1
|
Nawar NN, Elashiry MM, El Banna A, Saber SM, Schäfer E. Ex-vivo evaluation of clinically-set hydraulic sealers used with different canal dryness protocols and obturation techniques: a randomized clinical trial. Clin Oral Investig 2024; 28:612. [PMID: 39463194 PMCID: PMC11513728 DOI: 10.1007/s00784-024-06006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
OBJECTIVES This 2-part randomized parallel triple-blind clinical trial adopts a unique model assessing clinically-set hydraulic calcium silicate-based sealers (HCSBS) after different root canal dryness protocols and obturation techniques. METHODS For the first phase of the study, 24 teeth scheduled for orthodontic extractions were allocated into four groups according to the canal dryness protocol and the obturation technique. G1 (CLC-AHP): cold lateral compaction (CLC) with AH Plus sealer, G2 (CLC-ES-SD): CLC with Endosequence (ES) after standard canal(s) dryness (SD); G3 (SC-ES-SD): matching single-cone (SC) with ES after SD; G4 (SC-ES-PD): as G3 but after partial canal(s) dryness (PD). Teeth were extracted after one month of clinical service and examined for intracanal voids by micro-CT (2D & 3D). For the 2nd phase, another 24 teeth were allocated into four groups according to the root canal dryness protocol and the HCSBS used (ES or CeraSeal (CeS)). Teeth were extracted after one month and sectioned vertically for energy dispersive X-ray (EDX)/scanning electron microscope (SEM) examination. One-way ANOVA with Games-Howell post-hoc test and Chi-square test with multiple z-tests were used for statistical analysis. RESULTS SC-PD showed the highest percentage of voids (p < 0.05). MicroCT scans as well as EDX/SEM examination showed that PD resulted in significantly larger interfacial gaps (p < 0.001) with more hydration products at the sealer/dentin interface than SD. CONCLUSIONS Both tested dryness protocols allowed the hydration of HCSBS and the formation of hydration products, thus standard dryness is recommended to reduce the incidence of intracanal voids. CLINICAL RELEVANCE When using the single-cone obturation technique, intentional root canal moisture negatively affects the performance of HCSBS. PROTOCOL REGISTRATION http://www. CLINICALTRIALS gov, ID: NCT05808062.
Collapse
Affiliation(s)
- Nawar Naguib Nawar
- Department of Endodontics, Faculty of Dentistry, The British University in Egypt (BUE), 24 Hasan Elgamal street El Sherouk City, Nasr City, Cairo, 11837, Egypt.
| | - Mohamed Mohamed Elashiry
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, 11566, Egypt
- Department of Endodontics, Dental College of Georgia, Augusta University, Cairo, USA
| | - Ahmed El Banna
- Department of Biomaterials, Faculty of Dentistry, Ain Shams University, Cairo, 11566, Egypt
| | - Shehabeldin Mohamed Saber
- Department of Endodontics, Faculty of Dentistry, The British University in Egypt (BUE), 24 Hasan Elgamal street El Sherouk City, Nasr City, Cairo, 11837, Egypt
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, 11566, Egypt
- Centre for Innovative Dental Sciences (CIDS), Faculty of Dentistry, The British University in Egypt (BUE), El Sherouk City, 11837, Egypt
| | - Edgar Schäfer
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, Waldeyerstr. 30, D-48149, Münster, Germany.
| |
Collapse
|
2
|
Elnawawy HM, Kutty MG, Yahya NA, Kasim NHA, Cooper PR, Camilleri J, Ahmed HMA. Chemical and physical properties of radiopaque Portland cement formulation with reduced particle size. Dent Mater J 2024; 43:672-682. [PMID: 39261022 DOI: 10.4012/dmj.2024-015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
This study compared the chemical and physical properties of an experimental radiopaque white Portland cement (REPC) with reduced particle size to ProRoot white mineral trioxide aggregate (WMTA). The particle size distribution of experimental Portland cement (EPC) was examined, and then nano-zirconium oxide (nano-ZrO) was added to produce REPC. Chemical analysis, initial setting time, pH values, and push-out bond strength were evaluated. Results showed that REPC had smallest particle size (354.5±26.45 nm), while PC had the largest (1,309.67±60.54 nm) (p<0.05). Differences in chemical composition were observed. REPC exhibited shorter setting time (32.7±0.58 min) compared to WMTA (131.67±2.89 min) and PC (163.33±2.89 min) (p<0.05). All groups showed alkaline pH (p<0.05). REPC demonstrated the highest push-out bond strength (22.24±4.33 MPa) compared with WMTA (15.53±3.26 MPa) and PC (16.8±5.43 MPa) (p<0.05). This cost-effective PC formulation reduced the setting time and increased the push-out bond strength while maintaining the alkaline properties of the original cements.
Collapse
Affiliation(s)
| | | | - Noor Azlin Yahya
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya
| | | | - Paul Roy Cooper
- Sir John Walsh Research Institute, Department of Oral Sciences, University of Otago
| | - Josette Camilleri
- Division of Endodontology and Operative Dentistry, School of Health Sciences, College of Medicine and Health, University of Birmingham
| | | |
Collapse
|
3
|
Xavier MT, Costa AL, Ramos JC, Caramês J, Marques D, Martins JNR. Calcium Silicate-Based Cements in Restorative Dentistry: Vital Pulp Therapy Clinical, Radiographic, and Histological Outcomes on Deciduous and Permanent Dentition-A Systematic Review and Meta-Analysis. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4264. [PMID: 39274654 PMCID: PMC11396151 DOI: 10.3390/ma17174264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/16/2024]
Abstract
Vital pulp therapy aims to preserve the vitality of dental pulp exposed due to caries, trauma, or restorative procedures. The aim of the present review was to evaluate the clinical, radiographic, and histological outcomes of different calcium silicate-based cements used in vital pulp therapy for both primary and permanent teeth. The review included 40 randomized controlled trials from a search across PubMed, LILACS, and the Cochrane Collaboration, as well as manual searches and author inquiries according to specific inclusion and exclusion criteria. A critical assessment of studies was conducted, and after data extraction the results were submitted to a quantitative statistical analysis using meta-analysis. The studies, involving 1701 patients and 3168 teeth, compared a total of 18 different calcium silicate-based cements in both dentitions. The qualitative synthesis showed no significant differences in short-term outcomes (up to 6 months) between different calcium silicate-based cements in primary teeth. ProRoot MTA and Biodentine showed similar clinical and radiographic success rates at 6 and 12 months. In permanent teeth, although the global results appeared to be well balanced, ProRoot MTA generally seemed to perform better than other calcium silicate-based cements except for Biodentine, which had comparable or superior results at 6 months. Meta-analyses for selected comparisons showed no significant differences in clinical and radiographic outcomes between ProRoot MTA and Biodentine over follow-up periods. The present review highlights the need for standardized definitions of success and follow-up periods in future studies to better guide clinical decisions. Despite the introduction of new calcium silicate-based cements aiming to address limitations of the original MTA. ProRoot MTA and Biodentine remain the most used and reliable materials for vital pulp therapy, although the results did not deviate that much from the other calcium silicate-based cements. Further long-term studies are required to establish the optimal CSC for each clinical scenario in both dentitions.
Collapse
Affiliation(s)
- Maria Teresa Xavier
- Centre for Innovation and Research in Oral Sciences (CIROS), Institute of Paediatric and Preventive Dentistry, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Instituto de Implantologia, 1070-064 Lisboa, Portugal
| | - Ana Luísa Costa
- Centre for Innovation and Research in Oral Sciences (CIROS), Institute of Paediatric and Preventive Dentistry, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - João Carlos Ramos
- Laboratory of Biomechanical tests and Centre for Innovation and Research in Oral Sciences (CIROS), Institute of Operative and Preventive Dentistry, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - João Caramês
- Instituto de Implantologia, 1070-064 Lisboa, Portugal
- Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
- LIBPhys-FCT UID/FIS/04559/2013, 1600-277 Lisboa, Portugal
| | - Duarte Marques
- Instituto de Implantologia, 1070-064 Lisboa, Portugal
- Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
- LIBPhys-FCT UID/FIS/04559/2013, 1600-277 Lisboa, Portugal
- Centro de Estudos de Medicina Dentária Baseada na Evidência (CEMDBE), 1600-277 Lisboa, Portugal
- Grupo de Investigação em Bioquímica e Biologia Oral (GIBBO), Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), 1600-277 Lisboa, Portugal
| | - Jorge N R Martins
- Instituto de Implantologia, 1070-064 Lisboa, Portugal
- Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
- LIBPhys-FCT UID/FIS/04559/2013, 1600-277 Lisboa, Portugal
- Centro de Estudos de Medicina Dentária Baseada na Evidência (CEMDBE), 1600-277 Lisboa, Portugal
- Grupo de Investigação em Bioquímica e Biologia Oral (GIBBO), Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), 1600-277 Lisboa, Portugal
| |
Collapse
|
4
|
Cinici B, Yaba S, Kurt M, Yalcin HC, Duta L, Gunduz O. Fabrication Strategies for Bioceramic Scaffolds in Bone Tissue Engineering with Generative Design Applications. Biomimetics (Basel) 2024; 9:409. [PMID: 39056850 PMCID: PMC11275129 DOI: 10.3390/biomimetics9070409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this study is to provide an overview of the current state-of-the-art in the fabrication of bioceramic scaffolds for bone tissue engineering, with an emphasis on the use of three-dimensional (3D) technologies coupled with generative design principles. The field of modern medicine has witnessed remarkable advancements and continuous innovation in recent decades, driven by a relentless desire to improve patient outcomes and quality of life. Central to this progress is the field of tissue engineering, which holds immense promise for regenerative medicine applications. Scaffolds are integral to tissue engineering and serve as 3D frameworks that support cell attachment, proliferation, and differentiation. A wide array of materials has been explored for the fabrication of scaffolds, including bioceramics (i.e., hydroxyapatite, beta-tricalcium phosphate, bioglasses) and bioceramic-polymer composites, each offering unique properties and functionalities tailored to specific applications. Several fabrication methods, such as thermal-induced phase separation, electrospinning, freeze-drying, gas foaming, particle leaching/solvent casting, fused deposition modeling, 3D printing, stereolithography and selective laser sintering, will be introduced and thoroughly analyzed and discussed from the point of view of their unique characteristics, which have proven invaluable for obtaining bioceramic scaffolds. Moreover, by highlighting the important role of generative design in scaffold optimization, this review seeks to pave the way for the development of innovative strategies and personalized solutions to address significant gaps in the current literature, mainly related to complex bone defects in bone tissue engineering.
Collapse
Affiliation(s)
- Bilal Cinici
- Department of Mechanical Engineering, Faculty of Technology, Marmara University, Istanbul 34890, Turkey; (B.C.); (M.K.)
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34890, Turkey
- AYEM Innovation Anonim Sirketi, Cube Incubation Center, Technopark Istanbul, Istanbul 34890, Turkey;
| | - Sule Yaba
- AYEM Innovation Anonim Sirketi, Cube Incubation Center, Technopark Istanbul, Istanbul 34890, Turkey;
| | - Mustafa Kurt
- Department of Mechanical Engineering, Faculty of Technology, Marmara University, Istanbul 34890, Turkey; (B.C.); (M.K.)
| | - Huseyin C. Yalcin
- Biomedical Research Center, Qatar University, Doha 2713, Qatar;
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
| | - Liviu Duta
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34890, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34890, Turkey
| |
Collapse
|
5
|
Quaresma SAL, Alves Dos Santos GN, Silva-Sousa AC, Camargo RV, Silva-Sousa YT, Lopes-Olhê FC, Mazzi-Chaves JF, Sousa-Neto MD. Influence of bioceramic cones on the quality of root canal filling relative to bond strength and adaptation of the adhesive interface. Clin Oral Investig 2023; 27:7919-7933. [PMID: 38032392 DOI: 10.1007/s00784-023-05385-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
AIM To evaluate the bond strength (BS) and analysis of the adhesive interface in root canals filled with bioceramic gutta percha sealers and cones. MATERIAL AND METHODS Ninety-six maxillary canines were divided into eight groups according to the endodontic sealer (AH Plus, AH Plus Bioceramic, Bio-C Sealer or Bio-C Sealer Ion+ and gutta percha cones (conventional or bioceramic) tested. They were analyzed using the BS test, failure pattern, analysis of the adhesive interface by scanning electron microscopy and confocal laser scanning microscopy. The BS data were compared between groups using the analysis of variance test with the Turkey post-test. The chi-square test was used to assess the type of failure and the non-parametric Mann-Whitney and Kruse-Wallis tests (P < 0.05). RESULTS Analysis of variance showed higher BS values for the groups of bioceramic gutta percha cones in Bio-C Sealer Ion+ (8.38 ± 4.27), AH Plus Bioceramic (6.19 ± 3.28), Bio-C Sealer (5.70 ± 3.18), AH Plus (4.61 ± 2.11) and for conventional gutta percha cones in AH Plus sealers (4.26 ± 2.35), Bio-C Sealer Ion + (3.63 ± 2.29), Bio-C Sealer (2.94 ± 2.32) and AH Plus Bioceramic (1.19 ± 0.89) (P < 0.05). Relative to the type of failure and adaptation of the types of filling material, a higher percentage of mixed failures was observed (gaps between 1 µm-10 µm) for the group with bioceramic gutta percha cones (P < 0.001). CONCLUSION The bond between sealers and bioceramic gutta percha cones showed higher bond strength values and greater penetration into the dentin tubules. CLINICAL RELEVANCE The filling the root canal system with bioceramic sealers should be associated with bioceramic gutta percha cones.
Collapse
Affiliation(s)
- Sérgio André Lopes Quaresma
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Av. do Café, s/n, Ribeirão Preto, São Paulo, 14020-904, Brazil
| | - Guilherme Nilson Alves Dos Santos
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Av. do Café, s/n, Ribeirão Preto, São Paulo, 14020-904, Brazil
| | - Alice Corrêa Silva-Sousa
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Av. do Café, s/n, Ribeirão Preto, São Paulo, 14020-904, Brazil
| | - Rafael Verardino Camargo
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Av. do Café, s/n, Ribeirão Preto, São Paulo, 14020-904, Brazil
| | | | - Fabiane Carneiro Lopes-Olhê
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Av. do Café, s/n, Ribeirão Preto, São Paulo, 14020-904, Brazil
| | - Jardel Francisco Mazzi-Chaves
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Av. do Café, s/n, Ribeirão Preto, São Paulo, 14020-904, Brazil
| | - Manoel Damião Sousa-Neto
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Av. do Café, s/n, Ribeirão Preto, São Paulo, 14020-904, Brazil.
| |
Collapse
|
6
|
Silva EJNL, Pinto KP, Belladonna FG, Ferreira CMA, Versiani MA, De-Deus G. Success rate of permanent teeth pulpotomy using bioactive materials: A systematic review and meta-analysis of randomized clinical trials. Int Endod J 2023; 56:1024-1041. [PMID: 37254176 DOI: 10.1111/iej.13939] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND The results of vital pulp treatments in permanent teeth have been encouraging. Currently, pulpotomy treatment for permanent teeth primarily utilizes mineral trioxide aggregate (MTA) as the dressing material, followed by calcium hydroxide. While other calcium-silicate-based cements have been suggested for pulpotomy, there is a limited number of studies evaluating their long-term effectiveness. OBJECTIVES The objective of this systematic review and meta-analysis was to evaluate the success rate of pulpotomies performed on permanent teeth, comparing the use of ProRoot MTA with that of calcium hydroxide and other bioceramic materials. METHODS A comprehensive search was conducted in several electronic databases, including PubMed, Cochrane Library, Scopus, Web of Science, Embase and Science Direct until December 2022. The search was guided by PICOS criteria, including only randomized clinical trials (RCTs) that evaluated the success rate of pulpotomy treatments in permanent teeth using ProRoot MTA in comparison to calcium hydroxide and other bioceramic materials. The quality of the included studies was assessed using the RoB-2 tool to evaluate the risk of bias, and relevant data were extracted and analysed in RevMan software 5.3 using fixed-effect models. The GRADE tool was used to determine the overall quality of evidence. RESULTS The initial search retrieved 1072 studies and, after eliminating duplicates, 677 studies were screened and 28 studies were considered for eligibility. In the final selection process, 16 studies were included in the systematic review, with 10 being determined as having a high risk of bias. Pulpotomy showed an overall mean success rate of 92% after 1 year. The meta-analysis indicated a significantly higher success rate for pulpotomies utilizing MTA in comparison with calcium hydroxide, while no significant difference was seen between MTA and calcium-enriched mixture (CEM) or Biodentine. The GRADE assessment revealed an overall low level of evidence for the included studies. DISCUSSION Most randomized controlled trials exhibited a significant absence of control over confounding factors. CONCLUSIONS This systematic review and meta-analysis demonstrate that pulpotomy is a highly effective treatment for managing permanent teeth. The results indicate that the success rate of pulpotomy using ProRoot MTA is significantly higher than when using calcium hydroxide. However, the certainty of evidence supporting these findings is low, and there is a need for well-designed RCTs to assess the long-term outcomes of pulpotomy using newer bioceramic materials. REGISTRATION This systematic review was registered in the PROSPERO database (registration number CRD42023393970).
Collapse
Affiliation(s)
- Emmanuel J N L Silva
- Department of Endodontics, Fluminense Federal University, Rio de Janeiro, Brazil
- Department of Endodontics, State University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Endodontics, Grande Rio University, Rio de Janeiro, Brazil
| | - Karem P Pinto
- Department of Endodontics, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe G Belladonna
- Department of Endodontics, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Claudio M A Ferreira
- Department of Endodontics, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco A Versiani
- Dental Specialty Center, Brazilian Military Police, Minas Gerais, Brazil
| | - Gustavo De-Deus
- Department of Endodontics, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Kato G, Araújo R, Rodrigues C, Gomes PS, Grenho L, Fernandes MH. Ex Vivo Osteogenesis Induced by Calcium Silicate-Based Cement Extracts. J Funct Biomater 2023; 14:314. [PMID: 37367277 DOI: 10.3390/jfb14060314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Calcium silicate-based cements are used in a variety of clinical conditions affecting the pulp tissue, relying on their inductive effect on tissue mineralization. This work aimed to evaluate the biological response of calcium silicate-based cements with distinct properties-the fast-setting Biodentine™ and TotalFill® BC RRM™ Fast Putty, and the classical slow-setting ProRoot® MTA, in an ex vivo model of bone development. Briefly, eleven-day-old embryonic chick femurs were cultured for 10 days in organotypic conditions, being exposed to the set cements' eluates and, at the end of the culture period, evaluated for osteogenesis/bone formation by combining microtomographic analysis and histological histomorphometric assessment. ProRoot® MTA and TotalFill® extracts presented similar levels of calcium ions, although significantly lower than those released from BiodentineTM. All extracts increased the osteogenesis/tissue mineralization, assayed by microtomographic (BV/TV) and histomorphometric (% of mineralized area; % of total collagen area, and % of mature collagen area) indexes, although displaying distinct dose-dependent patterns and quantitative values. The fast-setting cements displayed better performance than that of ProRoot® MTA, with BiodentineTM presenting the best performance, within the assayed experimental model.
Collapse
Affiliation(s)
- Gabriel Kato
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
- LAQV/Requimte, University of Porto, 4100-007 Porto, Portugal
| | - Rita Araújo
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
- LAQV/Requimte, University of Porto, 4100-007 Porto, Portugal
| | - Cláudia Rodrigues
- Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
| | - Pedro Sousa Gomes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
- LAQV/Requimte, University of Porto, 4100-007 Porto, Portugal
| | - Liliana Grenho
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
- LAQV/Requimte, University of Porto, 4100-007 Porto, Portugal
| | - Maria Helena Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
- LAQV/Requimte, University of Porto, 4100-007 Porto, Portugal
| |
Collapse
|
8
|
Zeng Q, Zhou C, Li M, Qiu Y, Wei X, Liu H. Concentrated growth factor combined with iRoot BP Plus promotes inflamed pulp repair: an in vitro and in vivo study. BMC Oral Health 2023; 23:225. [PMID: 37076830 PMCID: PMC10114309 DOI: 10.1186/s12903-023-02903-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/21/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Platelet concentrates combined with calcium silicate cements may promote reparative dentin formation. However, few studies have reported their effect on dental pulp inflammation. This study aimed to evaluate the effects of concentrated growth factor (CGF) combined with iRoot BP Plus on inflammatory human dental pulp stem cells (hDPSCs) in vitro and inflamed pulp in rats in vivo. METHODS The proliferation of LPS-stimulated hDPSCs treated with 50% CGF with/without 25% iRoot BP Plus was evaluated using Cell Counting Kit-8 on days 1, 4 and 7. The expression of genes associated with inflammation on day 1 and differentiation on day 14 was analysed by real-time polymerase chain reaction. The exposed pulp of rat maxillary molars was injected with 10 mg/mL LPS and directly capped with CGF membrane with/without iRoot BP Plus extract for 1, 7 and 28 days. The teeth were subjected to histologic analyses and immunohistochemistry. RESULTS The proliferation rates of the inflammatory hDPSCs after the combination treatment were significantly higher than those after the other treatments on days 4 and 7 (P < 0.05). IL-1β, IL-6, and TNF-α levels were increased in inflammatory hDPSCs but decreased after treatment with CGF combined with iRoot BP Plus extract, whereas IL-4 and IL-10 showed the opposite expression patterns. Expression of the odontogenesis-related genes OCN, Runx2, and ALP was dramatically enhanced by combined treatment with CGF and iRoot BP Plus extract. In rat pulp, the average inflammation scores of the CGF and CGF-iRoot BP Plus groups significantly decreased in comparison with those of the LPS group (P < 0.05), and the CGF-iRoot BP Plus group had more reparative dentin than the CGF and BP groups. Immunohistochemical staining showed fewer M1 macrophages on day 1 and more M2 macrophages on day 7 in the CGF-iRoot BP Plus group than in the other groups. CONCLUSIONS The combination of CGF and iRoot BP Plus showed a synergistic effect on anti-inflammatory potential and promoted greater pulp healing than CGF or iRoot BP Plus alone.
Collapse
Affiliation(s)
- Qian Zeng
- Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Can Zhou
- Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Mengjie Li
- Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Yu Qiu
- Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Xi Wei
- Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China.
| | - Hongyan Liu
- Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China.
| |
Collapse
|
9
|
Spagnuolo G, De Luca I, Iaculli F, Barbato E, Valletta A, Calarco A, Valentino A, Riccitiello F. Regeneration of dentin-pulp complex: Effect of calcium-based materials on hDPSCs differentiation and gene expression. Dent Mater 2023; 39:485-491. [PMID: 36935304 DOI: 10.1016/j.dental.2023.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023]
Abstract
OBJECTIVE Dentin-pulp complex is object of interest in the regenerative endodontic field as well as the natural function of human dental pulp stem cells (hDPSCs) that may differentiate into specific cells able to repair and/or regenerate both hard and soft dental structures. The aim of the present study was to evaluate the capacity of hDPSCs to differentiate in odontoblastic-like cells by evaluating the expression of specific odontogenic-related genes and to prove the ability of treatment with calcium-based materials such as calcium carbonate (CaCO3), calcium hydroxide (Ca(OH)₂), and mineral trioxide aggregate (MTA). METHODS hDPSCs were obtained and isolated from a third molar of a young patient. Odontogenic-related gene expression was assessed unti1 28 days of culture as well as alkaline phosphatase activity (ALP). hDPSCs were cultured in odontoblastic-induction medium used as control, and in presence of different concentrations of CaCO3, Ca(OH)₂, and MTA. RESULTS The results demonstrated an upregulation in odontoblastic cell-related genes, in particular of the early differentiation marker known as matrix extracellular phosphoglycoprotein (MEPE), as well as increased ALP activity and the presence of calcium deposits, mainly by stimulation with calcium derivatives. In this regard, treatment of pulp tissue with CaCO3, Ca(OH)2 and even better with MTA seemed to be effective for dentinogenesis. SIGNIFICANCE The ease of isolation of hDPSCs from discarded or extracted teeth offers a promising source of autologous cells that may be applied for regenerative purpose in combination with selected bioactive materials. However, further investigations should be conducted to confirm the obtained results.
Collapse
Affiliation(s)
- Gianrico Spagnuolo
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Ilenia De Luca
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Naples, Italy
| | - Flavia Iaculli
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy.
| | - Eleonora Barbato
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Alessandra Valletta
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Naples, Italy
| | - Anna Valentino
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Naples, Italy.
| | - Francesco Riccitiello
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Chemical-Physical Properties and Bioactivity of New Premixed Calcium Silicate-Bioceramic Root Canal Sealers. Int J Mol Sci 2022; 23:ijms232213914. [PMID: 36430393 PMCID: PMC9692705 DOI: 10.3390/ijms232213914] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to analyze the chemical−physical properties and bioactivity (apatite-forming ability) of three recently introduced premixed bioceramic root canal sealers containing varied amounts of different calcium silicates (CaSi): a dicalcium and tricalcium silicate (1−10% and 20−30%)-containing sealer with zirconium dioxide and tricalcium aluminate (CERASEAL); a tricalcium silicate (5−15%)-containing sealer with zirconium dioxide, dimethyl sulfoxide and lithium carbonate (AH PLUS BIOCERAMIC) and a dicalcium and tricalcium silicate (10% and 25%)-containing sealer with calcium aluminate, tricalcium aluminate and tantalite (NEOSEALER FLO). An epoxy resin-based sealer (AH PLUS) was used as control. The initial and final setting times, radiopacity, flowability, film thickness, open pore volume, water absorption, solubility, calcium release and alkalizing activity were tested. The nucleation of calcium phosphates and/or apatite after 28 days aging in Hanks balanced salt solution (HBSS) was evaluated by ESEM-EDX, vibrational IR and micro-Raman spectroscopy. The analyses showed for NeoSealer Flo and AH Plus the longest final setting times (1344 ± 60 and 1300 ± 60 min, respectively), while shorter times for AH Plus Bioceramic and Ceraseal (660 ± 60 and 720 ± 60 min, respectively). Radiopacity, flowability and film thickness complied with ISO 6876/12 for all tested materials. A significantly higher open pore volume was observed for NeoSealer Flo, AH Plus Bioceramic and Ceraseal when compared to AH Plus (p < 0.05), significantly higher values were observed for NeoSealer Flo and AH Plus Bioceramic (p < 0.05). Ceraseal and AH Plus revealed the lowest solubility. All CaSi-containing sealers released calcium and alkalized the soaking water. After 28 days immersion in HBSS, ESEM-EDX analyses revealed the formation of a mineral layer that covered the surface of all bioceramic sealers, with a lower detection of radiopacifiers (Zirconium for Ceraseal and AH Plus Bioceramic, Tantalum for NeoSealer Flo) and an increase in calcium, phosphorous and carbon. The calcium phosphate (CaP) layer was more evident on NeoSealer Flo and AH Plus Bioceramic. IR and micro-Raman revealed the formation of calcium carbonate on the surface of all set materials. A thin layer of a CaP phase was detected only on AH Plus Bioceramic and NeoSealer Flo. Ceraseal did not show CaP deposit despite its highest calcium release among all the tested CaSi-containing sealers. In conclusion, CaSi-containing sealers met the required chemical and physical standards and released biologically relevant ions. Slight/limited apatite nucleation was observed in relation to the high carbonation processes.
Collapse
|
11
|
Recent Progress on the Applications of Nanomaterials and Nano-Characterization Techniques in Endodontics: A Review. MATERIALS 2022; 15:ma15155109. [PMID: 35897542 PMCID: PMC9331596 DOI: 10.3390/ma15155109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023]
Abstract
The impact of nano-based technologies in endodontics for the identification and treatment of various dental infections is showing fast progress. Studies show that nanoparticles could serve as useful agents with many beneficial results and continue to be promising in the field of endodontics. To ensure progress and improvements on novel nanomaterials in relation to their physicochemical and biological properties, nano-identification methods for the detection and evaluation of diseases need to be further highlighted. This study aims to review the current technological progress and recent research outcomes as well as possible prospective applications of nano-based technologies in endodontics. A comprehensive literature survey has been carried out on the utilizations of nanomaterials and nano-characterization techniques in endodontics. The current status and recent applications in endodontics are discussed with illustrative examples. The results have shown that the progress and improved accuracy of nano-identification techniques enabled a better characterization, evaluation and selection of appropriate treatment plans for endodontics-related diseases. The results have been inspiring for further clinical investigations. Nano-endodontics is still a developing field with a strong potential for revolutions of novel materials and techniques in the diagnosis and treatment of dental diseases. Further improvements in nanoparticles properties will pave the way for the development of many beneficial endodontic therapeutic agents. The future looks encouraging for sustainable products and testing methods for clinical endodontic applications.
Collapse
|
12
|
Vital Pulp Therapy of Permanent Teeth with Reversible or Irreversible Pulpitis: An Overview of the Literature. J Clin Med 2022; 11:jcm11144016. [PMID: 35887779 PMCID: PMC9321233 DOI: 10.3390/jcm11144016] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 12/10/2022] Open
Abstract
Vital pulp therapy (VPT) has been recently proposed as an alternative approach even in symptomatic mature permanent teeth with deep caries’ lesions, aiming to maintain the pulp vitality over time and/or to avoid non-surgical root canal therapy (NSRCT). However, to date, the diagnosis of reversible or irreversible pulpitis is only based on clinical pain quantity and quality, without precisely reflecting the pulp inflammation status. Therefore, the aim of the present study was to provide an overview based on the current scientific literature to demonstrate the clinical effectiveness of VPT on mature permanent teeth, validating the use of hydraulic calcium silicate-based cements and their role in pain management. VPT may be successfully applied not only in mature permanent teeth diagnosed with reversible pulpitis, but also in permanent dental elements with signs and symptoms of irreversible pulpitis. Hydraulic cements showed favorable outcomes in terms of decrease of pro-inflammatory mediators and of post-operative pain. Pain plays a central role in the chance to perform VPT in mature permanent teeth, since it may be considered as a pre-operative diagnostic criterion as well as a treatment success parameter. In addition, proper assessment of pulp inflammation and choice of appropriate materials are key factors in enhancing VPT success.
Collapse
|
13
|
dos Santos Gomes D, de Sousa Victor R, de Sousa BV, de Araújo Neves G, de Lima Santana LN, Menezes RR. Ceramic Nanofiber Materials for Wound Healing and Bone Regeneration: A Brief Review. MATERIALS 2022; 15:ma15113909. [PMID: 35683207 PMCID: PMC9182284 DOI: 10.3390/ma15113909] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023]
Abstract
Ceramic nanofibers have been shown to be a new horizon of research in the biomedical area, due to their differentiated morphology, nanoroughness, nanotopography, wettability, bioactivity, and chemical functionalization properties. Therefore, considering the impact caused by the use of these nanofibers, and the fact that there are still limited data available in the literature addressing the ceramic nanofiber application in regenerative medicine, this review article aims to gather the state-of-the-art research concerning these materials, for potential use as a biomaterial for wound healing and bone regeneration, and to analyze their characteristics when considering their application.
Collapse
Affiliation(s)
- Déborah dos Santos Gomes
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.)
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
- Correspondence: (D.d.S.G.); (R.d.S.V.); (R.R.M.); Tel.: +55-083-2101-1183 (R.R.M.)
| | - Rayssa de Sousa Victor
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.)
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
- Correspondence: (D.d.S.G.); (R.d.S.V.); (R.R.M.); Tel.: +55-083-2101-1183 (R.R.M.)
| | - Bianca Viana de Sousa
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil;
| | - Gelmires de Araújo Neves
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.)
| | - Lisiane Navarro de Lima Santana
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
- Correspondence: (D.d.S.G.); (R.d.S.V.); (R.R.M.); Tel.: +55-083-2101-1183 (R.R.M.)
| |
Collapse
|
14
|
Camilleri J, Atmeh A, Li X, Meschi N. Present status and future directions: Hydraulic materials for endodontic use. Int Endod J 2022; 55 Suppl 3:710-777. [PMID: 35167119 PMCID: PMC9314068 DOI: 10.1111/iej.13709] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Hydraulic materials are used in Endodontics due to their hydration characteristics namely the formation of calcium hydroxide when mixing with water and also because of their hydraulic properties. These materials are presented in various consistencies and delivery methods. They are composed primarily of tricalcium and dicalcium silicate, and also include a radiopacifier, additives and an aqueous or a non-aqueous vehicle. Only materials whose primary reaction is with water can be classified as hydraulic. OBJECTIVES Review of the classification of hydraulic materials by Camilleri and the literature pertaining to specific uses of hydraulic cements in endodontics namely intra-coronal, intra-radicular and extra-radicular. Review of the literature on the material properties linked to specific uses providing the current status of these materials after which future trends and gaps in knowledge could be identified. METHODS The literature was reviewed using PUBMED, and for each clinical use, the in vitro properties such as physical, chemical, biological and antimicrobial characteristics and clinical data were extracted and evaluated. RESULTS A large number of publications were retrieved for each clinical use and these were grouped depending on the property type being investigated. CONCLUSIONS The hydraulic cements have made a difference in clinical outcomes. The main shortcoming is the poor testing methodologies employed which provide very limited information and also inhibits adequate clinical translation. Furthermore, the clinical protocols need to be updated to enable the materials to be employed effectively.
Collapse
Affiliation(s)
- Josette Camilleri
- School of DentistryCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Amre Atmeh
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM)Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU)DubaiUnited Arab Emirates
| | - Xin Li
- Department of Oral Health SciencesBIOMAT – Biomaterials Research GroupKU Leuven and DentistryUniversity Hospitals LeuvenLeuvenBelgium
| | - Nastaran Meschi
- Department of Oral Health SciencesBIOMAT – Biomaterials Research GroupKU Leuven and DentistryUniversity Hospitals LeuvenLeuvenBelgium
| |
Collapse
|
15
|
Vrchovecká K, Pávková-Goldbergová M, Engqvist H, Pujari-Palmer M. Cytocompatibility and Bioactive Ion Release Profiles of Phosphoserine Bone Adhesive: Bridge from In Vitro to In Vivo. Biomedicines 2022; 10:biomedicines10040736. [PMID: 35453486 PMCID: PMC9044752 DOI: 10.3390/biomedicines10040736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
One major challenge when developing new biomaterials is translating in vitro testing to in vivo models. We have recently shown that a single formulation of a bone tissue adhesive, phosphoserine modified cement (PMC), is safe and resorbable in vivo. Herein, we screened many new adhesive formulations, for cytocompatibility and bioactive ion release, with three cell lines: MDPC23 odontoblasts, MC3T3 preosteoblasts, and L929 fibroblasts. Most formulations were cytocompatible by indirect contact testing (ISO 10993-12). Formulations with larger amounts of phosphoserine (>50%) had delayed setting times, greater ion release, and cytotoxicity in vitro. The trends in ion release from the adhesive that were cured for 24 h (standard for in vitro) were similar to release from the adhesives cured only for 5−10 min (standard for in vivo), suggesting that we may be able to predict the material behavior in vivo, using in vitro methods. Adhesives containing calcium phosphate and silicate were both cytocompatible for seven days in direct contact with cell monolayers, and ion release increased the alkaline phosphatase (ALP) activity in odontoblasts, but not pre-osteoblasts. This is the first study evaluating how PMC formulation affects osteogenic cell differentiation (ALP), cytocompatibility, and ion release, using in situ curing conditions similar to conditions in vivo.
Collapse
Affiliation(s)
- Kateřina Vrchovecká
- Department of Pathology Physiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (K.V.); (M.P.-G.)
| | - Monika Pávková-Goldbergová
- Department of Pathology Physiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (K.V.); (M.P.-G.)
| | - Håkan Engqvist
- Department of Materials Science and Engineering, Applied Material Science, Uppsala University, 75103 Uppsala, Sweden
- Correspondence: (H.E.); (M.P.-P.)
| | - Michael Pujari-Palmer
- Department of Materials Science and Engineering, Applied Material Science, Uppsala University, 75103 Uppsala, Sweden
- Correspondence: (H.E.); (M.P.-P.)
| |
Collapse
|
16
|
Gandolfi MG, Zamparini F, Valente S, Parchi G, Pasquinelli G, Taddei P, Prati C. Green Hydrogels Composed of Sodium Mannuronate/Guluronate, Gelatin and Biointeractive Calcium Silicates/Dicalcium Phosphate Dihydrate Designed for Oral Bone Defects Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3439. [PMID: 34947788 PMCID: PMC8706657 DOI: 10.3390/nano11123439] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/13/2023]
Abstract
Innovative green, eco-friendly, and biologically derived hydrogels for non-load bearing bone sites were conceived and produced. Natural polysaccharides (copolymers of sodium D-mannuronate and L-guluronate) with natural polypeptides (gelatin) and bioactive mineral fillers (calcium silicates CaSi and dicalcium phosphate dihydrate DCPD) were used to obtain eco-sustainable biomaterials for oral bone defects. Three PP-x:y formulations were prepared (PP-16:16, PP-33:22, and PP-31:31), where PP represents the polysaccharide/polypeptide matrix and x and y represent the weight % of CaSi and DCPD, respectively. Hydrogels were tested for their chemical-physical properties (calcium release and alkalizing activity in deionized water, porosity, solubility, water sorption, radiopacity), surface microchemistry and micromorphology, apatite nucleation in HBSS by ESEM-EDX, FT-Raman, and micro-Raman spectroscopies. The expression of vascular (CD31) and osteogenic (alkaline phosphatase ALP and osteocalcin OCN) markers by mesenchymal stem cells (MSCs) derived from human vascular walls, cultured in direct contact with hydrogels or with 10% of extracts was analysed. All mineral-filled hydrogels, in particular PP-31:31 and PP-33:22, released Calcium ions and alkalized the soaking water for three days. Calcium ion leakage was high at all the endpoints (3 h-28 d), while pH values were high at 3 h-3 d and then significantly decreased after seven days (p < 0.05). Porosity, solubility, and water sorption were higher for PP-31:31 (p < 0.05). The ESEM of fresh samples showed a compact structure with a few pores containing small mineral granules agglomerated in some areas (size 5-20 microns). PP-CTRL degraded after 1-2 weeks in HBSS. EDX spectroscopy revealed constitutional compounds and elements of the hydrogel (C, O, N, and S) and of the mineral powders (Ca, Si and P). After 28 days in HBSS, the mineral-filled hydrogels revealed a more porous structure, partially covered with a thicker mineral layer on PP-31:31. EDX analyses of the mineral coating showed Ca and P, and Raman revealed the presence of B-type carbonated apatite and calcite. MSCs cultured in contact with mineral-filled hydrogels revealed the expression of genes related to vascular (CD31) and osteogenic (mainly OCN) differentiation. Lower gene expression was found when cells were cultured with extracts added to the culture medium. The incorporation of biointeractive mineral powders in a green bio-derived algae-based matrix allowed to produce bioactive porous hydrogels able to release biologically relevant ions and create a suitable micro-environment for stem cells, resulting in interesting materials for bone regeneration and healing in oral bone defects.
Collapse
Affiliation(s)
- Maria Giovanna Gandolfi
- Laboratory of Green Biomaterials and Oral Pathology, School of Dentistry, DIBINEM, University of Bologna, 40125 Bologna, Italy; (F.Z.); (G.P.)
| | - Fausto Zamparini
- Laboratory of Green Biomaterials and Oral Pathology, School of Dentistry, DIBINEM, University of Bologna, 40125 Bologna, Italy; (F.Z.); (G.P.)
- Endodontic Clinical Section, School of Dentistry, DIBINEM, University of Bologna, 40125 Bologna, Italy;
| | - Sabrina Valente
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, 40138 Bologna, Italy; (S.V.); (G.P.)
| | - Greta Parchi
- Laboratory of Green Biomaterials and Oral Pathology, School of Dentistry, DIBINEM, University of Bologna, 40125 Bologna, Italy; (F.Z.); (G.P.)
| | - Gianandrea Pasquinelli
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, 40138 Bologna, Italy; (S.V.); (G.P.)
- Subcellular Nephro-Vascular Diagnostic Program, Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Paola Taddei
- Biochemistry Unit, DIBINEM, University of Bologna, 40126 Bologna, Italy;
| | - Carlo Prati
- Endodontic Clinical Section, School of Dentistry, DIBINEM, University of Bologna, 40125 Bologna, Italy;
| |
Collapse
|
17
|
In Vitro and In Vivo Efficacy of New Composite for Direct Pulp Capping. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8414577. [PMID: 34869772 PMCID: PMC8639243 DOI: 10.1155/2021/8414577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022]
Abstract
Objectives To investigate physicochemical properties, dentin bonding, cytotoxicity, and in vivo pulp response of experimental self-adhesive composites tailored to direct pulp capping. Materials and Methods Experimental composites were prepared with beta-tricalcium phosphate and hydroxyapatite nanoparticles adsorbed with simvastatin and glutathione added at 0% (control resin), 1 wt% (Res 1%), and 10 wt% (Res 10%). A commercial light-curable calcium hydroxide (Ca(OH)2) (Ultra-Blend Plus) was used as control material. The physicochemical properties investigated were flexural strength and modulus, calcium release, and degree of conversion. Dentin bonding was assessed by the push-out test. Proliferation and cell counting assays were performed to evaluate in vitro cytotoxicity using fluorescence microscopy. In vivo pulp capping was performed on molars of Wistar rats, which were euthanized after 14 days and evaluated by histological analysis. Results No statistical difference was observed in flexural strength and cell viability (p > 0.05). Res 10% presented higher modulus than control resin and Ca(OH)2. Also, Res 10% attained statistically higher degree of conversion when compared to other experimental composites. Ca(OH)2 showed higher calcium release after 28 and 45 days of storage, with no statistical difference at 45 days to Res 10%. All experimental composites achieved significantly higher bond strength when compared to Ca(OH)2. While no significant difference was observed in the cell proliferation rates, resins at lower concentrations showed higher cell viability. In vivo evaluation of pulp response demonstrated no pulp damage with experimental composites. Conclusions The experimental composite investigated in this study achieved adequate physicochemical properties with minor in vivo pulpal inflammation and proved to be a valuable alternative for direct pulp capping.
Collapse
|
18
|
Maru V, Madkaikar M, Shabrish S, Kambli P, Dalvi A, Setia P. Evaluation and comparison of cytotoxicity and bioactivity of chemomechanical caries removal agents on stem cells from human exfoliated deciduous teeth. Eur Arch Paediatr Dent 2021; 23:787-796. [PMID: 34766278 DOI: 10.1007/s40368-021-00684-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022]
Abstract
AIM To investigate and compare the cytotoxicity and bioactivity of CMCR agents on stem cells derived from exfoliated deciduous teeth. METHODOLOGY MTT assay, flow cytometry, Alizarin Red staining and scratch assay were used to assess the cellular viability, apoptosis, calcium matrix deposits and cell migration, respectively. The gene expression of ALP and BMP-2 was measured with RT-PCR. One-way ANOVA and Bonferroni post-test was used for statistical analysis. RESULTS 0.5% Carisolv showed highest cell proliferation and calcium matrix formation, whereas 0.5% Papacarie reported the highest% live cells and cell migration. The highest mRNA expression of ALP and BMP-2 was reported in SHEDs cultured in 0.5% Papacarie (after 72 h incubation) and 0.5% Carisolv (after 24 h incubation), respectively. CONCLUSION CMCR agents are biocompatible and bioactive when cultured in stem cells derived from exfoliated primary teeth.
Collapse
Affiliation(s)
- V Maru
- Department of Pediatric Dentistry, Government Dental College and Hospital, Mumbai, Maharashtra, India.
| | - M Madkaikar
- ICMR -National Institute of Immunohematology, Parel, Mumbai, India
| | - S Shabrish
- ICMR -National Institute of Immunohematology, Parel, Mumbai, India
| | - P Kambli
- ICMR -National Institute of Immunohematology, Parel, Mumbai, India
| | - A Dalvi
- ICMR -National Institute of Immunohematology, Parel, Mumbai, India
| | - P Setia
- ICMR -National Institute of Immunohematology, Parel, Mumbai, India
| |
Collapse
|
19
|
Klein-Junior CA, Zimmer R, Dobler T, Oliveira V, Marinowic DR, Özkömür A, Reston EG. Cytotoxicity assessment of Bio-C Repair Íon+: A new calcium silicate-based cement. J Dent Res Dent Clin Dent Prospects 2021; 15:152-156. [PMID: 34712404 PMCID: PMC8538145 DOI: 10.34172/joddd.2021.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/18/2021] [Indexed: 11/29/2022] Open
Abstract
Background. Direct pulp capping is a method designed to preserve the exposed dental pulp. Due to good biological, physical, and mechanical properties, new versions of calcium silicate-based materials have been developed as pulp capping materials. The present study aimed to evaluate the cytotoxic effects of four calcium silicate-based pulp capping materials, of which the Bio-C Repair Íon+ is still in an experimental phase.
Methods. Biodentine, MTA Repair HP, Bio-C Repair, and Bio-C Repair Íon+ cements were dispensed in a metallic matrix to produce 125-mm3 specimens, which were immersed in Dulbecco’s Modified Eagle Medium (DMEM) to obtain extracts. NIH 3T3 cells were cultured and exposed to the extracts for 24 hours and seven days. Cell viability was assessed by the methyl tetrazolium test (MTT). The mean values for the experimental and control groups (without treatment) were compared by analysis of variance (ANOVA) and post hoc Tukey tests, considering a significance level of 5%.
Results. All the tested materials demonstrated a reduction in cell viability (P < 0.05). According to ISO 10993-5: 2009 (E), Bio-C Repair Íon+ exhibited mild and moderate cytotoxicity in the 24- hour and 7-day analyses, respectively. Bio-C Repair and Biodentine showed mild cytotoxicity, and MTA Repair HP exhibited moderate cytotoxicity at both intervals.
Conclusion. The highest cell viability was demonstrated by Biodentine, MTA, and Repair HP, in descending order. Bio-C Repair and Bio-C Repair Íon+ showed moderate cytotoxicity, similar to MTA Repair HP in the 7-day analysis.
Collapse
Affiliation(s)
- Celso Afonso Klein-Junior
- Department of Operative Dentistry, School of Dentistry, Lutheran University of Brazil, Canoas, RS, Brazil.,Department of Operative Dentistry, School of Dentistry, Lutheran University of Brazil, Cachoeira do Sul, RS, Brazil
| | - Roberto Zimmer
- Department of Operative Dentistry, School of Dentistry, Lutheran University of Brazil, Canoas, RS, Brazil
| | - Tãnyre Dobler
- Department of Operative Dentistry, School of Dentistry, Lutheran University of Brazil, Cachoeira do Sul, RS, Brazil
| | - Vanessa Oliveira
- Department of Operative Dentistry, School of Dentistry, Lutheran University of Brazil, Cachoeira do Sul, RS, Brazil
| | - Daniel Rodrigo Marinowic
- Brain Institute, Neuroscience laboratory, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ahmet Özkömür
- Department of Operative Dentistry, School of Dentistry, Lutheran University of Brazil, Canoas, RS, Brazil
| | - Eduardo Galia Reston
- Department of Operative Dentistry, School of Dentistry, Lutheran University of Brazil, Canoas, RS, Brazil
| |
Collapse
|
20
|
ToF-SIMS Analysis of Demineralized Dentin Biomodified with Calcium Phosphate and Collagen Crosslinking: Effect on Marginal Adaptation of Class V Adhesive Restorations. MATERIALS 2021; 14:ma14164535. [PMID: 34443059 PMCID: PMC8398264 DOI: 10.3390/ma14164535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/05/2022]
Abstract
This study aimed to assess the effect of biomodification before adhesive procedures on the tooth-restoration interface of class V restorations located in caries-simulated vs. sound dentin, and the quality of dentin surface by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Class V cavities located on cervical dentin were prepared on the buccal surfaces of extracted human molars under the simulation of intratubular fluid flow. Two dentin types, i.e., sound and demineralized by formic-acid, were biomodified with 1% riboflavin and calcium phosphate (CaP) prior to the application of a universal adhesive (Clearfil Universal Bond) in etch and rinse or self-etch mode, and a conventional micro hybrid composite (Clearfil APX). Restorations were subjected to thermo mechanical fatigue test and percentages of continuous margins (% CM) before/after fatigue were compared. Bio modification of dentin surfaces at the molecular level was analyzed by Time-of-Flight Secondary Mass Spectometry (ToF-SIMS). % CM were still significantly higher in tooth-restoration interfaces on sound dentin. Meanwhile, biomodification with riboflavin and CaP had no detrimental effect on adhesion and in carious dentin, it improved the % CM both before and after loading. Etching carious dentin with phosphoric acid provided with the lowest results, leading even to restoration loss. The presence of molecule fragments of riboflavin and CaP were detected by ToF-SIMS, evidencing dentin biomodification. The adhesive interface involving carious dentin could be improved by the use of a collagen crosslinker and CaP prior to adhesive procedures.
Collapse
|
21
|
Sanz JL, Guerrero-Gironés J, Pecci-Lloret MP, Pecci-Lloret MR, Melo M. Biological interactions between calcium silicate-based endodontic biomaterials and periodontal ligament stem cells: A systematic review of in vitro studies. Int Endod J 2021; 54:2025-2043. [PMID: 34338339 DOI: 10.1111/iej.13600] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Most recently, the biological interactions, that is cytocompatibility, cell differentiation and mineralization potential, between calcium silicate-based biomaterials and periodontal ligament stem cells (PDLSCs) have been studied at an in vitro level, in order to predict their clinical behaviour during endodontic procedures involving direct contact with periodontal tissues, namely root canal treatment, endodontic surgery and regenerative endodontic treatment. OBJECTIVE The aim of the present systematic review was to present a qualitative synthesis of available in vitro studies assessing the biological interaction of PDLSCs and calcium silicate-based biomaterials. METHODOLOGY The present review followed PRISMA 2020 guidelines. An advanced database search was performed in Medline, Scopus, Embase, Web of Science and SciELO on 1 July 2020 and last updated on 22 April 2021. Studies assessing the biological interactions of PDLSCs with calcium silicate-based sealers (CSSs) and/or cements (CSCs) at an in vitro level were considered for inclusion. The evaluation of the 'biological interaction' was defined as any assay or test on the cytotoxicity, cytocompatibility, cell plasticity or differentiation potential, and bioactive properties of PDLSCs cultured in CSC or CSS-conditioned media. Quality (risk of bias) was assessed using a modified CONSORT checklist for in vitro studies of dental materials. RESULTS A total of 20 studies were included for the qualitative synthesis. CSCs and CSSs, as a group of endodontic materials, exhibit adequate cytocompatibility and favour the osteo/cementogenic differentiation and mineralization potential of PDLSCs, as evidenced from the in vitro studies included in the present systematic review. DISCUSSION The influence of the compositional differences, inclusion of additives, sample preparation, and varying conditions and manipulations on the biological properties of calcium silicate-based materials remain a subject for future research. CONCLUSIONS Within the limitations of the in vitro nature of the included studies, this work supports the potential use of calcium silicate-based endodontic materials in stem cell therapy and biologically based regenerative endodontic procedures. REGISTRATION OSF Registries; https://doi.org/10.17605/OSF.IO/SQ9UY.
Collapse
Affiliation(s)
- José Luis Sanz
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia, Spain
| | - Julia Guerrero-Gironés
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Faculty of Medicine, Morales Meseguer Hospital, University of Murcia, Murcia, Spain
| | - María P Pecci-Lloret
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Faculty of Medicine, Morales Meseguer Hospital, University of Murcia, Murcia, Spain
| | - Miguel R Pecci-Lloret
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Faculty of Medicine, Morales Meseguer Hospital, University of Murcia, Murcia, Spain
| | - María Melo
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia, Spain
| |
Collapse
|
22
|
Biocompatibility and Antibiofilm Properties of Calcium Silicate-Based Cements: An In Vitro Evaluation and Report of Two Clinical Cases. BIOLOGY 2021; 10:biology10060470. [PMID: 34073519 PMCID: PMC8226987 DOI: 10.3390/biology10060470] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Calcium silicate-based cements are successfully applied in the different fields of endodontics and vital pulp therapy. To better assess the properties of these bioactive materials, the present in vitro and in vivo study aimed to compare the biocompatibility and antibiofilm properties of ProRoot MTA and Biodentine. Human osteogenic sarcoma (Saos-2) cells were cultured in the presence of both materials and evaluated. Moreover, the bioactive cements were in vivo applied to perform vital pulp therapy on immature permanent teeth affected by reversible pulpitis. Saos-2 cells’ viability was slightly greater in the presence of ProRootMTA than Biodentine and cells would grow in a better way on ProRootMTA disks than on Biodentine ones. Moreover, ProRootMTA showed a powerful antibiofilm effect towards Streptococcus mutans. The in vitro results were clinically supported by a 100% success rate after 2 years of follow-up. Abstract Calcium silicate-based cements have reached excellent levels of performance in endodontics, providing predictable and successful results. To better assess the properties of these bioactive materials, the present study aimed to compare the biocompatibility and antibiofilm properties of ProRoot MTA and Biodentine. Human osteogenic sarcoma (Saos-2) cells were cultured on ProRoot MTA and Biodentine samples or in the presence of both cement extracts. Cell viability assay, measurement of reactive oxygen species (ROS), immunofluorescence analysis, as well as morphological evaluations were conducted. Moreover, Streptococcus mutans was used to assess the biofilm forming ability on ProRoot MTA and Biodentine disks. Finally, both cements were applied in vivo to treat immature permanent teeth affected by reversible pulpitis. Results: Cell viability assay demonstrated that Saos-2 cells had a dose- and time-dependent cytotoxicity to both analyzed cements, although cells exposed to ProRoot MTA showed a better cell vitality than those exposed to Biodentine (p < 0.001). Both cements demonstrated ROS production while this was greater in the case of Biodentine than ProRoot MTA (p < 0.001). Immunofluorescence images of the cytoskeleton and focal adhesions showed no differences in Saos-2 cells grown in the presence of ProRoot MTA eluate; whereas in the Biodentine groups, cells showed a morphology and focal adhesions more similar to that of the control sample, as the eluate concentration decreased. Morphological analysis revealed that Saos-2 cells were more flattened and exhibited better spreading when attached to ProRoot MTA disks than to Biodentine ones. The antibiofilm properties showed a time-dependent powerful inhibition of S. mutans superficial colonization and an antibiofilm effect of both cements. Clinically, complete root formation of the treated elements was achieved using the two studied cements, showing stable results over time. ProRoot MTA and Biodentine was demonstrated to be biocompatible and to possess antibiofilm properties. Their clinical application in vital pulp therapy provided successful outcomes after 2 years of follow-up.
Collapse
|
23
|
Pedano MS, Yoshihara K, Li X, Camargo B, Van Landuyt K, Van Meerbeek B. Experimental resin-modified calcium-silicate cement containing N-(2-hydroxyethyl) acrylamide monomer for pulp tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112105. [PMID: 34082929 DOI: 10.1016/j.msec.2021.112105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/24/2021] [Accepted: 04/08/2021] [Indexed: 01/06/2023]
Abstract
AIM Our study aimed to measure (1) the flexural strength, (2) shear bond strength to dentin, (3) pH, and (4) calcium (Ca) release of a series of innovative resin-modified calcium-silicate pulp-capping cements (Rm-CSCs). Using an ex-vivo human vital tooth-culture model, we additionally assessed (5) their pulp-healing initiation when brought in direct contact with human dental pulp tissue. METHODOLOGY Three experimental Rm-CSCs, being referred to 'Exp_HEAA', 'Exp_GDM' and 'Exp_HEAA/GDM', contained either 20 wt% N-(2-hydroxyethyl) acrylamide (HEAA), 20 wt% glycerol dimethacrylate (GDM) or 10 wt% HEAA plus 10 wt% GDM, added to a common base composition consisting of 25 wt% urethane dimethacrylate (UDMA), 10 wt% 4-methacryloxyethyl trimellitate anhydride (4-MET), and 5 wt% N,N'-{[(2-acrylamido-2-[(3-acrylamidopropoxy)methyl] propane-1,3-diyl)bis(oxy)]bis-(propane-1,3-diyl)}diacrylamide (FAM-401). As Ca source and radiopacifier, 37 wt% tricalcium silicate powder (TCS) and 3 wt% zirconium oxide (ZrO 2) were respectively added. RESULTS All three experimental Rm-CSCs revealed a significantly higher flexural strength and shear bond strength to dentin (p < 0.05) than the commercial reference Rm-CSC TheraCal LC (Bisco). Exp_HEAA presented with a significantly higher Ca release and pH at 24 h compared with the other Rm-CSCs (p < 0.05). At 1 week, the Ca release and pH of Exp_HEAA and Exp_HEAA/GDM was significantly higher than those of Exp_GDM and TheraCal LC (p < 0.05). Using the ex-vivo human vital tooth culture model, Exp_HEAA revealed pulp-healing initiation capacity as documented by nestin and collagen-I expression. CONCLUSIONS Depending on the formulation, the innovative Rm-CSCs performed favorably for primary properties of relevance regarding pulp capping, this more specifically in terms of flexural strength, bond strength to dentin, as well as alkaline pH and Ca release. However, only Exp_HEAA revealed pulp-healing initiation in direct contact with human dental pulp tissue in the ex-vivo human vital tooth-culture model. This promising outcome for Exp_HEAA should be attributed to the combined use of (1) a novel hydrophilic acrylamide monomer, enabling sufficient polymerization while maintaining adequate hydrophilicity, with (2) the functional monomer 4-MET, possessing chemical bonding potential to dentin, and (3) tricalcium silicate powder to achieve an alkaline pH and to release Ca in a sufficient and controlled way.
Collapse
Affiliation(s)
- Mariano S Pedano
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT - Biomaterials Research group & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium.
| | - Kumiko Yoshihara
- National Institute of Advanced Industrial Science and Technology (AIST), Health Research Institute, 2217-14 Hayashi-Cho, Takamaysu, Kagawa 761-0395, Japan; Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Department of Pathology & Experimental Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Xin Li
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT - Biomaterials Research group & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Bernardo Camargo
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT - Biomaterials Research group & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Kirsten Van Landuyt
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT - Biomaterials Research group & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT - Biomaterials Research group & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| |
Collapse
|
24
|
KALYONCUOĞLU E, KESKİN C, ACAR D, GONULOL N. THE BOND STRENGTH OF UNIVERSAL ADHESIVES WITH DIFFERENT ACIDITIES TO CALCIUM SILICATE-BASED MATERIALS. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.740487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Rodríguez‐Lozano FJ, López‐García S, García‐Bernal D, Tomás‐Catalá CJ, Santos JM, Llena C, Lozano A, Murcia L, Forner L. Chemical composition and bioactivity potential of the new Endosequence BC Sealer formulation HiFlow. Int Endod J 2020; 53:1216-1228. [DOI: 10.1111/iej.13327] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/08/2020] [Indexed: 12/21/2022]
Affiliation(s)
- F. J. Rodríguez‐Lozano
- Biomedical Research Institute of Murcia‐Arrixaca Cellular Therapy and Hematopoietic Transplant Unit IMIB‐Arrixaca University of Murcia MurciaSpain
- Gerodontology and Special Care in Dentistry Unit. School of Dentistry Faculty of Medicine University of Murcia Murcia Spain
| | - S. López‐García
- Biomedical Research Institute of Murcia‐Arrixaca Cellular Therapy and Hematopoietic Transplant Unit IMIB‐Arrixaca University of Murcia MurciaSpain
| | - D. García‐Bernal
- Biomedical Research Institute of Murcia‐Arrixaca Cellular Therapy and Hematopoietic Transplant Unit IMIB‐Arrixaca University of Murcia MurciaSpain
| | - C. J. Tomás‐Catalá
- Biomedical Research Institute of Murcia‐Arrixaca Cellular Therapy and Hematopoietic Transplant Unit IMIB‐Arrixaca University of Murcia MurciaSpain
- Gerodontology and Special Care in Dentistry Unit. School of Dentistry Faculty of Medicine University of Murcia Murcia Spain
| | - J. M. Santos
- Institute of Endodontics Faculty of Medicine University of Coimbra Coimbra Portugal
| | - C. Llena
- Department of Stomatology University de Valencia ValenciaSpain
| | - A. Lozano
- Department of Stomatology University de Valencia ValenciaSpain
| | - L. Murcia
- Department of Genetics and Microbiology University of Murcia Murcia Spain
| | - L. Forner
- Department of Stomatology University de Valencia ValenciaSpain
| |
Collapse
|
26
|
Chang HH, Chang YJ, Yeh CL, Lin TA, Lin CP. Development of calcium phosphate/calcium sulfate biphasic biomedical material with hyaluronic acid containing collagenase and simvastatin for vital pulp therapy. Dent Mater 2020; 36:755-764. [PMID: 32312480 DOI: 10.1016/j.dental.2020.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE In vital pulp therapy (VPT), a barrier is created with appropriate capping to protect the remaining pulp and thus maintain pulp vitality. Here, we evaluated the feasibility of a biphasic calcium phosphate cement (CPC)-calcium sulfate hemihydrate (CSH) biomaterial containing simvastatin (Sim) and collagenase (Col) for VPT. METHODS Combinations of varying CPC and CSH concentrations were analyzed for their handling properties and setting times, with their structures observed through scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS). Drug release patterns of simvastatin and collagenase combined with CPC-CSH (CPC-CSH-Sim-Col) were also analyzed, followed by biocompatibility and bioactivity tests on human dental pulp stem cells (hDPSCs) and in vivo animal study in canine models; the in vivo results were obtained through microcomputed tomography and histological analysis. RESULTS The results revealed that 70 wt% CPC (CPC7) with 30 wt% CSH (CSH3) exhibited optimal setting time and porous structure for clinical use. The cell viability and cytotoxicity analysis demonstrated that CPC7-CSH3 with or without simvastatin or collagenase did not injure hDPSCs. In vivo, the CPC7-CSH3-Sim-Col induced dentin bridge formation. SIGNIFICANCE CPC7-CSH3-Sim-Col in this study has great potential as a VPT biomaterial to enhance the dentin bridge formation.
Collapse
Affiliation(s)
- Hao-Hueng Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, Cardinal Tien Hospital Yonghe Branch, New Taipei, Taiwan
| | - Yao-Jen Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Chun-Liang Yeh
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Ting-An Lin
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Chun-Pin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
27
|
Bossù M, Iaculli F, Di Giorgio G, Salucci A, Polimeni A, Di Carlo S. Different Pulp Dressing Materials for the Pulpotomy of Primary Teeth: A Systematic Review of the Literature. J Clin Med 2020; 9:jcm9030838. [PMID: 32204501 PMCID: PMC7141304 DOI: 10.3390/jcm9030838] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Pulpotomy of primary teeth provides favorable clinical results over time; however, to date, there is still not a consensus on an ideal pulp dressing material. Therefore, the aim of the present systematic review was to compare pulpotomy agents to establish a preferred material to use. Methods: After raising a PICO question, the PRISMA guideline was adopted to carry out an electronic search through the MEDLINE database to identify comparative studies on several pulp dressing agents, published up to October 2019. Results: The search resulted in 4274 records; after exclusion, a total of 41 papers were included in the present review. Mineral trioxide aggregate (MTA), Biodentine and ferric sulphate yielded good clinical results over time and might be safely used in the pulpotomies of primary molars. Among agents, MTA seemed to be the material of choice. On the contrary, calcium hydroxide showed the worst clinical performance. Although clinically successful, formocreosol should be replaced by other materials, due to its potential cytotoxicity and carcinogenicity. Conclusion: MTA seemed to be the gold standard material in the pulpotomy of primary teeth. Promising results were also provided by calcium silicate-based cements. Further randomized clinical trials (RCTs) with adequate sample sizes and long follow-ups are encouraged to support these outcomes.
Collapse
Affiliation(s)
- Maurizio Bossù
- Department of Oral and Maxillofacial Science, “Sapienza” University of Rome, 00185 Rome, Italy; (M.B.); (A.S.); (A.P.); (S.D.C.)
| | - Flavia Iaculli
- Pediatric Dentistry School, Department of Oral and Maxillofacial Science, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Gianni Di Giorgio
- Pediatric Dentistry School, Department of Oral and Maxillofacial Science, “Sapienza” University of Rome, 00185 Rome, Italy;
- Correspondence: ; Tel.: +39-349-547-7903
| | - Alessandro Salucci
- Department of Oral and Maxillofacial Science, “Sapienza” University of Rome, 00185 Rome, Italy; (M.B.); (A.S.); (A.P.); (S.D.C.)
| | - Antonella Polimeni
- Department of Oral and Maxillofacial Science, “Sapienza” University of Rome, 00185 Rome, Italy; (M.B.); (A.S.); (A.P.); (S.D.C.)
| | - Stefano Di Carlo
- Department of Oral and Maxillofacial Science, “Sapienza” University of Rome, 00185 Rome, Italy; (M.B.); (A.S.); (A.P.); (S.D.C.)
| |
Collapse
|
28
|
Gandolfi MG, Gardin C, Zamparini F, Ferroni L, Esposti MD, Parchi G, Ercan B, Manzoli L, Fava F, Fabbri P, Prati C, Zavan B. Mineral-Doped Poly(L-lactide) Acid Scaffolds Enriched with Exosomes Improve Osteogenic Commitment of Human Adipose-Derived Mesenchymal Stem Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E432. [PMID: 32121340 PMCID: PMC7153699 DOI: 10.3390/nano10030432] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/05/2020] [Accepted: 02/22/2020] [Indexed: 12/18/2022]
Abstract
Exosomes derived from mesenchymal stem cells are extracellular vesicles released to facilitate cell communication and function. Recently, polylactic acid (PLA), calcium silicates (CaSi), and dicalcium phosphate dihydrate (DCPD) have been used to produce bioresorbable functional mineral-doped porous scaffolds-through thermally induced phase separation technique, as materials for bone regeneration. The aim of this study was to investigate the effect of mineral-doped PLA-based porous scaffolds enriched with exosome vesicles (EVs) on osteogenic commitment of human adipose mesenchymal stem cells (hAD-MSCs). Two different mineral-doped scaffolds were produced: PLA-10CaSi-10DCPD and PLA-5CaSi-5DCPD. Scaffolds surface micromorphology was investigated by ESEM-EDX before and after 28 days immersion in simulated body fluid (HBSS). Exosomes were deposited on the surface of the scaffolds and the effect of exosome-enriched scaffolds on osteogenic commitment of hAD-MSCs cultured in proximity of the scaffolds has been evaluated by real time PCR. In addition, the biocompatibility was evaluated by direct-contact seeding hAD-MSCs on scaffolds surface-using MTT viability test. In both formulations, ESEM showed pores similar in shape (circular and elliptic) and size (from 10-30 µm diameter). The porosity of the scaffolds decreased after 28 days immersion in simulated body fluid. Mineral-doped scaffolds showed a dynamic surface and created a suitable bone-forming microenvironment. The presence of the mineral fillers increased the osteogenic commitment of hAD-MSCs. Exosomes were easily entrapped on the surface of the scaffolds and their presence improved gene expression of major markers of osteogenesis such as collagen type I, osteopontin, osteonectin, osteocalcin. The experimental scaffolds enriched with exosomes, in particular PLA-10CaSi-10DCPD, increased the osteogenic commitment of MSCs. In conclusion, the enrichment of bioresorbable functional scaffolds with exosomes is confirmed as a potential strategy to improve bone regeneration procedures.
Collapse
Affiliation(s)
- Maria Giovanna Gandolfi
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy
| | - Chiara Gardin
- Medical Sciences Department, University of Ferrara, 44100 Ferrara, Italy
| | - Fausto Zamparini
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy
| | - Letizia Ferroni
- Medical Sciences Department, University of Ferrara, 44100 Ferrara, Italy
| | - Micaela Degli Esposti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40136 Bologna, Italy
| | - Greta Parchi
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy
| | - Batur Ercan
- Department of Metallurgical and Materials Engineering, 06800 Ankara, Turkey
| | - Lucia Manzoli
- Cellular Signaling Laboratory, Institute of Human Anatomy, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Fabio Fava
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40136 Bologna, Italy
| | - Paola Fabbri
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40136 Bologna, Italy
| | - Carlo Prati
- Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy
| | - Barbara Zavan
- Medical Sciences Department, University of Ferrara, 44100 Ferrara, Italy
| |
Collapse
|
29
|
Forni M, Bernardini C, Zamparini F, Zannoni A, Salaroli R, Ventrella D, Parchi G, Degli Esposti M, Polimeni A, Fabbri P, Fava F, Prati C, Gandolfi MG. Vascular Wall-Mesenchymal Stem Cells Differentiation on 3D Biodegradable Highly Porous CaSi-DCPD Doped Poly (α-hydroxy) Acids Scaffolds for Bone Regeneration. NANOMATERIALS 2020; 10:nano10020243. [PMID: 32013247 PMCID: PMC7075175 DOI: 10.3390/nano10020243] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Vascularization is a crucial factor when approaching any engineered tissue. Vascular wall-mesenchymal stem cells are an excellent in vitro model to study vascular remodeling due to their strong angiogenic attitude. This study aimed to demonstrate the angiogenic potential of experimental highly porous scaffolds based on polylactic acid (PLA) or poly-e-caprolactone (PCL) doped with calcium silicates (CaSi) and dicalcium phosphate dihydrate (DCPD), namely PLA-10CaSi-10DCPD and PCL-10CaSi-10DCPD, designed for the regeneration of bone defects. Vascular wall-mesenchymal stem cells (VW-MSCs) derived from pig thoracic aorta were seeded on the scaffolds and the expression of angiogenic markers, i.e. CD90 (mesenchymal stem/stromal cell surface marker), pericyte genes α-SMA (alpha smooth muscle actin), PDGFR-β (platelet-derived growth factor receptor-β), and NG2 (neuron-glial antigen 2) was evaluated. Pure PLA and pure PCL scaffolds and cell culture plastic were used as controls (3D in vitro model vs. 2D in vitro model). The results clearly demonstrated that the vascular wall mesenchymal cells colonized the scaffolds and were metabolically active. Cells, grown in these 3D systems, showed the typical gene expression profile they have in control 2D culture, although with some main quantitative differences. DNA staining and immunofluorescence assay for alpha-tubulin confirmed a cellular presence on both scaffolds. However, VW-MSCs cultured on PLA-10CaSi-10DCPD showed an individual cells growth, whilst on PCL-10CaSi-10DCPD scaffolds VW-MSCs grew in spherical clusters. In conclusion, vascular wall mesenchymal stem cells demonstrated the ability to colonize PLA and PCL scaffolds doped with CaSi-DCPD for new vessels formation and a potential for tissue regeneration.
Collapse
Affiliation(s)
- Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (M.F.); (C.B.); (A.Z.); (R.S.); (D.V.)
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (M.F.); (C.B.); (A.Z.); (R.S.); (D.V.)
| | - Fausto Zamparini
- Laboratory of Biomaterials, Green Materials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (F.Z.); (G.P.)
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (M.F.); (C.B.); (A.Z.); (R.S.); (D.V.)
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (M.F.); (C.B.); (A.Z.); (R.S.); (D.V.)
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (M.F.); (C.B.); (A.Z.); (R.S.); (D.V.)
| | - Greta Parchi
- Laboratory of Biomaterials, Green Materials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (F.Z.); (G.P.)
| | - Micaela Degli Esposti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40136 Bologna, Italy; (M.D.E.); (P.F.); (F.F.)
| | - Antonella Polimeni
- Department of Oral and Maxillo-facial Sciences, Pediatric Dentistry Unit, Sapienza University of Rome, 00161 Rome, Italy;
| | - Paola Fabbri
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40136 Bologna, Italy; (M.D.E.); (P.F.); (F.F.)
| | - Fabio Fava
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40136 Bologna, Italy; (M.D.E.); (P.F.); (F.F.)
| | - Carlo Prati
- Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy;
| | - Maria Giovanna Gandolfi
- Laboratory of Biomaterials, Green Materials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (F.Z.); (G.P.)
- Correspondence:
| |
Collapse
|
30
|
In Vitro Effect of Putty Calcium Silicate Materials on Human Periodontal Ligament Stem Cells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10010325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
New bioactive materials have been developed for retrograde root filling. These materials come into contact with vital tissues and facilitate biomineralization and apical repair. The objective of this study was to evaluate the cytocompatibility and bioactivity of two bioactive cements, Bio-C Repair (Angelus, Londrina, Pr, Brazil) and TotalFill BC RRM putty (FGK, Dentaire SA, La-Chaux-de-fonds, Switzerland). The biological properties in human periodontal ligament stem cells (hPDLSCs) that were exposed to Bio-C Repair and TotalFill BC RRM putty were studied. Cell viability, migration, and cell adhesion were analyzed. Moreover, qPCR and mineralization assay were performed to evaluate the bioactivity potential of these cements. The results were statistically analyzed using ANOVA and the Tukey test (p < 0.05). It was observed that cell viability and cell migration in Bio-C Repair and TotalFill BC RRM putty were similar to the control without statistically significant differences, except at 72 h when TotalFill BC RRM putty was slightly lower (p < 0.05). Excellent cell adhesion and morphology were observed with both Bio-C Repair and TotalFill BC RRM putty. Both cements promoted the osteo- and cementogenic differentiation of hPDLSCs. These results suggest that Bio-C Repair and TotalFill BC RRM putty are biologically appropriate materials to be used as retrograde obturation material.
Collapse
|
31
|
Effect of Leptin on Odontoblastic Differentiation and Angiogenesis: An In Vivo Study. J Endod 2019; 45:1332-1341. [DOI: 10.1016/j.joen.2019.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/04/2019] [Accepted: 08/06/2019] [Indexed: 11/22/2022]
|
32
|
Zaccara IM, Jardine AP, Mestieri LB, Quintana RM, Jesus L, Moreira MS, Grecca FS, Martins MD, Kopper PMP. Influence of photobiomodulation therapy on root development of rat molars with open apex and pulp necrosis. Braz Oral Res 2019; 33:e084. [PMID: 31460610 DOI: 10.1590/1807-3107bor-2019.vol33.0084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/25/2019] [Indexed: 02/21/2023] Open
Abstract
This study aimed to evaluate the role of photobiomodulation (PBM) in apexification and apexogenesis of necrotic rat molars with an open apex. Rat molars were exposed to the oral environment for 3 weeks. Canals were rinsed with 2.5% NaOCl and 17% EDTA, filled with antibiotic paste and sealed. After 7 days, canals were rinsed and divided into six groups (n=6): mineral trioxide aggregate (MTA); blood clot (BC); human dental pulp stem cells (hDPSC); MTA+PBM; BC+PBM; and hDPSC+PBM. In hDPSC groups, a 1% agarose gel scaffold was used. Two groups were not exposed: healthy tooth+PBM (n = 6), healthy tooth (n = 3); and one was exposed throughout the experiment: necrotic tooth (n = 3). In PBM groups, irradiation was performed with aluminum gallium indium phosphide (InGaAlP) diode laser for 30 days within 24-h intervals. After that, the specimens were processed for histological and immunohistochemical analyses. Necrotic tooth showed greater neutrophil infiltrate (p < 0.05). Necrotic tooth, healthy tooth, and healthy tooth+PBM groups showed absence of a thin layer of fibrous condensation in the periapical area. All the other groups stimulated the formation of a thicker layer of fibers (p < 0.05). All groups formed more mineralized tissue than necrotic tooth (p < 0.05). PBM associated with MTA, BC, or hDPSC formed more mineralized tissue (p < 0.05). MTA+PBM induced apexification (p < 0.05). Rabbit polyclonal anti-bone sialoprotein (BSP) antibody confirmed the histological findings of mineralized tissue formation, and hDPSC groups exhibited higher percentage of BSP-positive cells. It can be concluded that PBM improved apexification and favored apexogenesis in necrotic rat molars with an open apex.
Collapse
Affiliation(s)
- Ivana Maria Zaccara
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Graduate program, Porto Alegre, RS, Brazil
| | | | - Letícia Boldrin Mestieri
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Graduate program, Porto Alegre, RS, Brazil
| | - Ramiro Martins Quintana
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Graduate program, Porto Alegre, RS, Brazil
| | - Luciano Jesus
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Graduate program, Porto Alegre, RS, Brazil
| | | | - Fabiana Soares Grecca
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Graduate program, Porto Alegre, RS, Brazil
| | - Manoela Domingues Martins
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Graduate program, Porto Alegre, RS, Brazil
| | - Patrícia Maria Poli Kopper
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Graduate program, Porto Alegre, RS, Brazil
| |
Collapse
|
33
|
Investigation of the effect of the water to powder ratio on hydraulic cement properties. Dent Mater 2019; 35:1146-1154. [DOI: 10.1016/j.dental.2019.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 04/02/2019] [Accepted: 05/07/2019] [Indexed: 01/09/2023]
|
34
|
Torres FFE, Guerreiro-Tanomaru JM, Bosso-Martelo R, Espir CG, Camilleri J, Tanomaru-Filho M. Solubility, Porosity, Dimensional and Volumetric Change of Endodontic Sealers. Braz Dent J 2019; 30:368-373. [PMID: 31340227 DOI: 10.1590/0103-6440201902607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/03/2019] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to evaluate physical properties of endodontic sealers (AH Plus, MTA Fillapex and Endofill), by conventional and micro-CT tests. Dimensional stability was evaluated after immersion of materials in distilled water for 30 days. Solubility and volumetric change were evaluated after 7 and 30 days of immersion in distilled water. Solubility was evaluated by means of mass loss and volumetric change was assessed by micro-CT. Porosity was evaluated under a microscope after 7 days of immersion in distilled water, and by using micro-CT after setting and immersion in distilled water for 7 and 30 days. Statistical analysis was performed by ANOVA and Tukey's test with 5% significance level. MTA Fillapex presented the highest solubility (p<0.05), showing values above the ISO/ADA recommendations. MTA Fillapex presented higher volumetric and dimensional changes, followed by Endofill and AH Plus (p<0.05). Dimensional stability of the MTA Fillapex and AH Plus did not follow ISO/ADA standards. The highest total porosity was observed for MTA Fillapex (p<0.05). Endofill had higher total porosity than AH Plus according to microscope evaluation (p<0,05), and both sealers were similar in micro-CT assessment (p>0,05). In conclusion, MTA Fillapex presented higher solubility, dimensional and volumetric change besides porosity compared to the other evaluated sealers. The assessed physical properties of sealers are related, and the different tests provided complementary data. Micro-CT is a valuable method for assessment of physical properties of endodontic materials.
Collapse
Affiliation(s)
| | | | - Roberta Bosso-Martelo
- Department of Dentistry, School of Dentistry, UFBA - Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Camila Galletti Espir
- Department of Restorative Dentistry, School of Dentistry, UNESP - Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Josette Camilleri
- School of Dentistry, Institute of Clinical Sciences, College of Clinical and Medical Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Mario Tanomaru-Filho
- Department of Restorative Dentistry, School of Dentistry, UNESP - Universidade Estadual Paulista, Araraquara, SP, Brazil
| |
Collapse
|
35
|
Zhu N, Chatzistavrou X, Papagerakis P, Ge L, Qin M, Wang Y. Silver-Doped Bioactive Glass/Chitosan Hydrogel with Potential Application in Dental Pulp Repair. ACS Biomater Sci Eng 2019; 5:4624-4633. [DOI: 10.1021/acsbiomaterials.9b00811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ningxin Zhu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Petros Papagerakis
- College of Dentistry and Biomedical Engineering, Toxicology, Pharmacy/Nutrition, Anatomy and Cell Biology Colleges Graduate Programs, University of Saskatchewan, Saskatoon, Canada
| | - Lihong Ge
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Man Qin
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| |
Collapse
|
36
|
Gandolfi MG, Zamparini F, Degli Esposti M, Chiellini F, Fava F, Fabbri P, Taddei P, Prati C. Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:341-361. [PMID: 31147007 DOI: 10.1016/j.msec.2019.04.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 01/31/2019] [Accepted: 04/12/2019] [Indexed: 01/24/2023]
Abstract
Polycaprolactone (PCL), dicalcium phosphate dihydrate (DCPD) and/or calcium silicates (CaSi) have been used to prepare highly porous scaffolds by thermally induced phase separation technique (TIPS). Three experimental mineral-doped formulations were prepared (PCL-10CaSi, PCL-5CaSi-5DCPD, PCL-10CaSi-10DCPD); pure PCL scaffolds constituted the control group. Scaffolds were tested for their chemical-physical and biological properties, namely thermal properties by differential scanning calorimetry (DSC), mechanical properties by quasi-static parallel-plates compression testing, porosity by a standard water-absorption method calcium release, alkalinizing activity, surface microchemistry and micromorphology by Environmental Scanning electronic Microscopy (ESEM), apatite-forming ability in Hank Balanced Saline Solution (HBSS) by Energy Dispersive X-ray Spectroscopy (EDX) and micro-Raman, and direct contact cytotoxicity. All mineral-doped scaffolds released calcium and alkalinized the soaking medium, which may favor a good biological (osteogenic) response. ESEM surface micromorphology analyses after soaking in HBSS revealed: pure PCL, PCL-10CaSi and PCL-10CaSi-10DCPD kept similar surface porosity percentages but different pore shape modifications. PCL-5CaSi-5DCPD revealed a significant surface porosity increase despite calcium phosphates nucleation (p < 0.05). Micro-Raman spectroscopy detected the formation of a B-type carbonated apatite (Ap) layer on the surface of PCL-10CaSi-10DCPD aged for 28 days in HBSS; a similar phase (but of lower thickness) formed also on PCL-5CaSi-5DCPD and PCL; the deposit formed on PCL-10CaSi was mainly composed of calcite. All PCL showed bulk open porosity higher than 94%; however, no relevant brittleness was observed in the materials, which retained the possibility to be handled without collapsing. The thermo-mechanical properties showed that the reinforcing and nucleating action of the inorganic fillers CaSi and DCPD improved viscoelastic properties of the scaffolds, as confirmed by the increased value of storage modulus and the slight increase in the crystallization temperature for all the biomaterials. A detrimental effect on the mechanical properties was observed in samples with the highest amount of inorganic particles (PCL-10CaSi-10DCPD). All the scaffolds showed absence of toxicity, in particular PCL-10CaSi-10DCPD. The designed scaffolds are biointeractive (release biologically relevant ions), nucleate apatite, possess high surface and internal open porosity and can be colonized by cells, creating a bone forming osteoblastic microenvironment and appearing interesting materials for bone regeneration purposes.
Collapse
Affiliation(s)
- Maria Giovanna Gandolfi
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Fausto Zamparini
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Micaela Degli Esposti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Federica Chiellini
- BIOlab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Fabio Fava
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Paola Fabbri
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Paola Taddei
- Biochemistry Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carlo Prati
- Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
37
|
Sanz JL, Rodríguez-Lozano FJ, Llena C, Sauro S, Forner L. Bioactivity of Bioceramic Materials Used in the Dentin-Pulp Complex Therapy: A Systematic Review. MATERIALS 2019; 12:ma12071015. [PMID: 30934746 PMCID: PMC6479584 DOI: 10.3390/ma12071015] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
Dentistry-applied bioceramic materials are ceramic materials that are categorized as bioinert, bioactive and biodegradable. They share a common characteristic of being specifically designed to fulfil their function; they are able to act as root canal sealers, cements, root repair or filling materials. Bioactivity is only attributed to those materials which are capable of inducing a desired tissue response from the host. The aim of this study is to present a systematic review of available literature investigating bioactivity of dentistry-applied bioceramic materials towards dental pulp stem cells, including a bibliometric analysis of such a group of studies and a presentation of the parameters used to assess bioactivity, materials studied and a summary of results. The research question, based on the PICO model, aimed to assess the current knowledge on dentistry-based bioceramic materials by exploring to what extent they express bioactive properties in in vitro assays and animal studies when exposed to dental pulp stem cells, as opposed to a control or compared to different bioceramic material compositions, for their use in the dentin-pulp complex therapy. A systematic search of the literature was performed in six databases, followed by article selection, data extraction, and quality assessment. Studies assessing bioactivity of one or more bioceramic materials (both commercially available or novel/experimental) towards dental pulp stem cells (DPSCs) were included in our review. A total of 37 articles were included in our qualitative review. Quantification of osteogenic, odontogenic and angiogenic markers using reverse transcriptase polymerase chain reaction (RT-PCR) is the prevailing method used to evaluate bioceramic material bioactivity towards DPSCs in the current investigative state, followed by alkaline phosphatase (ALP) enzyme activity assays and Alizarin Red Staining (ARS) to assess mineralization potential. Mineral trioxide aggregate and Biodentine are the prevalent reference materials used to compare with newly introduced bioceramic materials. Available literature compares a wide range of bioceramic materials for bioactivity, consisting mostly of in vitro assays. The desirability of this property added to the rapid introduction of new material compositions makes this subject a clear candidate for future research.
Collapse
Affiliation(s)
- José Luis Sanz
- Department of Stomatology, Universitat de València, 46010 Valencia, Spain.
| | - Francisco Javier Rodríguez-Lozano
- Cellular Therapy and Hematopoietic Transplant Unit, Hematology Department, Virgen de la Arrixaca Clinical University Hospital, IMIB, University of Murcia, 30120 Murcia, Spain.
- School of Dentistry, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain.
| | - Carmen Llena
- Department of Stomatology, Universitat de València, 46010 Valencia, Spain.
| | - Salvatore Sauro
- Department of Dentistry, Faculty of Health Sciences, Universidad CEU-Cardenal Herrera, 46115 Alfara del Patriarca (Valencia), Spain.
- Faculty of Dentistry, Oral & Craniofacial Sciences at King's College London, Floor 17 Tower Wing, Guy's Hospital, London SE1 9RT, UK.
| | - Leopoldo Forner
- Department of Stomatology, Universitat de València, 46010 Valencia, Spain.
| |
Collapse
|
38
|
Tatullo M, Spagnuolo G, Codispoti B, Zamparini F, Zhang A, Esposti MD, Aparicio C, Rengo C, Nuzzolese M, Manzoli L, Fava F, Prati C, Fabbri P, Gandolfi MG. PLA-Based Mineral-Doped Scaffolds Seeded with Human Periapical Cyst-Derived MSCs: A Promising Tool for Regenerative Healing in Dentistry. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E597. [PMID: 30781537 PMCID: PMC6416549 DOI: 10.3390/ma12040597] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/25/2022]
Abstract
Human periapical cyst mesenchymal stem cells (hPCy-MSCs) are a newly discovered cell population innovatively collected from inflammatory periapical cysts. The use of this biological waste guarantees a source of stem cells without any impact on the surrounding healthy tissues, presenting a valuable potential in tissue engineering and regenerative medicine applications. In the present study, hPCy-MSCs were collected, isolated, and seeded on three experimental mineral-doped porous scaffolds produced by the thermally-induced phase-separation (TIPS) technique. Mineral-doped scaffolds, composed of polylactic acid (PLA), dicalcium phosphate dihydrate (DCPD), and/or hydraulic calcium silicate (CaSi), were produced by TIPS (PLA-10CaSi, PLA-5CaSi-5DCPD, PLA-10CaSi-10DCPD). Micro-CT analysis evaluated scaffolds micromorphology. Collected hPCy-MSCs, characterized by cytofluorimetry, were seeded on the scaffolds and tested for cell proliferation, cells viability, and gene expression for osteogenic and odontogenic differentiation (DMP-1, OSC, RUNX-2, HPRT). Micro-CT revealed an interconnected highly porous structure for all the scaffolds, similar total porosity with 99% open pores. Pore wall thickness increased with the percentage of CaSi and DCPD. Cells seeded on mineral-doped scaffolds showed a superior proliferation compared to pure PLA scaffolds (control), particularly on PLA-10CaSi-10DCPD at day 12. A higher number of non-viable (red stained) cells was observable on PLA scaffolds at days 14 and 21. DMP-1 expression increased in hPCy-MSCs cultured on all mineral-doped scaffolds, in particular on PLA-5CaSi-5DCPD and PLA-10CaSi-10DCPD. In conclusion, the innovative combination of experimental scaffolds colonized with autologous stem cells from periapical cyst represent a promising strategy for regenerative healing of periapical and alveolar bone.
Collapse
Affiliation(s)
- Marco Tatullo
- Tecnologica Research Institute, Stem Cell Unit, 88900 Crotone, Italy.
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
| | - Bruna Codispoti
- Tecnologica Research Institute, Stem Cell Unit, 88900 Crotone, Italy.
| | - Fausto Zamparini
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy.
| | - Anqi Zhang
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Micaela Degli Esposti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131 Bologna, Italy.
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Carlo Rengo
- Department of Prosthodontics and Dental Materials, School of Dental Medicine, University of Siena, 53100 Siena, Italy.
| | - Manuel Nuzzolese
- University Hospitals Birmingham-NHS Foundation Trust, Birmingham B152GW, UK.
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Institute of Human Anatomy, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Fabio Fava
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131 Bologna, Italy.
| | - Carlo Prati
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy.
| | - Paola Fabbri
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131 Bologna, Italy.
| | - Maria Giovanna Gandolfi
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy.
| |
Collapse
|
39
|
Rodrigues EM, Cornélio ALG, Godoi PH, da Costa PI, Rossa-Junior C, Faria G, Guerreiro Tanomaru JM, Tanomaru-Filho M. Heparin is biocompatible and can induce differentiation of human dental pulp cells. Int Endod J 2019; 52:829-837. [PMID: 30565254 DOI: 10.1111/iej.13061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022]
Abstract
AIM To investigate the biocompatibility, osteogenic bioactivity and mRNA expression of the osteo/odontogenic markers bone morphogenetic protein 2 (BMP-2), osteocalcin (OC) and alkaline phosphatase (ALP), induced by heparin in human dental pulp cells (hDPCs). METHODOLOGY hDPCs were exposed to the heparin, and cell viability was assessed by 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT), and cell death was evaluated by flow cytometry. Osteogenic bioactivity was evaluated by the alkaline phosphatase (ALP) assay, and the detection of calcium deposits by alizarin red staining (ARS). The gene expression of BMP-2, OC and ALP was quantified with real-time PCR. Statistical analysis was performed with ANOVA and Bonferroni or Tukey post-test and t-test (α = 0.05). RESULTS Heparin had no cytotoxic effect and did not induce apoptosis. After 3 days, heparin had significantly higher ALP activity in comparison with the control (P < 0.05). Heparin had a significant (P < 0.05) stimulatory effect on the formation of mineralized nodules. BMP-2 and OC mRNA expressions were significantly higher in cells exposed to heparin than control group after 1 day (P < 0.05). CONCLUSIONS Heparin was biocompatible in hDPCs, induced osteogenic bioactivity and enhanced mRNA expression of osteo/odontogenic markers BMP-2 and OC. These results suggest that heparin has potential to induce osteo/odontogenic cell differentiation of hDPCs.
Collapse
Affiliation(s)
- E M Rodrigues
- Department of Restorative Dentistry, Dental School of São Paulo State University-UNESP, Araraquara, São Paulo, Brazil
| | - A L G Cornélio
- Department of Restorative Dentistry, Dental School of São Paulo State University-UNESP, Araraquara, São Paulo, Brazil
| | - P H Godoi
- National Institute of Metrology, Quality and Technology, Rio de Janeiro, Brazil
| | - P I da Costa
- Department of Bioscience and Biotechnology Applied to Pharmacy of São, São Paulo State University-UNESP, Araraquara, São Paulo, Brazil
| | - C Rossa-Junior
- Department of Diagnosis and Surgery, Dental School of São Paulo State University-UNESP, Araraquara, São Paulo, Brazil
| | - G Faria
- Department of Restorative Dentistry, Dental School of São Paulo State University-UNESP, Araraquara, São Paulo, Brazil
| | - J M Guerreiro Tanomaru
- Department of Restorative Dentistry, Dental School of São Paulo State University-UNESP, Araraquara, São Paulo, Brazil
| | - M Tanomaru-Filho
- Department of Restorative Dentistry, Dental School of São Paulo State University-UNESP, Araraquara, São Paulo, Brazil
| |
Collapse
|
40
|
Sequeira DB, Seabra CM, Palma PJ, Cardoso AL, Peça J, Santos JM. Effects of a New Bioceramic Material on Human Apical Papilla Cells. J Funct Biomater 2018; 9:E74. [PMID: 30558359 PMCID: PMC6306901 DOI: 10.3390/jfb9040074] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The development of materials with bioregenerative properties is critically important for vital pulp therapies and regenerative endodontic procedures. The aim of this study was to evaluate the cytocompatibility and cytotoxicity of a new endodontic biomaterial, PulpGuard, in comparison with two other biomaterials widely used in endodontic procedures, ProRoot Mineral Trioxide Aggregate (MTA) and Biodentine. METHODS Apical papilla cells (APCs) were isolated from third molars with incomplete rhizogenesis from patients with orthodontic indication for dental extraction. Cultured APCs were incubated for 24, 48, or 72 h with different dilutions of eluates prepared from the three materials. Cellular viability, mobility, and proliferation were assessed in vitro using the Alamar Blue assay and a wound-healing test. The cells were also cultured in direct contact with the surface of each material. These were then analyzed via Scanning Electron Microscopy (SEM), and the surface chemical composition was determined by Energy-Dispersive Spectroscopy (EDS). RESULTS Cells incubated in the presence of eluates extracted from ProRoot MTA and PulpGuard presented rates of viability comparable to those of control cells; in contrast, undiluted Biodentine eluates induced a significant reduction of cellular viability. The wound-healing assay revealed that eluates from ProRoot MTA and PulpGuard allowed for unhindered cellular migration and proliferation. Cellular adhesion was observed on the surface of all materials tested. Consistent with their disclosed composition, EDS analysis found high relative abundance of calcium in Biodentine and ProRoot MTA and high abundance of silicon in PulpGuard. Significant amounts of zinc and calcium were also present in PulpGuard discs. Concerning solubility, Biodentine and ProRoot MTA presented mild weight loss after eluate extraction, while PulpGuard discs showed significant water uptake. CONCLUSIONS PulpGuard displayed a good in vitro cytocompatibility profile and did not significantly affect the proliferation and migration rates of APCs. Cells cultured in the presence of PulpGuard eluates displayed a similar profile to those cultured with eluates from the widely used endodontic cement ProRoot MTA.
Collapse
Affiliation(s)
- Diana B Sequeira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra 3030-789, Portugal.
- PhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra 3004-504, Portugal.
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, Coimbra 3000-075 Portugal.
| | - Catarina M Seabra
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra 3030-789, Portugal.
| | - Paulo J Palma
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, Coimbra 3000-075 Portugal.
| | - Ana Luísa Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra 3030-789, Portugal.
| | - João Peça
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra 3030-789, Portugal.
| | - João Miguel Santos
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, Coimbra 3000-075 Portugal.
| |
Collapse
|
41
|
Shourgashti Z, Keshvari H, Torabzadeh H, Rostami M, Bonakdar S, Asgary S. Physical Properties, Cytocompatibility and Sealability of HealApex (a Novel Premixed Biosealer). IRANIAN ENDODONTIC JOURNAL 2018; 13:299-304. [PMID: 30083197 PMCID: PMC6064026 DOI: 10.22037/iej.v13i3.20188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Introduction: The objective of this study was to evaluate the physical properties, cytotoxicity and sealing ability of HealApex _a new premixed calcium-silicate-phosphate-based biosealer_ in comparison with AH-26. Methods and Materials: Setting time, working time, film thickness, flow and radiopacity evaluation were performed according to ISO 6876 specification. L929 fibroblasts were incubated with the extracts of sealers and cytotoxicity was then evaluated using MTT assay. Thirty intact extracted human premolars were instrumented using step-back technique. The specimens were obturated with gutta-percha and experimental sealers employing lateral condensation technique. Sealing ability of sealers was investigated for up to one month using fluid filtration method. Data were statistically analyzed by t-test and ANOVA. Results: Physical properties of both sealers conformed to ISO specification. AH-26 exhibited significantly higher flow, higher radiopacity and lower film thickness; whereas HealApex showed lower setting time (P<0.05). HealApex represented high cell viability (P<0.05); however, AH-26 demonstrated significantly lower cell viability compared with the negative control group (P<0.05). There was no significant difference in microleakage between the sealers after 1 and 7 days; however, after 30 days, HealApex displayed better sealing ability (P<0.05). Conclusions: In this in vitro study, HealApex revealed acceptable physical properties, biocompatibility and good sealing ability as an endodontic sealer. Obtained results showed the new sealer had acceptable physical properties and good biocompatibility. In short term, the sealing ability of HealApex was comparable with AH-26 whilst in long term, HealApex’s sealing ability was better than the epoxy resin-based sealer.
Collapse
Affiliation(s)
- Zahra Shourgashti
- Faculty of Biomedical Engineering, Amir-Kabir University of Technology, Tehran, Iran
| | - Hamid Keshvari
- Faculty of Biomedical Engineering, Amir-Kabir University of Technology, Tehran, Iran
| | - Hasan Torabzadeh
- Dental Research Center, Research Institute of Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rostami
- Faculty of Biomedical Engineering, Amir-Kabir University of Technology, Tehran, Iran
| | | | - Saeed Asgary
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Zamparini F, Siboni F, Prati C, Taddei P, Gandolfi MG. Properties of calcium silicate-monobasic calcium phosphate materials for endodontics containing tantalum pentoxide and zirconium oxide. Clin Oral Investig 2018; 23:445-457. [DOI: 10.1007/s00784-018-2453-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/16/2018] [Indexed: 12/22/2022]
|
43
|
Guimarães BM, Prati C, Duarte MAH, Bramante CM, Gandolfi MG. Physicochemical properties of calcium silicate-based formulations MTA Repair HP and MTA Vitalcem. J Appl Oral Sci 2018; 26:e2017115. [PMID: 29641748 PMCID: PMC5912399 DOI: 10.1590/1678-7757-2017-0115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022] Open
Abstract
Objective This study aimed to analyze the following physicochemical properties: radiopacity, final setting time, calcium release, pH change, solubility, water sorption, porosity, surface morphology, and apatite-forming ability of two calcium silicate-based materials. Material and methods We tested MTA Repair HP and MTA Vitalcem in comparison with conventional MTA, analyzing radiopacity and final setting time. Water absorption, interconnected pores and apparent porosity were measured after 24-h immersion in deionized water at 37°C. Calcium and pH were tested up to 28 d in deionized water. We analyzed data using two-way ANOVA with Student-Newman-Keuls tests (p<0.05). We performed morphological and chemical analyses of the material surfaces using ESEM/EDX after 28 d in HBSS. Results MTA Repair HP showed similar radiopacity to that of conventional MTA. All materials showed a marked alkalinizing activity within 3 h, which continued for 28 d. MTA Repair HP showed the highest calcium release at 28 d (p<0.05). MTA Vitalcem showed statistically higher water sorption and solubility values (p<0.05). All materials showed the ability to nucleate calcium phosphate on their surface after 28 d in HBSS. Conclusions MTA Repair HP and MTA Vitalcem had extended alkalinizing activity and calcium release that favored calcium phosphate nucleation. The presence of the plasticizer in MTA HP might increase its solubility and porosity. The radiopacifier calcium tungstate can be used to replace bismuth oxide.
Collapse
Affiliation(s)
- Bruno Martini Guimarães
- Università di Bologna, Dipartimento di Scienze Biomediche e Neuromotorie, Laboratorio di Biomateriali e Patologia Orale, Bologna, Italia.,Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais Odontológicos, Bauru, São Paulo, Brasil
| | - Carlo Prati
- Università di Bologna, Dipartimento di Scienze Biomediche e Neuromotorie, Laboratorio di Biomateriali e Patologia Orale, Bologna, Italia.,Università di Bologna, Reparto di Endodonzia del Dipartimento di Scienze Odontostomatologiche, Bologna, Italia
| | - Marco Antonio Hungaro Duarte
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais Odontológicos, Bauru, São Paulo, Brasil
| | - Clovis Monteiro Bramante
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais Odontológicos, Bauru, São Paulo, Brasil
| | - Maria Giovanna Gandolfi
- Università di Bologna, Dipartimento di Scienze Biomediche e Neuromotorie, Laboratorio di Biomateriali e Patologia Orale, Bologna, Italia
| |
Collapse
|
44
|
Pedano MS, Li X, Li S, Sun Z, Cokic SM, Putzeys E, Yoshihara K, Yoshida Y, Chen Z, Van Landuyt K, Van Meerbeek B. Freshly-mixed and setting calcium-silicate cements stimulate human dental pulp cells. Dent Mater 2018. [PMID: 29525357 DOI: 10.1016/j.dental.2018.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES To evaluate the effect of the eluates from 3 freshly-mixed and setting hydraulic calcium-silicate cements (hCSCs) on human dental pulp cells (HDPCs) and to examine the effect of a newly developed hCSC containing phosphopullulan (PPL) on HDPCs. METHODS Human dental pulp cells, previously characterized as mesenchymal stem cells, were used. To collect the eluates, disks occupying the whole surface of a 12-well plate were prepared using an experimental hCSC containing phosphopullulan (GC), Nex-Cem MTA (GC), Biodentine (Septodont) or a zinc-oxide (ZnO) eugenol cement (material-related negative control). Immediately after preparing the disks (non-set), 3ml of Dulbecco's Modified Eagle Medium (DMEM) with 10% fetal bovine serum (FBS) were added. The medium was left in contact with the disks for 24h before being collected. Four different dilutions were prepared (100%, 50%, 25% and 10%) and cell-cytotoxicity, cell-proliferation, cell-migration and odontogenic differentiation were tested. The cell-cytotoxicity and cell-proliferation assays were performed by XTT-colorimetric assay at different time points. The cell-migration ability was tested with the wound-healing assay and the odontogenic differentiation capacity of hCSCs on HDPCs was tested with RT-PCR. RESULTS Considering all experimental data together, the eluates from 3 freshly-mixed and setting hCSCs appeared not cytotoxic toward HDPCs. Moreover, all three cements stimulated proliferation, migration and odontogenic differentiation of HDPCs. SIGNIFICANCE The use of freshly-mixed and setting hCSCs is an appropriate approach to test the effect of the materials on human dental pulp cells. The experimental material containing PPL is non-cytotoxic and positively stimulates HDPCs.
Collapse
Affiliation(s)
- Mariano S Pedano
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium; University Hospitals Leuven (UZ Leuven), Dentistry, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Xin Li
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium; University Hospitals Leuven (UZ Leuven), Dentistry, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium; The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Shuchen Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Zeyi Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Stevan M Cokic
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium; University Hospitals Leuven (UZ Leuven), Dentistry, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Eveline Putzeys
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium; University Hospitals Leuven (UZ Leuven), Dentistry, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Kumiko Yoshihara
- Okayama University Hospital, Center for Innovative Clinical Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yashuhiro Yoshida
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Kirsten Van Landuyt
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium; University Hospitals Leuven (UZ Leuven), Dentistry, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium; University Hospitals Leuven (UZ Leuven), Dentistry, Campus Sint-Raphaël, block A - box 7001, Kapucijnenvoer 7, 3000 Leuven, Belgium
| |
Collapse
|
45
|
Ngo VA, Jung JY, Koh JT, Oh WM, Hwang YC, Lee BN. Leptin Induces Odontogenic Differentiation and Angiogenesis in Human Dental Pulp Cells via Activation of the Mitogen-activated Protein Kinase Signaling Pathway. J Endod 2018; 44:585-591. [PMID: 29397219 DOI: 10.1016/j.joen.2017.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/15/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Up-regulation of odontogenic differentiation, dentin formation, and angiogenesis in dental pulp are key factors in vital pulp therapy. The aim of this study was to investigate whether leptin could promote odontogenic differentiation and angiogenesis in human dental pulp cells (hDPCs). In addition, the involvement of the intracellular signaling pathway in these effects was determined. METHODS The viability of hDPCs treated with leptin was examined using the water soluble tetrazolium salt-1 assay. Real-time polymerase chain reaction was performed to determine messenger RNA (mRNA) expression levels of odontogenic and angiogenic markers. Western blot analysis was used to measure odontogenic and angiogenic protein expression levels and assess mitogen-activated protein kinase (MAPK) pathway involvement. Alkaline phosphatase (ALP) and alizarin red staining were used to evaluate expression levels of ALP and calcified nodule formation after treatment with leptin and/or the presence of MAPK inhibitors. RESULTS All concentrations of leptin used in this study did not significantly affect the viability of hDPCs. However, mRNA and protein levels of odontogenic and angiogenic markers, ALP activity, and calcified nodule formation were significantly increased in the leptin-treated group compared with those in the control group. Leptin enhanced phosphorylation of extracellular signal-related kinases, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinases within 5 minutes after treatment. However, leptin-induced dentin sialophosphoprotein and vascular endothelial growth factor protein expression and mineralization were appreciably blocked by the presence of MAPK inhibitors. CONCLUSIONS Leptin can induce angiogenesis, odontogenic differentiation, and mineralization in hDPCs via activating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Viet Anh Ngo
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Gwangju, Korea
| | - Ji-Yeon Jung
- Department of Physiology, School of Dentistry, Dental Science Research Institute, Gwangju, Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Dental Science Research Institute, Gwangju, Korea; Research Center for Biomineralization Disorders, Chonnam National University, Gwangju, Korea
| | - Won-Mann Oh
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Gwangju, Korea
| | - Yun-Chan Hwang
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Gwangju, Korea; Research Center for Biomineralization Disorders, Chonnam National University, Gwangju, Korea.
| | - Bin-Na Lee
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Gwangju, Korea.
| |
Collapse
|
46
|
Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:91-112. [PMID: 30105601 DOI: 10.1007/5584_2018_249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In orthopedic medicine, a feasible reconstruction of bone structures remains one of the main challenges both for healthcare and for improvement of patients' quality of life. There is a growing interest in mesenchymal stem cells (MSCs) medical application, due to their multilineage differentiation potential, and tissue engineering integration to improve bone repair and regeneration. In this review we will describe the main characteristics of MSCs, such as osteogenesis, immunomodulation and antibacterial properties, key parameters to consider during bone repair strategies. Moreover, we describe the properties of calcium phosphate (CaP) bioceramics, which demonstrate to be useful tools in combination with MSCs, due to their biocompatibility, osseointegration and osteoconduction for bone repair and regeneration. Also, we overview the main characteristics of dental cavity MSCs, which are promising candidates, in combination with CaP bioceramics, for bone regeneration and tissue engineering. The understanding of MSCs biology and their interaction with CaP bioceramics and other biomaterials is critical for orthopedic surgical bone replacement, reconstruction and regeneration, which is an integrative and dynamic medical, scientific and bioengineering field of research and biotechnology.
Collapse
|
47
|
Gandolfi MG, Zamparini F, Degli Esposti M, Chiellini F, Aparicio C, Fava F, Fabbri P, Taddei P, Prati C. Polylactic acid-based porous scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for biomedical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:163-181. [DOI: 10.1016/j.msec.2017.08.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/14/2017] [Accepted: 08/10/2017] [Indexed: 01/13/2023]
|
48
|
Biocompatibility of New Pulp-capping Materials NeoMTA Plus, MTA Repair HP, and Biodentine on Human Dental Pulp Stem Cells. J Endod 2017; 44:126-132. [PMID: 29079052 DOI: 10.1016/j.joen.2017.07.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/23/2017] [Accepted: 07/24/2017] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The aim of the present study was to evaluate the in vitro cytotoxicity of MTA Repair HP, NeoMTA Plus, and Biodentine, new bioactive materials used for dental pulp capping, on human dental pulp stem cells (hDPSCs). METHODS Biological testing was carried out in vitro on hDPSCs. Cell viability and cell migration assays were performed using eluates of each capping material. To evaluate cell morphology and cell attachment to the different materials, hDPSCs were directly seeded onto the material surfaces and analyzed by scanning electron microscopy. The chemical composition of the pulp-capping materials was determined by energy-dispersive X-ray and eluates were analyzed by inductively coupled plasma-mass spectrometry. Statistical differences were assessed by analysis of variance and Tukey test (P < .05). RESULTS Cell viability was moderate after 24 and 48 hours in the presence of MTA Repair HP and NeoMTA Plus, whereas at 48 and 72 hours, Biodentine showed higher rates of cell viability than MTA Repair HP and NeoMTA Plus (P < .001). A cell migration assay revealed adequate cell migration rates for MTA Repair HP and NeoMTA Plus, both similar to the control group rates, meanwhile the highest cell migration rate was observed in the presence of Biodentine (P < .001). Scanning electron microscope studies showed a high degree of cell proliferation and adhesion on Biodentine disks but moderate rates on MTA Repair HP and NeoMTA Plus disks. Energy-dispersive X-ray pointed to similar weight percentages of C, O, and Ca in all 3 materials, whereas other elements such as Al, Si, and S were also found. CONCLUSIONS The new pulp-capping materials MTA Repair HP, NeoMTA Plus, and Biodentine showed a suitable degree of cytocompatibility with hDPSCs, and good cell migration rates, although Biodentine showed higher rates of proliferation time-dependent.
Collapse
|
49
|
Gao C, Feng P, Peng S, Shuai C. Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair. Acta Biomater 2017; 61:1-20. [PMID: 28501710 DOI: 10.1016/j.actbio.2017.05.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/19/2022]
Abstract
The high brittleness and low strength of bioactive ceramics have severely restricted their application in bone repair despite the fact that they have been regarded as one of the most promising biomaterials. In the last few years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have gained increasing attention owing to their favorable biocompatibility, large surface specific area and super mechanical properties. These qualities make LDNs potential nanofillers in reinforcing bioactive ceramics. In this review, the types, characteristics and applications of the commonly used LDNs in ceramic composites are summarized. In addition, the fabrication methods for LDNs/ceramic composites, such as hot pressing, spark plasma sintering and selective laser sintering, are systematically reviewed and compared. Emphases are placed on how to obtain the uniform dispersion of LDNs in a ceramic matrix and maintain the structural stability of LDNs during the high-temperature fabrication process of ceramics. The reinforcing mechanisms of LDNs in ceramic composites are then discussed in-depth. The in vitro and in vivo studies of LDNs/ceramic in bone repair are also summarized and discussed. Finally, new developments and potential applications of LDNs/ceramic composites are further discussed with reference to experimental and theoretical studies. STATEMENT OF SIGNIFICANCE Despite bioactive ceramics having been regarded as promising biomaterials, their high brittleness and low strength severely restrict their application in bone scaffolds. In recent years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have shown great potential in reinforcing bioactive ceramics owing to their unique structures and properties. However, so far it has been difficult to maintain the structural stability of LDNs during fabrication of LDNs/ceramic composites, due to the lengthy, high-temperature process involved. This review presents a comprehensive overview of the developments and applications of LDNs in bioactive ceramics. The newly-developed fabrication methods for LDNs/ceramic composites, the reinforcing mechanisms and the in vitro and in vivo performance of LDNs are also summarized and discussed in detail.
Collapse
Affiliation(s)
- Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha 410078, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| |
Collapse
|
50
|
Yang YW, Yu F, Zhang HC, Dong Y, Qiu YN, Jiao Y, Xing XD, Tian M, Huang L, Chen JH. Physicochemical properties and cytotoxicity of an experimental resin-based pulp capping material containing the quaternary ammonium salt and Portland cement. Int Endod J 2017; 51:26-40. [PMID: 28375561 DOI: 10.1111/iej.12777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/29/2017] [Indexed: 11/26/2022]
Abstract
AIM To evaluate in vitro the physicochemical properties, cytotoxicity and calcium phosphate nucleation of an experimental light-curable pulp capping material composed of a resin with antibacterial monomer (MAE-DB) and Portland cement (PC). METHODOLOGY The experimental material was prepared by mixing PC with a resin containing MAE-DB at a 2 : 1 ratio. Cured pure resin containing MAE-DB served as control resin. ProRoot MTA and Dycal served as commercial controls. The depth of cure, degree of monomer conversion, water absorption and solubility of dry samples, calcium release, alkalinizing activity, calcium phosphate nucleation and the cytotoxicity of materials were evaluated. Statistical analysis was carried out using anova followed by Tukey's HSD test (equal variance assumed) or Tamhane test (equal variance not assumed) and independent-samples t-tests. RESULTS The experimental material had a cure depth of 1.19 mm, and the mean degree of monomer conversion was 70.93% immediately post-cure and 88.75% at 24 h post-cure. The water absorption of the experimental material was between those of MTA and Dycal, and its solubility was significantly less (P < 0.05) than that of Dycal and higher than that of MTA. The experimental material exhibited continuous calcium release and an alkalinizing power between those of MTA and Dycal throughout the test period. Freshly set experimental material, control resin and all 24-h set materials had acceptable cytotoxicity. The experimental material, MTA and Dycal all exhibited the formation of apatite precipitates after immersion in phosphate-buffered saline. CONCLUSIONS The experimental material possessed adequate physicochemical properties, low cytotoxicity and good calcium phosphate nucleation.
Collapse
Affiliation(s)
- Y W Yang
- Department of Stomatology, Lanzhou General Hospital, Lanzhou Military Area Command of Chinese PLA, Lanzhou, Gansu, China.,State Key Laboratory of Military Stomatology & National Clinical Research Centre for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - F Yu
- State Key Laboratory of Military Stomatology & National Clinical Research Centre for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - H C Zhang
- Department of Clinical Nursing, School of Nursing, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Y Dong
- State Key Laboratory of Military Stomatology & National Clinical Research Centre for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Y N Qiu
- Department of Stomatology, Lanzhou General Hospital, Lanzhou Military Area Command of Chinese PLA, Lanzhou, Gansu, China
| | - Y Jiao
- Department of Stomatology, PLA Army General Hospital, Beijing, China
| | - X D Xing
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - M Tian
- State Key Laboratory of Military Stomatology & National Clinical Research Centre for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - L Huang
- State Key Laboratory of Military Stomatology & National Clinical Research Centre for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - J H Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Centre for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|