Comparison of Solution Chemical Properties and Biological Activity of Ruthenium Complexes of Selected β-Diketone, 8-Hydroxyquinoline and Pyrithione Ligands. Pharmaceuticals (Basel) 2021; 14:518. [PMID: 34072270 PMCID: PMC8226722 DOI: 10.3390/ph14060518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
In this work, the various biological activities of eight organoruthenium(II) complexes were evaluated to reveal correlations with their stability and reactivity in aqueous media. Complexes with general formula [Ru(η6-p-cymene)(X,Y)(Z)] were prepared, where (X,Y) represents either an O,O-ligand (β-diketone), N,O-ligand (8-hydroxyquinoline) or O,S-pyrithione-type ligands (pyrithione = 1-hydroxypyridine-2(1H)-thione) with Cl- or 1,3,5-triaza-7-phosphaadamantane (PTA) as a co-ligand (Z). The tested complexes inhibit the chlamydial growth on HeLa cells, and one of the complexes inhibits the growth of the human herpes simplex virus-2. The chlorido complexes with N,O- and O,S-ligands displayed strong antibacterial activity on Gram-positive strains including the resistant S. aureus (MRSA) and were cytotoxic in adenocarcinoma cell lines. Effect of the structural variation on the biological properties and solution stability was clearly revealed. The decreased bioactivity of the β-diketone complexes can be related to their lower stability in solution. In contrast, the O,S-pyrithione-type complexes are highly stable in solution and the complexation prevents the oxidation of the O,S-ligands. Comparing the binding of PTA and the chlorido co-ligands, it can be concluded that PTA is generally more strongly coordinated to ruthenium, which at the same time decreased the reactivity of complexes with human serum albumin or 1-methylimidazole as well as diminished their bioactivity.
Collapse
Affiliation(s)
- Tamás Pivarcsik
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (G.T.)
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary
| | - Gábor Tóth
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (G.T.)
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.S.); (A.B.)
| | - Anita Bogdanov
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.S.); (A.B.)
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (G.T.)
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.S.); (A.B.)
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (J.K.)
| | - Jerneja Kladnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (J.K.)
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (J.K.)
| | - Éva A. Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (G.T.)
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary
| |
Collapse
|
23
|
Zanda E, Busto N, Biancalana L, Zacchini S, Biver T, Garcia B, Marchetti F. Anticancer and antibacterial potential of robust Ruthenium(II) arene complexes regulated by choice of α-diimine and halide ligands. Chem Biol Interact 2021; 344:109522. [PMID: 34029541 DOI: 10.1016/j.cbi.2021.109522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 05/14/2021] [Indexed: 01/04/2023]
Abstract
Several complexes of general formula [Ru(halide)(η6-p-cymene)(α-diimine)]+, in the form of nitrate, triflate and hexafluorophosphate salts, including a newly synthesized iodide compound, were investigated as potential anticancer drugs and bactericides. NMR and UV-Vis studies evidenced remarkable stability of the complexes in water and cell culture medium. In general, the complexes displayed strong cytotoxicity against A2780 and A549 cancer cell lines with IC50 values in the low micromolar range, and one complex (RUCYN) emerged as the most promising one, with a significant selectivity compared to the non-cancerous HEK293 cell line. A variable affinity of the complexes for BSA and DNA binding was ascertained by spectrophotometry/fluorimetry, circular dichroism, electrophoresis and viscometry. The performance of RUCYN appears associated to enhanced cell internalization, favored by two cyclohexyl substituents, rather than to specific interaction with the evaluated biomolecules. The chloride/iodide replacement, in one case, led to increased cellular uptake and cytotoxicity at the expense of selectivity, and tuned DNA binding towards intercalation. Complexes with iodide or a valproate bioactive fragment exhibited the best antimicrobial profiles.
Collapse
Affiliation(s)
- Emanuele Zanda
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Natalia Busto
- Universidad de Burgos, Departamento de Química, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Lorenzo Biancalana
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Tarita Biver
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, I-56126 Pisa, Italy
| | - Begoña Garcia
- Universidad de Burgos, Departamento de Química, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| |
Collapse
|
24
|
Mészáros JP, Németi G, Poljarevic JM, Holczbauer T, May NV, Enyedy ÉA. Effect of the Additional Carboxyl Group in Half‐Sandwich Organometallic 2,4‐Dipicolinate Complexes on Solution Speciation and Structure. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- János P. Mészáros
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre University of Szeged Dóm tér 7 6720 Szeged Hungary
- MTA-SZTE Lendület Functional Metal Complexes Research Group University of Szeged Dóm tér 7 6720 Szeged Hungary
| | - Gábor Németi
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre University of Szeged Dóm tér 7 6720 Szeged Hungary
| | - Jelena M. Poljarevic
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre University of Szeged Dóm tér 7 6720 Szeged Hungary
- Faculty of Chemistry University of Belgrade Studentski trg 12–16 11000 Belgrade Serbia
| | - Tamás Holczbauer
- Centre for Structural Science Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
- Institute of Organic Chemistry Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Nóra V. May
- Centre for Structural Science Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Éva A. Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre University of Szeged Dóm tér 7 6720 Szeged Hungary
- MTA-SZTE Lendület Functional Metal Complexes Research Group University of Szeged Dóm tér 7 6720 Szeged Hungary
| |
Collapse
|
25
|
Daubit IM, Wortmann S, Siegmund D, Hahn S, Nuernberger P, Metzler‐Nolte N. Unveiling Luminescent Ir I and Rh I N-Heterocyclic Carbene Complexes: Structure, Photophysical Specifics, and Cellular Localization in the Endoplasmic Reticulum. Chemistry 2021; 27:6783-6794. [PMID: 33755263 PMCID: PMC8252781 DOI: 10.1002/chem.202100375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 01/28/2023]
Abstract
Complexes of RhI and IrI of the [M(COD)(NHC)X] type (where M=Rh or Ir, COD=1,5-cyclooctadiene, NHC=N-heterocyclic carbene, and X=halide) have recently shown promising cytotoxic activities against several cancer cell lines. Initial mechanism of action studies provided some knowledge about their interaction with DNA and proteins. However, information about their cellular localization remains scarce owing to luminescence quenching within this complex type. Herein, the synthesis of two rare examples of luminescent RhI and IrI [M(COD)(NHC)I] complexes with 1,8-naphthalimide-based emitting ligands is reported. All new complexes are comprehensively characterized, including with single-crystal X-ray structures. Steric crowding in one derivative leads to two distinct rotamers in solution, which apparently can be distinguished both by pronounced NMR shifts and by their respective spectral and temporal emission signatures. When the photophysical properties of these new complexes are exploited for cellular imaging in HT-29 and PT-45 cancer cell lines, it is demonstrated that the complexes accumulate predominantly in the endoplasmic reticulum, which is an entirely new finding and provides the first insight into the cellular localization of such IrI (NHC) complexes.
Collapse
Affiliation(s)
- Isabelle Marie Daubit
- Faculty of Chemistry and BiochemistryInorganic Chemistry I—Bioinorganic ChemistryRuhr-Universität BochumUniversitätsstraße 15044780BochumGermany
| | - Svenja Wortmann
- Institut für Physikalische und Theoretische ChemieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Daniel Siegmund
- Division EnergyFraunhofer UMSICHTOsterfelder Str. 346047OberhausenGermany
| | - Stephan Hahn
- Molecular GI OncologyRuhr-Universität BochumUniversitätsstraße 15044780BochumGermany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische ChemieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Nils Metzler‐Nolte
- Faculty of Chemistry and BiochemistryInorganic Chemistry I—Bioinorganic ChemistryRuhr-Universität BochumUniversitätsstraße 15044780BochumGermany
| |
Collapse
|
26
|
Hairat S, Zaki M. Half sandwiched RutheniumII complexes: En Route towards the targeted delivery by Human Serum Albumin (HSA). J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Construction of a whole-cell biohybrid catalyst using a Cp*Rh(III)-dithiophosphate complex as a precursor of a metal cofactor. J Inorg Biochem 2021; 216:111352. [PMID: 33461020 DOI: 10.1016/j.jinorgbio.2020.111352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/01/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022]
Abstract
A whole-cell biohybrid catalyst where a (pentamethylcyclopentadienyl)rhodium(III) (Cp*Rh(III)) complex was covalently incorporated into the cavity of nitrobindin (NB), a β-barrel protein, was prepared on an E. coli cell surface to produce isoquinolines via C(sp2)-H bond activation. In this whole-cell biohybrid system, the Cp*Rh(III)-dithiophosphate complex with latent catalytic activity was utilized as a precursor of the metal cofactor. Strong chelation of the dithiophosphate ligands protects the rhodium complex from being deactivated by abundant nucleophiles in cellular environments during conjugation of the cofactor with the protein scaffold. The whole-cell biohybrid catalyst was then activated upon addition of Ag+ ion to dissociate the dithiophosphate ligands and promoted cycloaddition of acetophenone oxime with diphenylacetylene. Furthermore, the activity of the Cp*Rh(III)-linked whole-cell biohybrid catalyst was enhanced 2.1-fold by introducing glutamate residues at positions adjacent to the Cp*Rh(III) cofactor. These results indicate that the use of the Cp*Rh(III)-dithiophosphate complex with switchable activity from a "latent" form to an "active" form provides a new strategy for generating whole-cell biohybrid catalysts.
Collapse
|
28
|
Munteanu A, Musat MG, Mihaila M, Badea M, Olar R, Nitulescu GM, Rădulescu FȘ, Brasoveanu LI, Uivarosi V. New heteroleptic lanthanide complexes as multimodal drugs: Cytotoxicity studies, apoptosis, cell cycle analysis, DNA interactions, and protein binding. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alexandra‐Cristina Munteanu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | - Mihaela Georgiana Musat
- Department of Biochemistry, Faculty of Pharmacy Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | - Mirela Mihaila
- Center of Immunology Stefan S. Nicolau Institute of Virology Bucharest Romania
| | - Mihaela Badea
- Department of Inorganic Chemistry, Faculty of Chemistry University of Bucharest Bucharest Romania
| | - Rodica Olar
- Department of Inorganic Chemistry, Faculty of Chemistry University of Bucharest Bucharest Romania
| | - George Mihai Nitulescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | - Flavian Ștefan Rădulescu
- Center for Drug Sciences, Faculty of Pharmacy Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | | | - Valentina Uivarosi
- Department of General and Inorganic Chemistry, Faculty of Pharmacy Carol Davila University of Medicine and Pharmacy Bucharest Romania
| |
Collapse
|
29
|
Hassoon AA, Szorcsik A, Bogár F, Papp IZ, Fülöp L, Kele Z, Gajda T. The interaction of half-sandwich (η 5-Cp*)Rh(III) cation with histidine containing peptides and their ternary species with (N,N) bidentate ligands. J Inorg Biochem 2020; 216:111330. [PMID: 33360738 DOI: 10.1016/j.jinorgbio.2020.111330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Our goal was to explore the possible interactions of the potential metallodrug (η5-Cp*)Rh(III) complexes with histidine containing biomolecules (peptides/proteins) in order to understand the most important thermodynamic factors influencing the biospeciation and biotransformation of (η5-Cp*)Rh(III) complexes. To this end, here we report systematic solution thermodynamic and solution structural study on the interaction of (η5-Cp*)Rh(III) cation with histidine containing peptides and their constituents ((N-methyl)imidazole, GGA-OH, GGH-OH, histidine-amide, HGG-OH, GHG-NH2), based on extensive 1H NMR, ESI-MS and potentiometric investigations. The comparative evaluation of our data indicated that (η5-Cp*)Rh(III) cation is able to induce the deprotonation of amide nitrogen well below pH 7. Consequently, at physiological pH the peptides are coordinated to Rh(III) by tridentate manner, with the participation of amide nitrogen. At pH 7.4 the (η5-Cp*)Rh(III) binding affinity of peptides follow the order GGA-OH < < GGH-OH < < histidine-amide < HGG-OH < GHG-NH2, i.e. the observed binding strength essentially depends on the presence and position of histidine within the peptide sequence. We also performed computational study on the possible solution structures of complexes present at near physiological pH. At pH 7.4 all histidine containing peptides form ternary complexes with strongly coordinating (N,N) bidentate ligands (ethylenediamine or bipyridyl), in which the peptides are monodentately coordinated to Rh(III) through their imidazole N1‑nitrogens. In addition, the strongest chelators histidine-amide, HGG-OH and GHG-NH2 are also able to displace these powerful bidentate ligands from the coordination sphere of Rh(III).
Collapse
Affiliation(s)
- Azza A Hassoon
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Attila Szorcsik
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Ferenc Bogár
- Institute of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Ibolya Zita Papp
- Institute of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Lívia Fülöp
- Institute of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Zoltán Kele
- Institute of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Tamás Gajda
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.
| |
Collapse
|
30
|
Maikoo S, Makayane D, Booysen IN, Ngubane P, Khathi A. Ruthenium compounds as potential therapeutic agents for type 2 diabetes mellitus. Eur J Med Chem 2020; 213:113064. [PMID: 33279292 DOI: 10.1016/j.ejmech.2020.113064] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 01/03/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder which is globally responsible for millions of fatalities per year. Management of T2DM typically involves orally administered anti-hyperglycaemic drugs in conjunction with dietary interventions. However, the current conventional therapy seems to be largely ineffective as patients continue to develop complications such as cardiovascular diseases, blindness and kidney failure. Existing alternative treatment entails the administration of organic therapeutic pharmaceuticals, but these drugs have various side effects such as nausea, headaches, weight gain, respiratory and liver damage. Transition metal complexes have shown promise as anti-diabetic agents owing to their diverse mechanisms of activity. In particular, selected ruthenium compounds have exhibited intriguing biological behaviours as Protein Tyrosine Phosphatase (PTP) 1B and Glycogen Synthase Kinase 3 (GSK-3) inhibitors, as well as aggregation suppressants for the human islet amyloid polypeptide (hIAPP). This focussed review serves as a survey on studies pertaining to ruthenium compounds as metallo-drugs for T2DM. Herein, we also provide perspectives on directions to fully elucidate in vivo functions of this class of potential metallopharmaceuticals. More specifically, there is still a need to investigate the pharmacokinetics of ruthenium drugs in order to establish their biodistribution patterns which will affirm whether these metal complexes are substitutionally inert or serve as pro-drugs. In addition, embedding oral-administered ruthenium complexes into bio-compatible polymers can be a prospective means of enhancing stability during drug delivery.
Collapse
Affiliation(s)
- Sanam Maikoo
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Daniel Makayane
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Irvin Noel Booysen
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
31
|
Bio-macromolecular interaction studies: Synthesis, crystal structure of water-soluble manganese(II) complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Kato S, Onoda A, Grimm AR, Tachikawa K, Schwaneberg U, Hayashi T. Incorporation of a Cp*Rh(III)-dithiophosphate Cofactor with Latent Activity into a Protein Scaffold Generates a Biohybrid Catalyst Promoting C(sp 2)-H Bond Functionalization. Inorg Chem 2020; 59:14457-14463. [PMID: 32914980 DOI: 10.1021/acs.inorgchem.0c02245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A Cp*Rh(III)-dithiophosphate cofactor with "latent" catalytic activity was developed to construct an artificial metalloenzyme representing a new type of biohybrid catalyst which is capable of promoting C(sp2)-H bond functionalization within the β-barrel structure of nitrobindin (NB). To covalently conjugate the Cp*Rh(III) cofactor into a specific position of the hydrophobic cavity of NB via a maleimide-Cys linkage, strong chelation of the dithiophosphate ligand is employed to protect the rhodium metal center against attack by nucleophilic amino acid residues in the protein. It is found that subsequent addition of the Ag+ ion induces dissociation of the dithiophosphate ligands, thereby activating the catalytic activity of the Cp*Rh(III) cofactor. The resulting "active" biohybrid catalyst promotes cycloaddition of acetophenone oxime with diphenylacetylene via C(sp2)-H bond activation. This catalytic activity is enhanced 2.3-fold with the introduction of two glutamate residues (A100E/L125E) adjacent to the Cp*Rh(III) cofactor. The Cp*Rh(III) cofactor with switchable activity from a "latent" form to an "active" form provides a new strategy for generating biohybrid catalysts incorporating a variety of highly reactive transition metal complexes specifically within its protein scaffolds.
Collapse
Affiliation(s)
- Shunsuke Kato
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Akira Onoda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Alexander R Grimm
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Kengo Tachikawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
33
|
Masnikosa R, Milutinović MM, Crnolatac I, Tot A, Veličković S, Bojić-Trbojević Ž, Rilak-Simović A. Anti-adhesive action of novel ruthenium(II) chlorophenyl terpyridine complexes with a high affinity for double-stranded DNA: in vitro and in silico. J Inorg Biochem 2020; 208:111090. [PMID: 32389890 DOI: 10.1016/j.jinorgbio.2020.111090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 12/01/2022]
Abstract
Interactions of three Ru(II) chlorophenyl terpyridine complexes: [Ru(Cl-Ph-tpy)(en)Cl]Cl (1), [Ru(Cl-Ph-tpy)(dach)Cl]Cl (2) and [Ru(Cl-Ph-tpy)(bpy)Cl]Cl (3) (Cl-Ph-tpy = 4'-(4-chlorophenyl)-2,2':6',2''-terpyridine, en = 1,2-diaminoethane, dach = 1,2-diaminocyclohexane, bpy = 2,2'-bipyridine) with human serum albumin (HSA), calf thymus DNA and a double-helical oligonucleotide d(CGCGAATTCGCG)2 (1BNA) were examined. Fluorescence emission studies were used to assess the interactions of complexes with HSA, which were of moderate strength for 1 and 2. Molecular docking allowed us to predict mostly π-π stacking and van der Waals interactions between the complexes and the protein. We suggest that the complexes bind to a novel site on HSA, which is different from its druggable sites I, II or III. We suggest a partial intercalation of complexes through the minor groove as a possible mode of interaction with double-helical DNA. Finally, when applied to normal extravillous cell line HTR8/SVneo and JAr choriocarcinoma cell line, complexes 1 and 2 exerted anti-adhesive properties at very low doses, whereas complex 3 had a negligible effect. The obtained results are completion of our studies of Ru(II) terpyridyl complexes that carry N-N ancillary ligands. We suggest a new research direction towards studying the cellular effects of Ru(II) polypyridyl compounds.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia.
| | - Milan M Milutinović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Natural Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia; Institute for Inorganic and Analytical Chemistry, Technical University of Braunschweig, Hagenring 30, 38106 Braunschweig, Germany (present address)
| | - Ivo Crnolatac
- Division of Organic Chemistry and Biochemistry, Laboratory for Biomolecular Interactions and Spectroscopy, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Aleksandar Tot
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Suzana Veličković
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Žanka Bojić-Trbojević
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11000 Zemun-Belgrade, Serbia
| | - Ana Rilak-Simović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Natural Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| |
Collapse
|
34
|
Degradation of Human Serum Albumin by Infrared Free Electron Laser Enhanced by Inclusion of a Salen-Type Schiff Base Zn (II) Complex. Int J Mol Sci 2020; 21:ijms21030874. [PMID: 32013252 PMCID: PMC7037271 DOI: 10.3390/ijms21030874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 11/17/2022] Open
Abstract
A salen-type Schiff base Zn(II) complex included in human serum albumin (HSA) protein was examined by UV-Vis, circular dichroism (CD), and fluorescence (PL) spectra. The formation of the composite material was also estimated by a GOLD program of ligand-protein docking simulation. A composite cast film of HSA and Zn(II) complex was prepared, and the effects of the docking of the metal complex on the degradation of protein molecules by mid-infrared free electron laser (IR-FEL) were investigated. The optimum wavelengths of IR-FEL irradiation to be used were based on experimental FT-IR spectra and vibrational analysis. Using TD-DFT results with 6-31G(d,p) and B3LYP, the IR spectrum of Zn(II) complex could be reasonably assigned. The respective wavelengths were 1652 cm-1 (HSA amide I), 1537 cm-1 (HSA amide II), and 1622 cm-1 (Zn(II) complex C=N). Degradation of HSA based on FT-IR microscope (IRM) analysis and protein secondary structure analysis program (IR-SSE) revealed that the composite material was degraded more than pure HSA or Zn(II) complex; the inclusion of Zn(II) complex enhanced destabilization of folding of HSA.
Collapse
|
35
|
Askari B, Amiri Rudbari H, Micale N, Schirmeister T, Efferth T, Seo EJ, Bruno G, Schwickert K. Ruthenium(ii) and palladium(ii) homo- and heterobimetallic complexes: synthesis, crystal structures, theoretical calculations and biological studies. Dalton Trans 2019; 48:15869-15887. [PMID: 31620752 DOI: 10.1039/c9dt02353d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Four Ru-Pd heterobimetallic complexes, each one in two different coordination modes (NNSS and NS) having metals connected by a binucleating dialkyldithiooxamidate [N(R)SC-CS(R)N] [R = methyl, ethyl, n-butyl and isopropyl], were prepared by reacting the monochelate [(trinpropyl-phosphine)ClPd(HR2C2N2S2κ-S,S-Pd)] with [(η6-p-cymene)RuCl2]2. Furthermore, two palladium homobimetallic complexes having two (trinpropyl-phosphine)ClPd moieties joined by a diethyldithiooxamidate in both κ-N,S Pd, κ-N',S' Pd' and κ-N,N' Pd, κ-S,S' Pd' coordination modes were synthesized. For both kinds of complexes, homo- and heterobimetallic, at room temperature and in chloroform solution, the NNSS coordination mode (kinetic compounds) turns out to be unstable and therefore the resulting complexes rearrange into a thermodynamically more stable form (NS coordination mode). The crystal structures of [(trinpropyl-phosphine)ClPd]2[μ-(ethyl)2-DTO κ-N,S Pd, κ-N',S' Pd'] (2) and [(η6-p-cymene)ClRu][μ-(methyl)2-DTO κ-N,S Ru, κ-N,S Pd] [(trinpropyl-phosphine)ClPd] (1c) were determined by solid state X-ray crystallography. Moreover, the higher stability of the thermodynamic species in the heterobimetallic complexes (Ru-Pd) was evaluated by means of computational studies in accordance with the maximum hardness principle. All stable NS complexes (i.e.1c-4c, 2 and the previously reported homobimetallic Ru complex 3) were tested against two leukemia cell lines, namely the drug-sensitive CCRF-CEM cell line and its multidrug-resistant sub-cell line CEM/ADR5000 showing anti-proliferative activity in the low micromolar range (∼1-5 μM) and micromolar range (∼10-25 μM), respectively. In addition, these complexes efficaciously block at least two out of the three proteolytic activities of the tumor target 20S proteasome, with heterobimetallic complex 3c and homobimetallic complex 3 possessing the best inhibitory profile.
Collapse
Affiliation(s)
- Banafshe Askari
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Hadi Amiri Rudbari
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166 Messina, Italy.
| | - Tanja Schirmeister
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Giuseppe Bruno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166 Messina, Italy.
| | - Kevin Schwickert
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
36
|
Interaction with Blood Proteins of a Ruthenium(II) Nitrofuryl Semicarbazone Complex: Effect on the Antitumoral Activity. Molecules 2019; 24:molecules24162861. [PMID: 31394747 PMCID: PMC6719144 DOI: 10.3390/molecules24162861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
The steady rise in the cancer burden and grim statistics set a vital need for new therapeutic solutions. Given their high efficiency, metallodrugs are quite appealing in cancer chemotherapy. This work examined the anticancer activity of an anti-trypanosomal ruthenium-based compound bearing the 5-nitrofuryl pharmacophore, [RuII(dmso)2(5-nitro-2-furaldehyde semicarbazone)] (abbreviated as RuNTF; dmso is the dimethyl sulfoxide ligand). The cytotoxicity of RuNTF was evaluated in vitro against ovarian adenocarcinoma, hormone-dependent breast adenocarcinoma, prostate carcinoma (grade IV) and V79 lung fibroblasts human cells. The activity of RuNTF was similar to the benchmark metallodrug cisplatin for the breast line and inactive against the prostate line and lung fibroblasts. Given the known role of serum protein binding in drug bioavailability and the distribution via blood plasma, this study assessed the interaction of RuNTF with human serum albumin (HSA) by circular dichroism (CD) and fluorescence spectroscopy. The fluorescence emission quenching from the HSA-Trp214 residue and the lifetime data upon RuNTF binding evidenced the formation of a 1:1 {RuNTF-albumin} adduct with log Ksv = (4.58 ± 0.01) and log KB = (4.55 ± 0.01). This is supported by CD data with an induced CD broad band observed at ~450 nm even after short incubation times. Importantly, the binding to either HSA or human apo-transferrin is beneficial to the cytotoxicity of the complex towards human cancer cells by enhancing the cytotoxic activity of RuNTF.
Collapse
|