1
|
Li S, Li H, Kong H, Wu SY, Cheng CK, Xu J. Endogenous and microbial biomarkers for periodontitis and type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1292596. [PMID: 38149100 PMCID: PMC10750125 DOI: 10.3389/fendo.2023.1292596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
It has been well documented that there is a two-way relationship between diabetes mellitus and periodontitis. Diabetes mellitus represents an established risk factor for chronic periodontitis. Conversely, chronic periodontitis adversely modulates serum glucose levels in diabetic patients. Activated immune and inflammatory responses are noted during diabetes and periodontitis, under the modulation of similar biological mediators. These activated responses result in increased activity of certain immune-inflammatory mediators including adipokines and microRNAs in diabetic patients with periodontal disease. Notably, certain microbes in the oral cavity were identified to be involved in the occurrence of diabetes and periodontitis. In other words, these immune-inflammatory mediators and microbes may potentially serve as biomarkers for risk assessment and therapy selection in diabetes and periodontitis. In this review, we briefly provide an updated overview on different potential biomarkers, providing novel diagnostic and therapeutic insights on periodontal complications and diabetes mellitus.
Collapse
Affiliation(s)
- Songjun Li
- Longgang Ear-Nose-Throat (ENT) Hospital, Institute of Ear-Nose-Throat (ENT) and Shenzhen Key Laboratory of Ear-Nose-Throat (ENT), Shenzhen, China
| | - Hongwen Li
- Longgang Ear-Nose-Throat (ENT) Hospital, Institute of Ear-Nose-Throat (ENT) and Shenzhen Key Laboratory of Ear-Nose-Throat (ENT), Shenzhen, China
- Shenzhen Longgang Institute of Stomatology, Longgang Ear-Nose-Throat (ENT) Hospital, Shenzhen, China
| | - Haiying Kong
- Longgang Ear-Nose-Throat (ENT) Hospital, Institute of Ear-Nose-Throat (ENT) and Shenzhen Key Laboratory of Ear-Nose-Throat (ENT), Shenzhen, China
| | - Shang Ying Wu
- Department of Laboratory Medicine, Shenzhen Hospital, Peking University, Shenzhen, China
| | - Chak Kwong Cheng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Jian Xu
- Longgang Ear-Nose-Throat (ENT) Hospital, Institute of Ear-Nose-Throat (ENT) and Shenzhen Key Laboratory of Ear-Nose-Throat (ENT), Shenzhen, China
- Shenzhen Longgang Institute of Stomatology, Longgang Ear-Nose-Throat (ENT) Hospital, Shenzhen, China
| |
Collapse
|
2
|
Shi T, Wang J, Dong J, Hu P, Guo Q. Periodontopathogens Porphyromonas gingivalis and Fusobacterium nucleatum and Their Roles in the Progression of Respiratory Diseases. Pathogens 2023; 12:1110. [PMID: 37764918 PMCID: PMC10535846 DOI: 10.3390/pathogens12091110] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The intricate interplay between oral microbiota and the human host extends beyond the confines of the oral cavity, profoundly impacting the general health status. Both periodontal diseases and respiratory diseases show high prevalence worldwide and have a marked influence on the quality of life for the patients. Accumulating studies are establishing a compelling association between periodontal diseases and respiratory diseases. Here, in this review, we specifically focus on the key periodontal pathogenic bacteria Porphyromonas gingivalis and Fusobacterium nucleatum and dissect their roles in the onset and course of respiratory diseases, mainly pneumonia, chronic obstructive pulmonary disease, lung cancer, and asthma. The mechanistic underpinnings and molecular processes on how P. gingivalis and F. nucleatum contribute to the progression of related respiratory diseases are further summarized and analyzed, including: induction of mucus hypersecretion and chronic airway inflammation; cytotoxic effects to disrupt the morphology and function of respiratory epithelial cells; synergistic pathogenic effects with respiratory pathogens like Streptococcus pneumoniae and Pseudomonas aeruginosa. By delving into the complex relationship to periodontal diseases and periodontopathogens, this review helps unearth novel insights into the etiopathogenesis of respiratory diseases and inspires the development of potential therapeutic avenues and preventive strategies.
Collapse
Affiliation(s)
- Tao Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiale Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiajia Dong
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pingyue Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Liu X, Yang L, Tan X. PD-1/PD-L1 pathway: A double-edged sword in periodontitis. Biomed Pharmacother 2023; 159:114215. [PMID: 36630848 DOI: 10.1016/j.biopha.2023.114215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Periodontitis is a disease caused by infection and immunological imbalance, which often leads to the destruction of periodontal tissue. Programmed death protein 1 (PD-1) and its ligand: programmed death ligand 1 (PD-L1) are important "immune checkpoint" proteins that have a negative regulatory effect on T cells and are targets of immunotherapy. Studies have shown that the expression of PD-1 and PD-L1 in patients with periodontitis is higher than that in healthy individuals. The keystone pathogen Porphyromonas gingivalis (P. gingivalis) is believed to be the main factor driving the upregulation of PD-1/PD-L1. High expression of PD-1/PD-L1 can inhibit the inflammatory response and reduce the destruction of periodontal supporting tissues, but conversely, it can promote the "immune escape" of P. gingivalis, thus magnifying infections. In addition, the PD-1/PD-L1 pathway is also associated with various diseases, such as cancer and Alzheimer's disease. In this review, we discuss the influence and mechanism of the PD-1/PD-L1 pathway as a "double-edged sword" affecting the occurrence and development of periodontitis, as well as its function in periodontitis-related systemic disorders. The PD-1/PD-L1 pathway could be a new avenue for periodontal and its related systemic disorders therapy.
Collapse
Affiliation(s)
- Xiaowei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuelian Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Jia G, Ren Z. Changes of Oral Flora, Inflammatory Factors, and Immune Function Indicators in Patients with Chronic Periodontitis and Their Clinical Significance. Crit Rev Eukaryot Gene Expr 2023; 33:57-64. [PMID: 37602453 DOI: 10.1615/critreveukaryotgeneexpr.2023048819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
This research focuses on investigating the changes of oral flora, inflammatory factors, and immune function indicators in patients with chronic periodontitis (CP) and their clinical significances. Clinical indices such as gingival index (GI) and sulcus bleeding index (SBI) of the study subjects were recorded. The levels of oral flora, inflammatory factors and T lymphocyte subsets in gingival crevicular fluid (GCF) of the study subjects were measured. To analyze the correlation between GI and gingival SBI and oral flora, inflammatory factors, and immune function indicators, Pearson correlation analysis was performed. Porphyromonas gingivalis, Streptococcus digestiveis, Prevotella intermedia, Veronococcus, tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), IL-8, CD3+, CD4+, and CD4+/CD8+ had a positive correlation with GI and SBI, while IL-10 and CD8+ were negatively correlated with GI and SBI. Oral flora, inflammatory factors and immune function indicators levels are largely elevated in patients with CP and they are correlated with CP clinical indicators.
Collapse
Affiliation(s)
- Guodong Jia
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zhenhu Ren
- Department of Oral and Maxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
5
|
Li C, Yu R, Ding Y. Association between Porphyromonas Gingivalis and systemic diseases: Focus on T cells-mediated adaptive immunity. Front Cell Infect Microbiol 2022; 12:1026457. [PMID: 36467726 PMCID: PMC9712990 DOI: 10.3389/fcimb.2022.1026457] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2023] Open
Abstract
The association between periodontal disease and systemic disease has become a research hotspot. Porphyromonas gingivalis (P. gingivalis), a crucial periodontal pathogen, affects the development of systemic diseases. The pathogenicity of P. gingivalis is largely linked to interference with the host's immunity. This review aims to discover the role of P. gingivalis in the modulation of the host's adaptive immune system through a large number of virulence factors and the manipulation of cellular immunological responses (mainly mediated by T cells). These factors may affect the cause of large numbers of systemic diseases, such as atherosclerosis, hypertension, adverse pregnancy outcomes, inflammatory bowel disease, diabetes mellitus, non-alcoholic fatty liver disease, rheumatoid arthritis, and Alzheimer's disease. The point of view of adaptive immunity may provide a new idea for treating periodontitis and related systemic diseases.
Collapse
Affiliation(s)
- Cheng Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
6
|
Bhuyan R, Bhuyan SK, Mohanty JN, Das S, Juliana N, Abu IF. Periodontitis and Its Inflammatory Changes Linked to Various Systemic Diseases: A Review of Its Underlying Mechanisms. Biomedicines 2022; 10:biomedicines10102659. [PMID: 36289921 PMCID: PMC9599402 DOI: 10.3390/biomedicines10102659] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/20/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease of the gums. The incidence of periodontitis is increasing all over the world. In patients with periodontitis, there is gradual destruction of the periodontal ligament and the alveolar bone, and later, in advanced stages, there is tooth loss. Different microorganisms, the host’s immune response, and various environmental factors interact in the progression of this chronic inflammatory disease. In the present review, we discuss the epidemiology, clinical features, diagnosis, and complications of periodontitis. We also discuss the association of chronic inflammation found in periodontitis with various other systemic diseases, which include cardiovascular, respiratory, diabetes, Alzheimer’s, cancer, adverse pregnancy, and multiple myeloma, and also highlight microbial carcinogenesis and the microRNAs involved. The latest updates on the molecular mechanism, possible biomarkers, and treatment procedures may be beneficial for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Ruchi Bhuyan
- Department of Oral Pathology & Microbiology, IMS and SUM Hospital, Siksha ‘O’ Anusandhan University (Deemed to be), Bhubaneswar 751003, India
- Department of Medical Research, IMS and SUM Hospital, Siksha ‘O’ Anusandhan University (Deemed to be), Bhubaneswar 751003, India
| | - Sanat Kumar Bhuyan
- Institute of Dental Sciences, Siksha ‘O’ Anusandhan University (Deemed to be), Bhubaneswar 751003, India
| | - Jatindra Nath Mohanty
- Department of Medical Research, IMS and SUM Hospital, Siksha ‘O’ Anusandhan University (Deemed to be), Bhubaneswar 751003, India
| | - Srijit Das
- School of Applied Sciences, Centurion University of Technology and Management, Jatni, Bhubaneswar 752050, India
- Correspondence:
| | - Norsham Juliana
- Department of Human and Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Izuddin Fahmy Abu
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| |
Collapse
|
7
|
Aleksijević LH, Aleksijević M, Škrlec I, Šram M, Šram M, Talapko J. Porphyromonas gingivalis Virulence Factors and Clinical Significance in Periodontal Disease and Coronary Artery Diseases. Pathogens 2022; 11:pathogens11101173. [PMID: 36297228 PMCID: PMC9609396 DOI: 10.3390/pathogens11101173] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Porphyromonas gingivalis is a gram-negative, anaerobic bacterium that lives in the oral cavity. It is an integral part of the oral microbiome, which includes more than 500 types of bacteria. Under certain circumstances, as a consequence of virulence factors, it can become very destructive and proliferate to many cells in periodontal lesions. It is one of the causative agents present extremely often in dental plaque and is the main etiological factor in the development of periodontal disease. During various therapeutic procedures, P. gingivalis can enter the blood and disseminate through it to distant organs. This primarily refers to the influence of periodontal agents on the development of subacute endocarditis and can facilitate the development of coronary heart disease, atherosclerosis, and ischemic infarction. The action of P. gingivalis is facilitated by numerous factors of virulence and pathogenicity such as fimbriae, hemolysin, hemagglutinin, capsules, outer membrane vesicles, lipopolysaccharides, and gingipains. A special problem is the possibility of biofilm formation. P. gingivalis in a biofilm is 500 to 1000 times less sensitive to antimicrobial drugs than planktonic cells, which represents a significant problem in the treatment of infections caused by this pathogen.
Collapse
Affiliation(s)
- Lorena Horvat Aleksijević
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: (L.H.A.); (J.T.)
| | - Marko Aleksijević
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marko Šram
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Miroslav Šram
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Cardiology, Clinical Hospital Center Osijek, 31000 Osijek, Croatia
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: (L.H.A.); (J.T.)
| |
Collapse
|
8
|
Pothlichet J, Meola A, Bugault F, Jeammet L, Savitt AG, Ghebrehiwet B, Touqui L, Pouletty P, Fiore F, Sauvanet A, Thèze J. Microbial Protein Binding to gC1qR Drives PLA2G1B-Induced CD4 T-Cell Anergy. Front Immunol 2022; 13:824746. [PMID: 35392090 PMCID: PMC8981723 DOI: 10.3389/fimmu.2022.824746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
The origin of the impaired CD4 T-cell response and immunodeficiency of HIV-infected patients is still only partially understood. We recently demonstrated that PLA2G1B phospholipase synergizes with the HIV gp41 envelope protein in HIV viremic plasma to induce large abnormal membrane microdomains (aMMDs) that trap and inactivate physiological receptors, such as those for IL-7. However, the mechanism of regulation of PLA2G1B activity by the cofactor gp41 is not known. Here, we developed an assay to directly follow PLA2G1B enzymatic activity on CD4 T-cell membranes. We demonstrated that gp41 directly binds to PLA2G1B and increases PLA2G1B enzymatic activity on CD4 membrane. Furthermore, we show that the conserved 3S sequence of gp41, known to bind to the innate sensor gC1qR, increases PLA2G1B activity in a gC1qR-dependent manner using gC1qR KO cells. The critical role of the 3S motif and gC1qR in the inhibition of CD4 T-cell function by the PLA2G1B/cofactor system in HIV-infected patients led us to screen additional microbial proteins for 3S-like motifs and to study other proteins known to bind to the gC1qR to further investigate the role of the PLA2G1B/cofactor system in other infectious diseases and carcinogenesis. We have thus extended the PLA2G1B/cofactor system to HCV and Staphylococcus aureus infections and additional pathologies where microbial proteins with 3S-like motifs also increase PLA2G1B enzymatic activity. Notably, the bacteria Porphyromonas gingivalis, which is associated with pancreatic ductal adenocarcinoma (PDAC), encodes such a cofactor protein and increased PLA2G1B activity in PDAC patient plasma inhibits the CD4 response to IL-7. Our findings identify PLA2G1B/cofactor system as a CD4 T-cell inhibitor. It involves the gC1qR and disease-specific cofactors which are gC1qR-binding proteins that can contain 3S-like motifs. This mechanism involved in HIV-1 immunodeficiency could play a role in pancreatic cancer and several other diseases. These observations suggest that the PLA2G1B/cofactor system is a general CD4 T-cell inhibitor and pave the way for further studies to better understand the role of CD4 T-cell anergy in infectious diseases and tumor escape.
Collapse
Affiliation(s)
| | | | | | | | - Anne G Savitt
- Division of Rheumatology, Allergy, and Clinical Immunology, Department of Medicine, SUNY Stony Brook, Stony Brook, NY, United States
| | - Berhane Ghebrehiwet
- Division of Rheumatology, Allergy, and Clinical Immunology, Department of Medicine, SUNY Stony Brook, Stony Brook, NY, United States
| | - Lhousseine Touqui
- Cystic Fibrosis and Bronchial Diseases team - INSERM U938, Institut Pasteur, Paris, France.,Centre de Recherche Saint-Antoine (CRSA) - INSERM UMRS938, Sorbonne Université, Paris, France
| | | | - Frédéric Fiore
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Alain Sauvanet
- Service de Chirurgie Hépatobiliaire et Pancréatique - Department of HBP Surgery, Hôpital Beaujon - University of Paris, Clichy, France
| | | |
Collapse
|
9
|
Irwandi RA, Kuswandani SO, Harden S, Marletta D, D'Aiuto F. Circulating inflammatory cell profiling and periodontitis: A systematic review and meta-analysis. J Leukoc Biol 2022; 111:1069-1096. [PMID: 35199874 DOI: 10.1002/jlb.5ru1021-524r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a key driver of common noncommunicable diseases. Among common triggers of inflammation, chronic gingival inflammation (periodontitis) triggers a consistent humoral host inflammatory response, but little is known on its impact on circulating inflammatory cell profiles. We aimed to systematically appraise all the evidence linking periodontitis and its treatment to circulating inflammatory cell profiles. From 6 databases, 157 studies were eligible for qualitative synthesis and 29 studies for meta-analysis. Our meta-analysis showed that participants with periodontitis exhibited a significant mean increase in circulating CD4+ , CD4+ CD45RO+ , IFNγ-expressing CD4+ and CD8+ T cells, CD19+ CD27+ and CD5+ B cells, CD14+ CD16+ monocytes, and CD16+ neutrophils but decrease in CD8+ T and CD14++ CD16- monocytes. Our qualitative synthesis revealed that peripheral blood neutrophils of patients with periodontitis consistently showed elevated production of reactive oxygen species (ROS) when compared with those of healthy controls. Some evidence suggested that the treatment of periodontitis reversed the exaggerated ROS production, but limited and inconclusive data were found on several circulating inflammatory cell profiling. We conclude that periodontitis and its treatment are associated with minor but consistent alterations in circulating inflammatory cell profiles. These changes could represent key mechanisms explaining the association of periodontitis with other comorbidities such as cardiovascular disease, diabetes, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Rizky A Irwandi
- Periodontology Unit, Eastman Dental Institute, University College London, London, United Kingdom
| | - Sandra O Kuswandani
- Periodontology Unit, Eastman Dental Institute, University College London, London, United Kingdom.,Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Simon Harden
- Department of Statistical Science, University College London, London, United Kingdom
| | - Debora Marletta
- Cruciform Hub, University College London, London, United Kingdom
| | - Francesco D'Aiuto
- Periodontology Unit, Eastman Dental Institute, University College London, London, United Kingdom
| |
Collapse
|
10
|
Wadhawan A, Reynolds MA, Makkar H, Scott AJ, Potocki E, Hoisington AJ, Brenner LA, Dagdag A, Lowry CA, Dwivedi Y, Postolache TT. Periodontal Pathogens and Neuropsychiatric Health. Curr Top Med Chem 2021; 20:1353-1397. [PMID: 31924157 DOI: 10.2174/1568026620666200110161105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence incriminates low-grade inflammation in cardiovascular, metabolic diseases, and neuropsychiatric clinical conditions, all important causes of morbidity and mortality. One of the upstream and modifiable precipitants and perpetrators of inflammation is chronic periodontitis, a polymicrobial infection with Porphyromonas gingivalis (P. gingivalis) playing a central role in the disease pathogenesis. We review the association between P. gingivalis and cardiovascular, metabolic, and neuropsychiatric illness, and the molecular mechanisms potentially implicated in immune upregulation as well as downregulation induced by the pathogen. In addition to inflammation, translocation of the pathogens to the coronary and peripheral arteries, including brain vasculature, and gut and liver vasculature has important pathophysiological consequences. Distant effects via translocation rely on virulence factors of P. gingivalis such as gingipains, on its synergistic interactions with other pathogens, and on its capability to manipulate the immune system via several mechanisms, including its capacity to induce production of immune-downregulating micro-RNAs. Possible targets for intervention and drug development to manage distal consequences of infection with P. gingivalis are also reviewed.
Collapse
Affiliation(s)
- Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Department of Psychiatry, Saint Elizabeths Hospital, Washington, D.C. 20032, United States
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, United States
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, United States
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, United States
| | - Andrew J Hoisington
- Air Force Institute of Technology, Wright-Patterson Air Force Base, United States
| | - Lisa A Brenner
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Christopher A Lowry
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, United States
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Alabama, United States
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, United States
| |
Collapse
|
11
|
Bailly C. The implication of the PD-1/PD-L1 checkpoint in chronic periodontitis suggests novel therapeutic opportunities with natural products. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:90-96. [PMID: 32612718 PMCID: PMC7310691 DOI: 10.1016/j.jdsr.2020.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
An analysis of the implication of the PD-1/PD-L1 immune checkpoint in periodontitis is provided with the objective to propose a novel therapeutic approach. An exhaustive survey of the literature has been performed to answer two questions: (1) Is there a role for PD-1 and/or PD-L1 in the development of periodontitis? (2) Which natural products interfere with the checkpoint activity and show activity against periodontitis? All online published information was collected and analyzed. The pathogenic bacteria Porphyromonas gingivalis, through its membrane-attached peptidoglycans, exploits the PD-1/PD-L1 checkpoint to evade immune response and to amplify the infection. Three anti-inflammatory natural products (and derivatives or plant extracts) active against periodontitis and able to interfere with the checkpoint were identified. Both curcumin and baicalin attenuate periodontitis and induce a down-regulation of PD-L1 in cells. The terpenoid saponin platycodin D inhibits the growth of P. gingivalis responsible for periodontitis and shows a rare capacity to induce the extracellular release of a soluble form of PD-L1, thereby restoring T cell activation. A potential PD-L1 shedding mechanism is discussed. The targeting of the PD-1/PD-L1 immune checkpoint could be considered a suitable approach to improve the treatment of chronic periodontitis. The plant natural products curcumin, baicalin and platycodin D should be further evaluated as PD-1/PD-L1 checkpoint modulators active against periodontitis.
Collapse
|
12
|
Chopra A, Bhat SG, Sivaraman K. Porphyromonas gingivalis adopts intricate and unique molecular mechanisms to survive and persist within the host: a critical update. J Oral Microbiol 2020; 12:1801090. [PMID: 32944155 PMCID: PMC7482874 DOI: 10.1080/20002297.2020.1801090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
is an obligate, asaccharolytic, gram-negative bacteria commonly associated with increased periodontal and systemic inflammation. P. gingivalis is known to survive and persist within the host tissues as it modulates the entire ecosystem by either engineering its environment or modifying the host's immune response. It interacts with various host receptors and alters signaling pathways of inflammation, complement system, cell cycle, and apoptosis. P. gingivalis is even known to induce suicidal cell death of the host and other microbes in its vicinity with the emergence of pathobiont species. Recently, new molecular and immunological mechanisms and virulence factors of P. gingivalis that increase its chance of survival and immune evasion within the host have been discovered. Thus, the present paper aims to provide a consolidated update on the new intricate and unique molecular mechanisms and virulence factors of P. gingivalis associated with its survival, persistence, and immune evasion within the host.
Collapse
Affiliation(s)
- Aditi Chopra
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subraya G. Bhat
- College of Dentistry, Imam Abdul Rahman Faisal University, Dammam, KSA
| | - Karthik Sivaraman
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
13
|
Systemic inflammation linking chronic periodontitis to cognitive decline. Brain Behav Immun 2019; 81:63-73. [PMID: 31279681 DOI: 10.1016/j.bbi.2019.07.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/25/2022] Open
Abstract
Persistent inflammation in the systemic immune system can impose detrimental effects on the central nervous system (CNS). Neuroinflammation might be a result of this to accelerate the progressive deterioration of neuronal functions during aging. In this regard, controlling inflammation through delaying and/or preventing chronic inflammatory diseases may be a potential strategy to prevent or modify the progression of Alzheimer's Disease (AD). Periodontitis is a chronic inflammatory disease of the oral cavity that is common among the elderly, especially for those who have decline in cognitive functions. While epidemiological findings support the association of chronic periodontitis and cognitive decline, whether they have causal relationship remains unclear. Nonetheless, the possibility that periodontopathogens, systemic immune cells and inflammatory cytokines could reach the CNS should not be overlooked. The impacts of periodontitis on CNS homeostasis and inflammation as a pathophysiological factor concerning the association between periodontitis and AD will be discussed in this review. Future work should elucidate the pathological pathways involved in periodontitis-induced cerebral infections and inflammation, and define the role of the latter in AD progression.
Collapse
|
14
|
Linkage of Periodontitis and Rheumatoid Arthritis: Current Evidence and Potential Biological Interactions. Int J Mol Sci 2019; 20:ijms20184541. [PMID: 31540277 PMCID: PMC6769683 DOI: 10.3390/ijms20184541] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/07/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023] Open
Abstract
The association between rheumatoid arthritis (RA) and periodontal disease (PD) has been the focus of numerous investigations driven by their common pathological features. RA is an autoimmune disease characterized by chronic inflammation, the production of anti-citrullinated proteins antibodies (ACPA) leading to synovial joint inflammation and destruction. PD is a chronic inflammatory condition associated with a dysbiotic microbial biofilm affecting the supporting tissues around the teeth leading to the destruction of mineralized and non-mineralized connective tissues. Chronic inflammation associated with both RA and PD is similar in the predominant adaptive immune phenotype, in the imbalance between pro- and anti-inflammatory cytokines and in the role of smoking and genetic background as risk factors. Structural damage that occurs in consequence of chronic inflammation is the ultimate cause of loss of function and disability observed with the progression of RA and PD. Interestingly, the periodontal pathogen Porphyromonas gingivalis has been implicated in the generation of ACPA in RA patients, suggesting a direct biological intersection between PD and RA. However, more studies are warranted to confirm this link, elucidate potential mechanisms involved, and ascertain temporal associations between RA and PD. This review is mainly focused on recent clinical and translational research intends to discuss and provide an overview of the relationship between RA and PD, exploring the similarities in the immune-pathological aspects and the possible mechanisms linking the development and progression of both diseases. In addition, the current available treatments targeting both RA and PD were revised.
Collapse
|
15
|
Kuroki A, Sugita N, Komatsu S, Yokoseki A, Yoshihara A, Kobayashi T, Nakamura K, Momotsu T, Endo N, Sato K, Narita I, Yoshie H. Association of liver enzyme levels and alveolar bone loss: A cross-sectional clinical study in Sado Island. J Clin Exp Dent 2018; 10:e100-e106. [PMID: 29670725 PMCID: PMC5899799 DOI: 10.4317/jced.54555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The interaction of periodontopathic bacteria with host immune system induces the production of inflammatory mediators which leads to alveolar bone loss (ABL), the essential feature of periodontitis. Concurrently, periodontal diseases cause the elevation of blood cytokine levels, the alteration of gut microbiota and the dissemination of enterobacteria to the liver. Owing to these mechanisms, periodontal disease might be a risk for liver dysfunction. Several epidemiological studies have reported associations between periodontal diseases and liver dysfunction, although the association between ABL and liver dysfunction has not been investigated. This cross-sectional study determined if elevated serum liver enzyme levels were associated with ABL in Japanese adults. MATERIAL AND METHODS Japanese adults living on Sado Island who visited Sado General Hospital were invited to participate in the study. Participants over 40 years of age who underwent dental panoramic radiography and blood tests were included. Drinking and smoking habits were self-administered. After excluding patients with edentulous jaw, diagnosed liver diseases, and those on dialysis, data from 44 men and 66 women with a mean age of 73 years were analyzed. The average percentage of ABL for each participant was calculated for mesial and distal sites of all remaining teeth. The levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT) were determined. Univariate analyses were performed to select covariates to be put in multivariate analyses. The association between elevated serum liver enzyme levels and the highest quartile of ABL were assessed by multiple logistic regression analysis. RESULTS After adjusting for covariates, no significant association was found between elevated serum AST, ALT, or GGT levels as dependent variables and the highest quartile of ABL as an explanatory variable. CONCLUSIONS There was no significant association between the elevation of serum liver enzyme levels and ABL in Japanese adults. Key words:Liver enzymes, dental panoramic radiography, alveolar bone loss, Japanese adults.
Collapse
Affiliation(s)
- Ayumi Kuroki
- DDS, Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Noriko Sugita
- Assistant Professor, DDS, PhD, Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Akio Yokoseki
- Specially appointed Associate Professor, MD, PhD, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Brain Research Institute, Niigata, Japan
| | - Akihiro Yoshihara
- Professor, DDS, PhD, Department of Oral Health and Welfare, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tetsuo Kobayashi
- Associate Professor, DDS, PhD, General Dentistry and Clinical Education Unit, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Kazutoshi Nakamura
- Professor, MD, PhD, Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Naoto Endo
- Professor, MD, PhD, Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan
| | - Kenji Sato
- MD, PhD, Sado General Hospital, Niigata, Japan
| | - Ichiei Narita
- Professor, MD, PhD, Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiromasa Yoshie
- Professor, DDS, PhD, Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
16
|
Park YJ, Lee HK. The Role of Skin and Orogenital Microbiota in Protective Immunity and Chronic Immune-Mediated Inflammatory Disease. Front Immunol 2018; 8:1955. [PMID: 29375574 PMCID: PMC5767596 DOI: 10.3389/fimmu.2017.01955] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022] Open
Abstract
The skin and orogenital mucosae, which constitute complex protective barriers against infection and injuries, are not only the first to come into contact with pathogens but are also colonized by a set of microorganisms that are essential to maintain a healthy physiological environment. Using 16S ribosomal RNA metagenomic sequencing, scientists recognized that the microorganism colonization has greater diversity and variability than previously assumed. These microorganisms, such as commensal bacteria, affect the host’s immune response against pathogens and modulate chronic inflammatory responses. Previously, a single pathogen was thought to cause a single disease, but current evidence suggests that dysbiosis of the tissue microbiota may underlie the disease status. Dysbiosis results in aberrant immune responses at the surface and furthermore, affects the systemic immune response. Hence, understanding the initial interaction between the barrier surface immune system and local microorganisms is important for understanding the overall systemic effects of the immune response. In this review, we describe current evidence for the basis of the interactions between pathogens, microbiota, and immune cells on surface barriers and offer explanations for how these interactions may lead to chronic inflammatory disorders.
Collapse
Affiliation(s)
- Young Joon Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
17
|
How KY, Song KP, Chan KG. Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen below the Gum Line. Front Microbiol 2016; 7:53. [PMID: 26903954 PMCID: PMC4746253 DOI: 10.3389/fmicb.2016.00053] [Citation(s) in RCA: 417] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/12/2016] [Indexed: 01/12/2023] Open
Abstract
Periodontal disease represents a group of oral inflammatory infections initiated by oral pathogens which exist as a complex biofilms on the tooth surface and cause destruction to tooth supporting tissues. The severity of this disease ranges from mild and reversible inflammation of the gingiva (gingivitis) to chronic destruction of connective tissues, the formation of periodontal pocket and ultimately result in loss of teeth. While human subgingival plaque harbors more than 500 bacterial species, considerable research has shown that Porphyromonas gingivalis, a Gram-negative anaerobic bacterium, is the major etiologic agent which contributes to chronic periodontitis. This black-pigmented bacterium produces a myriad of virulence factors that cause destruction to periodontal tissues either directly or indirectly by modulating the host inflammatory response. Here, this review provides an overview of P. gingivalis and how its virulence factors contribute to the pathogenesis with other microbiome consortium in oral cavity.
Collapse
Affiliation(s)
- Kah Yan How
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Keang Peng Song
- School of Science, Monash University Sunway Campus Subang Jaya, Malaysia
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Gonzales JR. T- and B-cell subsets in periodontitis. Periodontol 2000 2015; 69:181-200. [DOI: 10.1111/prd.12090] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 12/17/2022]
|
19
|
Janket SJ, Javaheri H, Ackerson LK, Ayilavarapu S, Meurman JH. Oral Infections, Metabolic Inflammation, Genetics, and Cardiometabolic Diseases. J Dent Res 2015; 94:119S-27S. [PMID: 25840582 DOI: 10.1177/0022034515580795] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although several epidemiologic studies reported plausible and potentially causal associations between oral infections and cardiometabolic diseases (CMDs), controversy still lingers. This might be due to unrecognized confounding from metabolic inflammation and genetics, both of which alter the immune responses of the host. Low-grade inflammation termed metainflammation is the hallmark of obesity, insulin resistance, type 2 diabetes, and CMDs. According to the common soil theory, the continuum of obesity to CMDs is the same pathology at different time points, and early metainflammations, such as hyperglycemia and obesity, display many adverse cardiometabolic characteristics. Consequently, adipose tissue is now considered a dynamic endocrine organ that expresses many proinflammatory cytokines such as TNF-α, IL-6, plasminogen activator inhibitor 1, and IL-1β. In metainflammation, IL-1β and reactive oxygen species are generated, and IL-1β is a pivotal molecule in the pathogenesis of CMDs. Note that the same cytokines expressed in metainflammation are also reported in oral infections. In metabolic inflammation and oral infections, the innate immune system is activated through pattern recognition receptors-which include transmembrane receptors such as toll-like receptors (TLRs), cytosolic receptors such as nucleotide-binding oligomerization domain-like receptors, and multiprotein complexes called inflammasome. In general, TLR-2s are presumed to recognize lipoteichoic acid of Gram-positive microbes-and TLR-4s, lipopolysaccharide of Gram-negative microbes-while nucleotide-binding oligomerization domain-like receptors detect both Gram-positive and Gram-negative peptidoglycans on the bacterial cell walls. However, a high-fat diet activates TLR-2s, and obesity activates TLR-4s and induces spontaneous increases in serum lipopolysaccharide levels (metabolic endotoxemia). Moreover, genetics controls lipid-related transcriptome and the differentiation of monocyte and macrophages. Additionally, genetics influences CMDs, and this creates a confounding relationship among oral infections, metainflammation, and genetics. Therefore, future studies must elucidate whether oral infections can increase the risk of CMDs independent of the aforementioned confounding factors.
Collapse
Affiliation(s)
- S-J Janket
- General Dentistry, Boston University H. M. Goldman School of Dental Medicine, Boston, MA, USA Periodontology, Boston University H. M. Goldman School of Dental Medicine, Boston, MA, USA
| | - H Javaheri
- General Dentistry, Boston University H. M. Goldman School of Dental Medicine, Boston, MA, USA
| | - L K Ackerson
- Community Health and Sustainability, University of Massachusetts, Lowell, MA, USA
| | - S Ayilavarapu
- General Dentistry, Boston University H. M. Goldman School of Dental Medicine, Boston, MA, USA
| | - J H Meurman
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
20
|
Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res 2014; 2014:476068. [PMID: 24741603 PMCID: PMC3984870 DOI: 10.1155/2014/476068] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 12/24/2022] Open
Abstract
Porphyromonas gingivalis is a Gram-negative oral anaerobe that is involved in the pathogenesis of periodontitis and is a member of more than 500 bacterial species that live in the oral cavity. This anaerobic bacterium is a natural member of the oral microbiome, yet it can become highly destructive (termed pathobiont) and proliferate to high cell numbers in periodontal lesions: this is attributed to its arsenal of specialized virulence factors. The purpose of this review is to provide an overview of one of the main periodontal pathogens—Porphyromonas gingivalis. This bacterium, along with Treponema denticola and Tannerella forsythia, constitute the “red complex,” a prototype polybacterial pathogenic consortium in periodontitis. This review outlines Porphyromonas gingivalis structure, its metabolism, its ability to colonize the epithelial cells, and its influence upon the host immunity.
Collapse
|