1
|
Moris V, Lam M, Amoureux L, Magallon A, Guilloteau A, Maldiney T, Zwetyenga N, Falentin-Daudre C, Neuwirth C. What is the best technic to dislodge Staphylococcus epidermidis biofilm on medical implants? BMC Microbiol 2022; 22:192. [PMID: 35933363 PMCID: PMC9356421 DOI: 10.1186/s12866-022-02606-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background Bacterial biofilm can occur on all medical implanted devices and lead to infection and/or dysfunction of the device. In this study, artificial biofilm was formed on four different medical implants (silicone, piccline, peripheral venous catheter and endotracheal tube) of interest for our daily clinical and/or research practice. We investigated the best conventional technic to dislodge the biofilm on the implants and quantified the number of bacteria. Staphylococcus epidermidis previously isolated from a breast implant capsular contracture on a patient in the university hospital of Dijon was selected for its ability to produce biofilm on the implants. Different technics (sonication, Digest-EUR®, mechanized bead mill, combination of sonication plus Digest-EUR®) were tested and compared to detach the biofilm before quantifying viable bacteria by colony counting. Results For all treatments, the optical and scanning electron microscope images showed substantial less biofilm biomass remaining on the silicone implant compared to non-treated implant. This study demonstrated that the US procedure was statistically superior to the other physical treatment: beads, Digest-EUR® alone and Digest-EUR® + US (p < 0.001) for the flexible materials (picc-line, PIV, and silicone). The number of bacteria released by the US is significantly higher with a difference of 1 log on each material. The result for a rigid endotracheal tube were different with superiority for the chemical treatment dithiothreitol: Digest-EUR®. Surprisingly the combination of the US plus Digest-EUR® treatment was consistently inferior for the four materials. Conclusions Depending on the materials used, the biofilm dislodging technique must be adapted. The US procedure was the best technic to dislodge S. epidermidis biofilm on silicone, piccline, peripheral venous catheter but not endotracheal tube. This suggested that scientists should compare themselves different methods before designing a protocol of biofilm study on a given material. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02606-x.
Collapse
Affiliation(s)
- Vivien Moris
- Department of Maxillo-Facial Surgery, Plastic, Reconstructive and Aesthetic Surgery and Hand Surgery, University Hospital of Dijon, boulevard de Maréchal-de-Lattre-de-Tassigny, 21000, Dijon, France. .,Lipids Nutrition Cancer Team NuTox, UMR866, Université de Bourgogne Franche-Comté, 17 rue Paul Gaffarel, Dijon, 21000, France.
| | - Mylan Lam
- LBPS/CSPBAT, UMR CNRS 7244, Galilee Institute, Paris 13 University Sorbonne Paris Cité, 99 avenue JB, 93430, Clément, Villetaneuse, France
| | - Lucie Amoureux
- Department of Bacteriology, University Hospital of Dijon, Dijon Cedex, France.,UMR/CNRS 6249 Chrono-Environnement, University of Bourgogne Franche-Comté, Besançon, France
| | - Arnaud Magallon
- Department of Bacteriology, University Hospital of Dijon, Dijon Cedex, France.,UMR/CNRS 6249 Chrono-Environnement, University of Bourgogne Franche-Comté, Besançon, France
| | - Adrien Guilloteau
- Hospital Epidemiology and Hygiene Department, University of Franche-Comté, 11 Rue Claude Goudimel, Besançon, 25000, France
| | - Thomas Maldiney
- Lipids Nutrition Cancer Team NuTox, UMR866, Université de Bourgogne Franche-Comté, 17 rue Paul Gaffarel, Dijon, 21000, France.,Department of Intensive Care Medicine, William Morey General Hospital, Chalon-sur-Saône, France
| | - Narcisse Zwetyenga
- Department of Maxillo-Facial Surgery, Plastic, Reconstructive and Aesthetic Surgery and Hand Surgery, University Hospital of Dijon, boulevard de Maréchal-de-Lattre-de-Tassigny, 21000, Dijon, France.,Lipids Nutrition Cancer Team NuTox, UMR866, Université de Bourgogne Franche-Comté, 17 rue Paul Gaffarel, Dijon, 21000, France
| | - Céline Falentin-Daudre
- LBPS/CSPBAT, UMR CNRS 7244, Galilee Institute, Paris 13 University Sorbonne Paris Cité, 99 avenue JB, 93430, Clément, Villetaneuse, France
| | - Catherine Neuwirth
- Department of Bacteriology, University Hospital of Dijon, Dijon Cedex, France.,UMR/CNRS 6249 Chrono-Environnement, University of Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
2
|
Gränicher KA, Karygianni L, Attin T, Thurnheer T. Low Concentrations of Chlorhexidine Inhibit the Formation and Structural Integrity of Enzyme-Treated Multispecies Oral Biofilms. Front Microbiol 2021; 12:741863. [PMID: 34650542 PMCID: PMC8506149 DOI: 10.3389/fmicb.2021.741863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
The self-produced matrix of biofilms, consisting of extracellular polymeric substances, plays an important role in biofilm adhesion to surfaces and the structural integrity of biofilms. In dentistry, biofilms cause multiple diseases such as caries, periodontitis, and pulpitis. Disruption of these biofilms adhering to dental hard tissues may pose a major challenge since biofilms show higher tolerance to antimicrobials and antibiotics than planktonic cells. In this study, the effect of low concentrations of chlorhexidine (CHX) on enzyme-treated multispecies oral biofilm was investigated in an in vitro model. Six-species biofilms were enzymatically treated by anaerobic growth in a medium containing DNase I and proteinase K. Biofilms were exposed to a low concentration of CHX at defined time points. After 64h, biofilms were either harvested and quantified by cultural analyses or stained for confocal laser scanning microscopy (CLSM) analyses using either Live/Dead kit or different fluorescent dyes. A mixture of YoPro1 and SYTOX™ Green, Fluorescent Brightener 28 (Calcofluor), and SYPRO™ Ruby Protein Gel Stain was used to stain total DNA, exopolysaccharides, and extracellular proteins, respectively. Extracellular DNA (eDNA) was visualized via an indirect immunofluorescence assay (Mouse anti-DNA IgG, Goat anti-Mouse IgG, Streptavidin-Cy3). Overall, the total colony-forming units significantly decreased after combined treatment with a low concentration of CHX and enzymes compared to the group treated with CHX alone (p<0.001). These findings also apply to five species individually (Streptococcus mutans, Streptococcus oralis, Actinomyces oris, Veillonella dispar, and Candida albicans) occurring in the biofilms, with Fusobacterium nucleatum being the only exception. Furthermore, CLSM images showed less dense biofilms and a reduction in cell numbers after combined treatment compared to the group without enzymes. The combination of enzymes capable of disturbing the matrix integrity with antimicrobial agents thus appears to be a promising approach for biofilm disruption and killing.
Collapse
Affiliation(s)
- Kay Andrin Gränicher
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Lamprini Karygianni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Thurnheer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Viana CS, Maske TT, Signori C, VAN DE Sande FH, Oliveira EFD, Cenci MS. Influence of caries activity and number of saliva donors: mineral and microbiological responses in a microcosm biofilm model. J Appl Oral Sci 2021; 29:e20200778. [PMID: 34495103 PMCID: PMC8425900 DOI: 10.1590/1678-7757-2020-0778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/06/2021] [Indexed: 11/22/2022] Open
Abstract
Objective this study evaluated the mineral and microbiological response of biofilms originating from different types of saliva inoculum with distinct levels of caries activity. Methodology the biofilms grown over enamel specimens originated from saliva collected from a single donor or five donors with two distinct levels of caries activity (caries-active and caries-free) or from pooling saliva from ten donors (five caries-active and five caries-free). The percentage surface hardness change (%SHC) and microbiological counts served as outcome variables. Results the caries activity of donors did not affect the %SHC values. Inoculum from five donors compared to a single donor showed higher %SHC values (p=0.019). Higher lactobacilli counts were observed when saliva from caries-active donors was used as the inoculum (p=0.017). Pooled saliva from both caries activity levels showed higher mutans streptococci counts (p<0.017). Conclusion Overall, pooled saliva increased the mineral response of the derived biofilms, but all the inoculum conditions formed cariogenic biofilms and caries lesions independently of caries activity.
Collapse
Affiliation(s)
- Chayane Souza Viana
- Universidade Federal de Pelotas, Programa de Pós-Graduação em Odontologia, Pelotas, RS, Brasil
| | - Tamires Timm Maske
- Universidade Federal do Rio Grande do Sul, Departamento de Odontologia Preventiva e Social, Porto Alegre, RS, Brasil
| | - Cácia Signori
- Universidade Federal de Pelotas, Programa de Pós-Graduação em Odontologia, Pelotas, RS, Brasil
| | | | | | | |
Collapse
|
4
|
Par M, Gubler A, Attin T, Tarle Z, Tauböck TT. Anti-demineralizing protective effects on enamel identified in experimental and commercial restorative materials with functional fillers. Sci Rep 2021; 11:11806. [PMID: 34083707 PMCID: PMC8175467 DOI: 10.1038/s41598-021-91279-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023] Open
Abstract
The aim of this study was to investigate whether experimental and commercial dental restorative materials with functional fillers can exert a protective anti-demineralizing effect on enamel that is not immediately adjacent to the restoration. Four experimental resin composites with bioactive glass and three commercial restorative materials were investigated. Enamel blocks were incubated in a lactic acid solution (pH = 4.0) at a standardized distance (5 mm) from cured specimens of restorative materials. The lactic acid solution was replenished every 4 days up to a total of 32 days. Surfaces of enamel blocks were periodically evaluated by Knoop microhardness measurements and scanning electron microscopy. The protective effect of restorative materials against acid was identified as enamel microhardness remaining unchanged for a certain number of 4-day acid addition cycles. Additionally, the pH of the immersion medium was measured. While enamel microhardness in the control group was maintained for 1 acid addition cycle (4 days), restorative materials postponed enamel softening for 2–5 cycles (8–20 days). The materials capable of exerting a stronger alkalizing effect provided longer-lasting enamel protection. The protective and alkalizing effects of experimental composites improved with higher amounts of bioactive glass and were better for conventional bioactive glass 45S5 compared to a fluoride-containing bioactive glass. Scanning electron micrographs evidenced the protective effect of restorative materials by showing a delayed appearance of an etching pattern on the enamel surface. A remotely-acting anti-demineralizing protective effect on enamel was identified in experimental composites functionalized with two types of bioactive glass, as well as in three commercial ion-releasing restorative materials.
Collapse
Affiliation(s)
- Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, Zagreb, Croatia. .,Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, Switzerland.
| | - Andrea Gubler
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, Switzerland
| | - Thomas Attin
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, Switzerland
| | - Zrinka Tarle
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, Zagreb, Croatia
| | - Tobias T Tauböck
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, Switzerland
| |
Collapse
|
5
|
Vyas N, Wang QX, Manmi KA, Sammons RL, Kuehne SA, Walmsley AD. How does ultrasonic cavitation remove dental bacterial biofilm? ULTRASONICS SONOCHEMISTRY 2020; 67:105112. [PMID: 32283494 DOI: 10.1016/j.ultsonch.2020.105112] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/04/2020] [Accepted: 03/26/2020] [Indexed: 05/24/2023]
Abstract
Bacterial biofilm accumulation is problematic in many areas, leading to biofouling in the marine environment and the food industry, and infections in healthcare. Physical disruption of biofilms has become an important area of research. In dentistry, biofilm removal is essential to maintain health. The aim of this study is to observe biofilm disruption due to cavitation generated by a dental ultrasonic scaler (P5XS, Acteon) using a high speed camera and determine how this is achieved. Streptococcus sanguinis biofilm was grown on Thermanox™ coverslips (Nunc, USA) for 4 days. After fixing and staining with crystal violet, biofilm removal was imaged using a high speed camera (AX200, Photron). An ultrasonic scaler tip (tip 10P) was held 2 mm away from the biofilm and operated for 2 s. Bubble oscillations were observed from high speed image sequences and image analysis was used to track bubble motion and calculate changes in bubble radius and velocity on the surface. The results demonstrate that most of the biofilm disruption occurs through cavitation bubbles contacting the surface within 2 s, whether individually or in cavitation clouds. Cleaning occurs through shape oscillating microbubbles on the surface as well as through fluid flow.
Collapse
Affiliation(s)
- N Vyas
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, 5 Mill Pool Way, Birmingham B5 7EG, UK
| | - Q X Wang
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - K A Manmi
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Mathematics, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - R L Sammons
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, 5 Mill Pool Way, Birmingham B5 7EG, UK
| | - S A Kuehne
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, 5 Mill Pool Way, Birmingham B5 7EG, UK
| | - A D Walmsley
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, 5 Mill Pool Way, Birmingham B5 7EG, UK.
| |
Collapse
|
6
|
Bazán MA, Carpintero-Tepole V, Brito-de la Fuente E, Drioli E, Ascanio G. On the use of ultrasonic dental scaler tips as cleaning technique of microfiltration ceramic membranes. ULTRASONICS 2020; 101:106035. [PMID: 31574368 DOI: 10.1016/j.ultras.2019.106035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 09/12/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The use of ultrasonic dental scaler (UDS) tips has been investigated for cleaning ceramic membranes fouled when filtering cactus juice. Thin and long tips having a larger coverage exhibited the best performance for removing the cake layer deposited on the membrane surface. Such tips cleaned an area equivalent to almost one third of total area of the membrane surface. However, the cleaned area could be increased notoriously if the membrane were placed in rotatory disc holder. The resistance-in series model and atomic force microscopy (AFM) technique helped to reveal the effect of the UDS tips as cleaning process of ceramic membranes. The reversible resistances estimated for UDS tips were 58% and 17% lower than the ones obtained by chemical cleaning at transmembrane pressures of 0.3 bar and 0.5 bar, respectively. This was corroborated by microscope images, which showed the detachment of cake layer of the membrane surface. Results of this work showed that UDS tips are an innovative option as cleaning strategy for filtration membranes.
Collapse
Affiliation(s)
- M A Bazán
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, P.O. Box 70-186, 04510 CdMx, Mexico
| | - V Carpintero-Tepole
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, P.O. Box 70-186, 04510 CdMx, Mexico
| | - E Brito-de la Fuente
- Innovation & Development Product & Process Engineering Center, Pharmaceuticals Division, Fresenius Kabi Deutschland GmbH, Rathausplatz 12, D-61352 Bad Homburg, Germany
| | - E Drioli
- Institute On Membrane Technology, ITM-CNR, c/o University of Calabria, Via P. Bucci, 17/C, I-87030 Rende, Cosenza, Italy
| | - G Ascanio
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, P.O. Box 70-186, 04510 CdMx, Mexico.
| |
Collapse
|
7
|
Thurnheer T, Karygianni L, Flury M, Belibasakis GN. Fusobacterium Species and Subspecies Differentially Affect the Composition and Architecture of Supra- and Subgingival Biofilms Models. Front Microbiol 2019; 10:1716. [PMID: 31417514 PMCID: PMC6683768 DOI: 10.3389/fmicb.2019.01716] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Fusobacteria are common obligately anaerobic Gram-negative bacteria of the oral cavity that may act as a bridge between early and late colonizing bacteria in dental plaque and have a role in oral and extra-oral infections. Fusobacterium nucleatum has a crucial role in oral biofilm structure and ecology, as revealed in experimental and clinical biofilm models. The aim of this study was to investigate the impact of various Fusobacterium species on in vitro biofilm formation and structure in three different oral biofilm models namely a supragingival, a supragingival “feeding”, and a subgingival biofilm model. The standard six-species supragingival and “feeding” biofilm models employed contained Actinomyces oris, Candida albicans, Streptococcus mutans, Streptococcus oralis, Veillonella dispar, and Fusobacterium sp. The subgingival biofilm model contained 10 species (A. oris, Campylobacter rectus, F. nucleatum ssp. nucleatum, Porphyromonas gingivalis, Prevotella intermedia, Streptococcus anginosus, S. oralis, Tannerella forsythia, Treponema denticola, and V. dispar). Six different Fusobacterium species or subspecies, respectively, were tested namely F. nucleatum ssp. fusiforme, F. nucleatum ssp. nucleatum, F. nucleatum ssp. polymorphum, F. nucleatum ssp. vincentii, F. naviforme, and F. periodonticum). Biofilms were grown anaerobically on hydroxyapatite disks in 24-well culture dishes. After 64 h, biofilms were either harvested and quantified by culture analysis or proceeded to fluorescent in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM). All Fusobacterium species tested established well in the biofilms, with CFUs ranging from 1.4E+04 (F. nucleatum ssp. fusiforme) to 5.6E+06 (F. nucleatum ssp. nucleatum). The presence of specific Fusobacterium sp./ssp. induced a significant decrease in C. albicans levels in the supragingival model and in V. dispar levels in the “feeding” supragingival model. In the subgingival model, the counts of A. oris, S. oralis, P. intermedia, P. gingivalis, and C. rectus significantly decreased in the presence of specific Fusobacterium sp./ssp. Collectively, this study showed variations in the growing capacities of different fusobacteria within biofilms, affecting the growth of surrounding species and potentially the biofilm architecture. Hence, clinical or experimental studies need to differentiate between Fusobacterium sp./ssp., as their biological properties may well vary.
Collapse
Affiliation(s)
- Thomas Thurnheer
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Lamprini Karygianni
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Manuela Flury
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
8
|
Vyas N, Manmi K, Wang Q, Jadhav AJ, Barigou M, Sammons RL, Kuehne SA, Walmsley AD. Which Parameters Affect Biofilm Removal with Acoustic Cavitation? A Review. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1044-1055. [PMID: 30792088 DOI: 10.1016/j.ultrasmedbio.2019.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 01/01/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Bacterial biofilms are a cause of contamination in a wide range of medical and biological areas. Ultrasound is a mechanical energy that can remove these biofilms using cavitation and acoustic streaming, which generate shear forces to disrupt biofilm from a surface. The aim of this narrative review is to investigate the literature on the mechanical removal of biofilm using acoustic cavitation to identify the different operating parameters affecting its removal using this method. The properties of the liquid and the properties of the ultrasound have a large impact on the type of cavitation generated. These include gas content, temperature, surface tension, frequency of ultrasound and acoustic pressure. For many of these parameters, more research is required to understand their mechanisms in the area of ultrasonic biofilm removal, and further research will help to optimise this method for effective removal of biofilms from different surfaces.
Collapse
Affiliation(s)
- Nina Vyas
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Kawa Manmi
- School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Qianxi Wang
- School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ananda J Jadhav
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mostafa Barigou
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rachel L Sammons
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sarah A Kuehne
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - A Damien Walmsley
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
9
|
Thurnheer T, Belibasakis GN. Streptococcus oralis maintains homeostasis in oral biofilms by antagonizing the cariogenic pathogen Streptococcus mutans. Mol Oral Microbiol 2018; 33:234-239. [PMID: 29327482 DOI: 10.1111/omi.12216] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 12/24/2022]
Abstract
Bacteria residing in oral biofilms live in a state of dynamic equilibrium with one another. The intricate synergistic or antagonistic interactions between them are crucial for determining this balance. Using the six-species Zürich "supragingival" biofilm model, this study aimed to investigate interactions regarding growth and localization of the constituent species. As control, an inoculum containing all six strains was used, whereas in each of the further five inocula one of the bacterial species was alternately absent, and in the last, both streptococci were absent. Biofilms were grown anaerobically on hydroxyapatite disks, and after 64 h they were harvested and quantified by culture analyses. For visualization, fluorescence in situ hybridization and confocal laser scanning microscopy were used. Compared with the control, no statistically significant difference of total colony-forming units was observed in the absence of any of the biofilm species, except for Fusobacterium nucleatum, whose absence caused a significant decrease in total bacterial numbers. Absence of Streptococcus oralis resulted in a significant decrease in Actinomyces oris, and increase in Streptococcus mutans (P < .001). Absence of A. oris, Veillonella dispar or S. mutans did not cause any changes. The structure of the biofilm with regards to the localization of the species did not result in observable changes. In summary, the most striking observation of the present study was that absence of S. oralis resulted in limited growth of commensal A. oris and overgrowth of S. mutans. These data establish highlight S. oralis as commensal keeper of homeostasis in the biofilm by antagonizing S. mutans, so preventing a caries-favoring dysbiotic state.
Collapse
Affiliation(s)
- T Thurnheer
- Clinic of Preventive Dentistry, Periodontology and Cariology, Divison of Oral Microbiology and Immunology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| | - G N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
10
|
Effect of sodium fluoride on oral biofilm microbiota and enamel demineralization. Arch Oral Biol 2018; 89:77-83. [PMID: 29482049 DOI: 10.1016/j.archoralbio.2018.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Fluoride is widely used as an anti-caries agent, e.g. in toothpastes and mouth rinses. However, the nature of the anti-caries action is not entirely clear. Mechanisms suspected to explain the cariostatic effect include inhibitory effects on acid formation by bacteria, inhibition of extracellular polysaccharide (EPS) production, inhibition of enamel demineralization and enhancement of remineralizaton or combination thereof. The aim of this study was to examine with the supragingival Zurich in vitro biofilm model the effect of fluoride in NaF formulation, on the microbiota and on demineralization. METHODS Biofilms consisting of Actinomyces oris, Candida albicans, Fusobacterium nucleatum, Streptococcus oralis, Veillonella dispar and Streptococcus sobrinus, were grown anaerobically on sintered hydroxyapatite or bovine enamel disks, exposed to 200, 400, and 1400 ppm of NaF, or 0.1% chlorhexidine (positive control). The biofilms were harvested after 64 h and CFUs were assessed for total bacteria. Demineralization of enamel disks was measured by quantitative light-induced fluorescence. RESULTS NaF did not affect the bacterial numbers. No enamel mineral loss was observed at 1400 and 400 ppm of fluoride, whereas the pH of the surrounding medium was increased to 5.5 and 5.0, respectively, compared to the untreated control (pH 4.5 and mineral loss ΔF of -32%). At 1400 ppm NaF the biofilm's EPS volume was also significantly reduced. CONCLUSIONS Administration of NaF completely prevented demineralization without affecting biofilm composition and growth. This protective effect may be attributed to the observed decrease in acid production or EPS volume, or to a shift in the de/remineralization balance.
Collapse
|
11
|
Miao J, Liang Y, Chen L, Wang W, Wang J, Li B, Li L, Chen D, Xu Z. Formation and development ofStaphylococcusbiofilm: With focus on food safety. J Food Saf 2017. [DOI: 10.1111/jfs.12358] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jian Miao
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
| | - Yanrui Liang
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
| | - Lequn Chen
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
| | - Wenxin Wang
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
| | - Jingwen Wang
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
| | - Bing Li
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; Guangzhou China
| | - Lin Li
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; Guangzhou China
| | - Dingqiang Chen
- Department of Laboratory Medicine; First Affiliated Hospital of Guangzhou Medical University; Guangzhou China
| | - Zhenbo Xu
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
- Department of Microbial Pathogenesis; University of Maryland; Baltimore
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; Guangzhou China
| |
Collapse
|
12
|
Gartenmann SJ, Thurnheer T, Attin T, Schmidlin PR. Influence of ultrasonic tip distance and orientation on biofilm removal. Clin Oral Investig 2016; 21:1029-1036. [DOI: 10.1007/s00784-016-1854-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
|
13
|
Affiliation(s)
- Georgios N Belibasakis
- a Section of Oral Microbiology and Immunology; Institute of Oral Biology; Center of Dental Medicine; University of Zürich ; Zürich , Switzerland
| | | |
Collapse
|
14
|
Thurnheer T, Bostanci N, Belibasakis GN. Microbial dynamics during conversion from supragingival to subgingival biofilms in an in vitro model. Mol Oral Microbiol 2015; 31:125-35. [PMID: 26033167 DOI: 10.1111/omi.12108] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/17/2022]
Abstract
The development of dental caries and periodontal diseases result from distinct shifts in the microbiota of the tooth-associated biofilm. This in vitro study aimed to investigate changes in biofilm composition and structure, during the shift from a 'supragingival' aerobic profile to a 'subgingival' anaerobic profile. Biofilms consisting of Actinomyces oris, Candida albicans, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus mutans and Veillonella dispar were aerobically grown in saliva-containing medium on hydroxyapatite disks. After 64 h, Campylobacter rectus, Prevotella intermedia and Streptococcus anginosus were further added along with human serum, while culture conditions were shifted to microaerophilic. After 96 h, Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola were finally added and the biofilm was grown anaerobically for another 64 h. At the end of each phase, biofilms were harvested for species-specific quantification and localization. Apart from C. albicans, all other species gradually increased during aerobic and microaerophilic conditions, but remained steady during anaerobic conditions. Biofilm thickness was doubled during the microaerophilic phase, but remained steady throughout the anaerobic phase. Extracellular polysaccharide presence was gradually reduced throughout the growth period. Biofilm viability was reduced during the microaerophilic conversion, but was recovered during the anaerobic phase. This in vitro study has characterized the dynamic structural shifts occurring in an oral biofilm model during the switch from aerobic to anaerobic conditions, potentially modeling the conversion of supragingival to subgingival biofilms. Within the limitations of this experimental model, the findings may provide novel insights into the ecology of oral biofilms.
Collapse
Affiliation(s)
- T Thurnheer
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| | - N Bostanci
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| | - G N Belibasakis
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
15
|
Hägi TT, Klemensberger S, Bereiter R, Nietzsche S, Cosgarea R, Flury S, Lussi A, Sculean A, Eick S. A Biofilm Pocket Model to Evaluate Different Non-Surgical Periodontal Treatment Modalities in Terms of Biofilm Removal and Reformation, Surface Alterations and Attachment of Periodontal Ligament Fibroblasts. PLoS One 2015; 10:e0131056. [PMID: 26121365 PMCID: PMC4486723 DOI: 10.1371/journal.pone.0131056] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/28/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIM There is a lack of suitable in vitro models to evaluate various treatment modalities intending to remove subgingival bacterial biofilm. Consequently, the aims of this in vitro-study were: a) to establish a pocket model enabling mechanical removal of biofilm and b) to evaluate repeated non-surgical periodontal treatment with respect to biofilm removal and reformation, surface alterations, tooth hard-substance-loss, and attachment of periodontal ligament (PDL) fibroblasts. MATERIAL AND METHODS Standardized human dentin specimens were colonized by multi-species biofilms for 3.5 days and subsequently placed into artificially created pockets. Non-surgical periodontal treatment was performed as follows: a) hand-instrumentation with curettes (CUR), b) ultrasonication (US), c) subgingival air-polishing using erythritol (EAP) and d) subgingival air-polishing using erythritol combined with chlorhexidine digluconate (EAP-CHX). The reduction and recolonization of bacterial counts, surface roughness (Ra and Rz), the caused tooth substance-loss (thickness) as well as the attachment of PDL fibroblasts were evaluated and statistically analyzed by means of ANOVA with Post-Hoc LSD. RESULTS After 5 treatments, bacterial reduction in biofilms was highest when applying EAP-CHX (4 log10). The lowest reduction was found after CUR (2 log10). Additionally, substance-loss was the highest when using CUR (128±40 µm) in comparison with US (14±12 µm), EAP (6±7 µm) and EAP-CHX (11±10) µm). Surface was roughened when using CUR and US. Surfaces exposed to US and to EAP attracted the highest numbers of PDL fibroblasts. CONCLUSION The established biofilm model simulating a periodontal pocket combined with interchangeable placements of test specimens with multi-species biofilms enables the evaluation of different non-surgical treatment modalities on biofilm removal and surface alterations. Compared to hand instrumentation the application of ultrasonication and of air-polishing with erythritol prevents from substance-loss and results in a smooth surface with nearly no residual biofilm that promotes the reattachment of PDL fibroblasts.
Collapse
Affiliation(s)
- Tobias T. Hägi
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sabrina Klemensberger
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Riccarda Bereiter
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sandor Nietzsche
- Centre of Electron Microscopy, University Hospital of Jena, Jena, Germany
| | - Raluca Cosgarea
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Department of Prosthetic Dentistry, University of Cluj-Napoca, Cluj-Napoca, Romania
- Department of Periodontology, Philips University, Marburg, Germany
| | - Simon Flury
- Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Bern, Switzerland
| | - Adrian Lussi
- Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
16
|
Thurnheer T, Belibasakis GN. Integration of non-oral bacteria into in vitro oral biofilms. Virulence 2014; 6:258-64. [PMID: 25483866 PMCID: PMC4601515 DOI: 10.4161/21505594.2014.967608] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/01/2014] [Accepted: 09/13/2014] [Indexed: 01/23/2023] Open
Abstract
Biofilms are polymicrobial communities that grow on surfaces in nature. Oral bacteria can spontaneously form biofilms on the surface of teeth, which may compromise the health of the teeth, or their surrounding (periodontal) tissues. While the oral bacteria exhibit high tropism for their specialized ecological niche, it is not clear if bacteria that are not part of the normal oral microbiota can efficiently colonize and grow within oral biofilms. By using an in vitro "supragingival" biofilm model of 6 oral species, this study aimed to investigate if 3 individual bacterial species that are not part of the normal oral microbiota (Eschericia coli, Staphylococcus aureus, Enterococcus faecails) and one not previously tested oral species (Aggregatibacter actinomycetemcomitans) can be incorporated into this established supragingival biofilm model. Staphylococcus aureus and A. actinomycetemcomitans were able to grow efficiently in the biofilm, without disrupting the growth of the remaining species. They localized in sparse small aggregates within the biofilm mass. Enterococcus faecalis and E. coli were both able to populate the biofilm at high numbers, and suppressed the growth of A. oris and S. mutants. Enterococcus faecalis was arranged in a chain-like conformation, whereas E. coli was densely and evenly spread throughout the biofilm mass. In conclusion, it is possible for selected species that are not part of the normal oral microbiota to be introduced into an oral biofilm, under the given experimental micro-environmental conditions. Moreover, the equilibrated incorporation of A. actinomycetemcomitans and S. aureus in this oral biofilm model could be a useful tool in the study of aggressive periodontitis and peri-implantitis, in which these organisms are involved, respectively.
Collapse
Affiliation(s)
- Thomas Thurnheer
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine; University of Zürich; Zürich, Switzerland
| | - Georgios N Belibasakis
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine; University of Zürich; Zürich, Switzerland
| |
Collapse
|