1
|
Kayaci ŞT, Yazici ZS, Kınıkoğlu İ, Özüdoğru S, Arslan H. A randomized controlled clinical trial of the performance of three bioactive endodontic cements in primary molar teeth diagnosed with reversible pulpitis: 1-year follow-up study. J Dent 2024; 150:105378. [PMID: 39384060 DOI: 10.1016/j.jdent.2024.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
OBJECTIVES The objective of this clinical trial was to evaluate and compare the clinical and radiographic successes of three bioactive endodontic cements (BEC) including novel portland cement-based material releasing fluoride, resin-modified silicate glass cement, and pure tricalcium silicate-based cement-in the treatment of primary molars diagnosed with reversible pulpitis via indirect pulp capping. METHODS Eighty-six (86) participants with previously untreated first and second primary molars were included in this study. The teeth were randomly allocated into three groups: pure tricalcium silicate-based cement, resin-modified silicate glass cement, and novel portland cement-based material releasing fluoride. Cavities were capped with the assigned cement after caries excavation using standard protocols. The teeth that underwent treatment were restored using glass ionomer cement and composite resin. Clinical and radiographic evaluations were performed at 1, 6, and 12 months. The data were analyzed using Pearson chi-square, Kruskal-Wallis H and Z test (P = 0.05). RESULTS The success rate was 88 % (n = 25) in the pure tricalcium silicate-based cement group, 88.5 % (n = 26) in the resin-modified silicate glass cement group, and 100 % (n = 25) in the novel portland cement-based material releasing fluoride group. The differences at the 1st, 6th, and 12th month follow-up visits were not statistically significant among the groups (P > 0.05). No difference was found between the integrity of the resin composite restorations overlying pure tricalcium silicate-based cement, resin-modified silicate glass cement, and novel portland cement-based material releasing fluoride according to the USPHS criteria. CONCLUSIONS Novel portland cement-based material releasing fluoride can be considered an alternative for preserving the tooth, as it showed a high success rate in treating primary molars diagnosed with reversible pulpitis via indirect pulp capping. CLINICAL SIGNIFICANCE Novel Portland cement-based material releasing fluoride could be beneficial in the treatment of primary molars diagnosed with reversible pulpitis via indirect pulp capping.
Collapse
Affiliation(s)
- Şükriye Türkoğlu Kayaci
- Department of Pediatric Dentistry, Hamidiye Faculty of Dental Medicine, University of Health Sciences, Istanbul, Turkey.
| | - Zeynep Solmazgül Yazici
- Department of Pediatric Dentistry, Hamidiye Faculty of Dental Medicine, University of Health Sciences, Istanbul, Turkey
| | | | - Semanur Özüdoğru
- Department of Pediatric Dentistry, Faculty of Dentistry, Istanbul Medeniyet University, Istanbul, Turkey.
| | - Hakan Arslan
- Department of Endodontics, Faculty of Dentistry, Istanbul Medeniyet University, Istanbul, Turkey.
| |
Collapse
|
2
|
Tez BÇ, Eliaçık BBK, Taşlı PN, Yılmaz H, Şahin F. Biocompatibility and Cytotoxicity of Pulp-Capping Materials on DPSCs, With Marker mRNA Expressions. Int Dent J 2024; 74:1064-1077. [PMID: 38692961 DOI: 10.1016/j.identj.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 05/03/2024] Open
Abstract
OBJECTIVES The present study aimed to (1) investigate biocompatibility and cytotoxicity of pulp-capping materials on viability of human dental pulp stem cells (hDPSCs); (2) determine angiogenic, odontogenic, and osteogenic marker mRNA expressions; and (3) observe changes in surface morphology of the hDPSCs using scanning electron microscopy (SEM). METHODS Impacted third molars were used to isolate the hDPSCs, which were treated with extract-release fluids of the pulp-capping materials (Harvard BioCal-Cap, NeoPUTTY MTA, TheraCal LC, and Dycal). Effects of the capping materials on cell viability were assessed using 3-(4,5-di-methyl-thiazol-2-yl)-5-(3-carboxy-methoxy-phenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium (MTS) assay and the apoptotic/necrotic cell ratios and reactive oxygen species (ROS) levels from flow cytometry. Marker expressions (alkaline phosphatase [ALP], osteocalcin [OCN], collagen type I alpha 1 [Col1A], secreted protein acidic and rich in cysteine [SPARC], osteonectin [ON], and vascular endothelial growth factor [VEGF]) were determined by quantitative reverse-transcription polymerase chain reaction. Changes in surface morphology of the hDPSCs were visualised by SEM. RESULTS The MTS assay results at days 1, 3, 5, and 7 indicated that Harvard BioCal-Cap, NeoPUTTY MTA, and TheraCal LC did not adversely affect cell viability when compared with the control group. According to the MTS assay results at day 14, no significant difference was found amongst Dycal, Harvard BioCal-Cap, NeoPUTTY MTA, and TheraCal LC affecting cell viability. Dycal was the only capping material that increased ROS level. High levels of VEGF expression were observed with Harvard BioCal-Cap, TheraCal LC, and NeoPUTTY MTA. NeoPUTTY MTA, and Dycal upregulated OCN expression, whereas TheraCal LC upregulated Col1A and SPARC expression. Only Dycal increased ALP expression. HDSCs were visualized in characteristic spindle morphology on SEM when treated with TheraCal LC and Harvard BioCal-Cap. CONCLUSIONS NeoPUTTY MTA and Harvard BioCal-Cap showed suitable biocompatibility values; in particular, these pulp-capping materials were observed to support the angiogenic marker.
Collapse
Affiliation(s)
- Banu Çiçek Tez
- Department of Pediatric Dentistry, Faculty of Dentistry, Ankara Medipol University, Ankara, Türkiye
| | | | - Pakize Neslihan Taşlı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Türkiye
| | - Hazal Yılmaz
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Türkiye
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Türkiye
| |
Collapse
|
3
|
Silveira ABVD, Oliveira BLS, Bergamo MTDOP, Lourenço Neto N, Machado MAM, Oliveira TM. Cytotoxicity of dilutions of bioceramic materials in stem cells of human exfoliated deciduous teeth. J Appl Oral Sci 2024; 32:e20230462. [PMID: 39140577 PMCID: PMC11321797 DOI: 10.1590/1678-7757-2023-0462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVE Several materials have been developed to preserve pulp vitality. They should have ideal cytocompatibility characteristics to promote the activity of stem cells of human exfoliated deciduous teeth (SHED) and thus heal pulp tissue. OBJECTIVE To evaluate the cytotoxicity of different dilutions of bioceramic material extracts in SHED. METHODOLOGY SHED were immersed in αMEM + the material extract according to the following experimental groups: Group 1 (G1) -BBio membrane, Group 2 (G2) - Bio-C Repair, Group 3 (G3) - MTA Repair HP, Group 4 (G4) - TheraCal LC, and Group 5 (G5) - Biodentine. Positive and negative control groups were maintained respectively in αMEM + 10% FBS and Milli-Q Water. The methods to analyze cell viability and proliferation involved MTT and Alamar Blue assays at 24, 48, and 72H after the contact of the SHED with bioceramic extracts at 1:1 and 1:2 dilutions. Data were analyzed by the three-way ANOVA, followed by Tukey's test (p<0.05). RESULTS At 1:1 dilution, SHED in contact with the MTA HP Repair extract showed statistically higher cell viability than the other experimental groups and the negative control (p<0.05), except for TheraCal LC (p> 0.05). At 1:2 dilution, BBio Membrane and Bio-C showed statistically higher values in intra- and intergroup comparisons (p<0.05). BBio Membrane, Bio-C Repair, and Biodentine extracts at 1:1 dilution showed greater cytotoxicity than 1:2 dilution in all periods (p<0.05). CONCLUSION MTA HP Repair showed the lowest cytotoxicity even at a 1:1 dilution. At a 1:2 dilution, the SHED in contact with the BBio membrane extract showed high cell viability. Thus, the BBio membrane would be a new non-cytotoxic biomaterial for SHED. Results offer possibilities of biomaterials that can be indicated for use in clinical regenerative procedures of the dentin-pulp complex.
Collapse
Affiliation(s)
- Ana Beatriz Vieira da Silveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, Brasil
| | - Bárbara Luísa Silva Oliveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, Brasil
| | | | - Natalino Lourenço Neto
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, Brasil
| | - Maria Aparecida Moreira Machado
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, Brasil
| | - Thais Marchini Oliveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, Brasil
| |
Collapse
|
4
|
Novotná B, Holík P, Morozova Y, Rosa M, Galandáková A, Langová K. Evaluation of Cytotoxicity of the Dental Materials TheraCal LC, TheraCal PT, ApaCal ART and Biodentine Used in Vital Pulp Therapy: In Vitro Study. Dent J (Basel) 2024; 12:249. [PMID: 39195093 DOI: 10.3390/dj12080249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
(1) Background: The aim of this study was to compare the cytotoxicity of selected resin-modified materials used in direct contact with the dental pulp (TheraCal LC, TheraCal PT, and ApaCal ART) with calcium silicate cement (Biodentine). (2) Methods: The mouse fibroblast Balb/3T3 cell line and the extracts of tested materials in four concentrations were used for the testing. An MTT assay was performed in three independent experiments with six replicates for each concentration of tested material. The cell viability (%) and cytotoxicity were expressed (cytotoxic effect is considered in cases where the cell viability is lower than 70%). The mean of the cell viability and the standard deviation were expressed for each material at all concentrations. ANOVA and Dunnet's post hoc tests were used for the statistical analysis. All of these tests were performed at the 0.05 significance level. (3) Results: At all concentrations, the cell viability was statistically significantly lower (p ≤ 0.002) for all tested materials compared to Biodentine. ApaCal ART showed a high level of cytotoxicity at all concentrations (cell viability lower than 47.71%, p < 0.0001). The same result was found for TheraCal LC at concentrations of 100%, 50% and 25% and TheraCal PT at concentrations of 100% and 50%. TheraCal LC at a 10% concentration (cell viability 68.18%) and TheraCal PT at a 25% concentration (cell viability 60.63%) indicated potential cytotoxicity. TheraCal PT at a 10% concentration was not found to be cytotoxic (cell viability 79.18%, p = 0.095). (4) Conclusion: The resin-modified calcium silicate and calcium phosphate materials showed higher cytotoxic potential, so they should be used with caution when in direct contact with the dental pulp.
Collapse
Affiliation(s)
- Barbora Novotná
- Institute of Dentistry and Oral Sciences, Faculty of Medicine and Dentistry, Palacký University and Faculty Hospital Olomouc, Palackého 12, 779 00 Olomouc, Czech Republic
| | - Pavel Holík
- Institute of Dentistry and Oral Sciences, Faculty of Medicine and Dentistry, Palacký University and Faculty Hospital Olomouc, Palackého 12, 779 00 Olomouc, Czech Republic
| | - Yuliya Morozova
- Institute of Dentistry and Oral Sciences, Faculty of Medicine and Dentistry, Palacký University and Faculty Hospital Olomouc, Palackého 12, 779 00 Olomouc, Czech Republic
| | - Matej Rosa
- Institute of Dentistry and Oral Sciences, Faculty of Medicine and Dentistry, Palacký University and Faculty Hospital Olomouc, Palackého 12, 779 00 Olomouc, Czech Republic
| | - Adéla Galandáková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Kateřina Langová
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|
5
|
Baranwal HC, Mittal N, Samad S, Ayubi A, Aggarwal H, Kharat SM. Comparative evaluation of dual-cure resin (TheraCal PT) and Biodentine in coronal pulpotomy of patients with symptoms indicative of irreversible pulpitis: A randomized clinical trial. JOURNAL OF CONSERVATIVE DENTISTRY AND ENDODONTICS 2024; 27:822-827. [PMID: 39372577 PMCID: PMC11451686 DOI: 10.4103/jcde.jcde_280_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 10/08/2024]
Abstract
Background New and innovative materials are being marketed for the treatment of coronal pulpotomy. It is crucial to compare their efficacy with already-established materials. TheraCal PT (TP) is such a new material that studies are scarce. Aim This study aim to compare and evaluate the outcome of coronal pulpotomy using Biodentine and a newly introduced calcium silicate-based dual-cure resin cement, TP, in patients with symptoms of irreversible pulpitis. Materials and Methods Sixty patients with exposed carious pulp and symptomatic irreversible pulpitis were included, aged 18-40, randomly allocated to two groups: TP (group I) and Biodentine (group II). Coronal pulpotomy was performed following a standardized protocol, with TP or Biodentine applied accordingly. The pain was recorded using Visual Analog Scale preoperatively for up to 1 week. Success was assessed clinically and radiographically for up to 12 months. Statistical Analysis Used The data were analyzed using the Friedman test and the Mann-Whitney U-test. Intragroup pain was analyzed using the Wilcoxon signed-rank test. Results Among 60 patients, intervention was done in 53. By removing dropout patients, 47 were analyzed, with 38 available for follow-up at 3, 6, and 12 months. The Biodentine group exhibited a 12-month success rate of 84%, while the TP group revealed 77.3%, with statistically insignificant difference (P = 0.563). Conclusion TP can be effectively utilized as a pulpotomy material in cases of symptomatic irreversible pulpitis in mature permanent teeth, offering rapid setting and ease of use, although Biodentine yielded slightly better results in this study.
Collapse
Affiliation(s)
- Harakh Chand Baranwal
- Department of Conservative Dentistry and Endodontics, Faculty of Dental Sciences, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh, India
| | - Neelam Mittal
- Department of Conservative Dentistry and Endodontics, Faculty of Dental Sciences, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh, India
| | - Silviya Samad
- Department of Conservative Dentistry and Endodontics, Faculty of Dental Sciences, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh, India
| | - Aiyman Ayubi
- Department of Conservative Dentistry and Endodontics, Faculty of Dental Sciences, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh, India
| | - Harshitaa Aggarwal
- Department of Conservative Dentistry and Endodontics, Faculty of Dental Sciences, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh, India
| | - Shubham M. Kharat
- Department of Conservative Dentistry and Endodontics, Faculty of Dental Sciences, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh, India
| |
Collapse
|
6
|
Topbaş C, Kul AK. Can flowable short-fiber-reinforced resins achieve a strong adhesion to bioceramics? Microsc Res Tech 2024. [PMID: 39072834 DOI: 10.1002/jemt.24668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
This study compared the microshear bond strength (μSBS) of four calcium silicate-based cements (CSCs), TheraCal PT (TPT), TheraCal LC (TLC), Biodentine (BD), and Dia-Root Bio MTA (DR), with a short fiber-reinforced composite resin (SFRC). Forty cylindrical acrylic blocks were used, each with a center hole (diameter 5 mm, depth 2 mm). CSCs were placed in the holes (n = 10/group), and the blocks were incubated for 48 h. G-Premio BOND, a self-etching adhesive, was applied to the CSCs surfaces using a micro-applicator for 10 s and then air-dried for 5 s, followed by light curing for 20 s. SFRC materials placed in cylindrical polyethylene capsules (diameter 2 mm, height 2 mm) were polymerized for 20 s and placed over the CSCs. The samples were then incubated at 37°C and 100% humidity for 24 h, and their μSBSs were tested using an "Instron Universal Testing Machine." Data were statistically analyzed using chi-square and Kruskal-Wallis tests. Statistically significant differences were observed between the tested CSCs. The μSBS of TPT (45.17 ± 4.56 MPa) was significantly higher (p < .05) than that of the other materials: BD, TLC, and DR had μSBSs of 29.18 ± 2.86 MPa (p < .05), 23.86 ± 2.84 MPa (p > .05), and 18.08 ± 2.69 MPa (p < .05), respectively. Considering the importance of bond strength for CSC sealing with restorative material, using SFRC over CSC was promising for improving the μSBS, adhesion, and sealing of the material. RESEARCH HIGHLIGHTS: Adhesion is critical to the success of vital pulp restorations. To achieve strong adhesion, the bioceramic material and the resin composite to which it is bonded are very important. In our study, short fiber-reinforced composite resin, which is gaining popularity, was used and found to be a promising material for improved adhesion.
Collapse
Affiliation(s)
- Celalettin Topbaş
- Faculty of Dentistry, Department of Endodontics, University of Health Sciences, Istanbul, Turkey
| | - Abdurrahman Kerim Kul
- Faculty of Dentistry, Department of Endodontics, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
7
|
López-García S, Sánchez-Bautista S, García-Bernal D, Lozano A, Forner L, Sanz JL, Murcia L, Rodríguez-Lozano FJ, Oñate-Sánchez RE. Premixed calcium silicate-based ceramic sealers promote osteogenic/cementogenic differentiation of human periodontal ligament stem cells: A microscopy study. Microsc Res Tech 2024; 87:1584-1597. [PMID: 38433562 DOI: 10.1002/jemt.24545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
To evaluate the effects of premixed calcium silicate based ceramic sealers on the viability and osteogenic/cementogenic differentiation of human periodontal ligament stem cells (hPDLSCs). The materials evaluated were TotalFill BC Sealer (TFbc), AH Plus Bioceramic Sealer (AHPbc), and Neosealer Flo (Neo). Standardized discs and 1:1, 1:2, and 1:4 eluates of the tested materials were prepared. The following in vitro experiments were carried out: ion release, cell metabolic activity 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell migration, immunofluorescence experiment, cell attachment, gene expression, and mineralization assay. Statistical analyses were performed using one-way ANOVA followed by Tukey's post hoc test (p < .05). Increased Ca2+ release was detected in TFbc compared to AHPbc and Neo (*p < .05). Biological assays showed a discrete cell metabolic activity and cell migration in Neo-treated cell, whereas scanning electronic microscopy assay exhibited that TFbc group had a better cell adhesion process of substrate attachment, spreading, and cytoskeleton development on the niche-like structures of the cement than AHPbc and Neo. The sealers tested were able to induce overexpression of the CEMP-1, ALP, and COL1A1 genes in the first days of exposure, particularly in the case of TFbc (***p < .001). All materials tested significantly increased the mineralization of hPDLSCs when compared to the negative control, although more pronounced calcium deposition was observed in the TFbc-treated cells (***p < .001). Our results suggested that TFbc promotes cell differentiation, both by increasing the expression of key osteo/odontogenic genes and by promoting mineralization of the extracellular matrix, whereas this phenomenon was less evident in Neo and AHPbc. RESEARCH HIGHLIGHTS: TFbc group had a better cell adhesion process of substrate attachment, spreading, and cytoskeleton development on the niche-like structures of the cement than AHPbc and Neo. The sealers tested were able to induce overexpression of the CEMP-1, ALP, and COL1A1 genes in the first days of exposure, particularly in the case of TFbc. All materials tested significantly increased the mineralization of hPDLSCs when compared to the negative control, although more pronounced calcium deposition was observed in the TFbc-treated cells.
Collapse
Affiliation(s)
- Sergio López-García
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia, Spain
| | | | - David García-Bernal
- Department of Biochemistry, Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, IMIB Pascual Parrilla, Murcia, Spain
| | - Adrián Lozano
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia, Spain
| | - Leopoldo Forner
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia, Spain
| | - José L Sanz
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia, Spain
| | - Laura Murcia
- Department of Health Sciences, Catholic University San Antonio of Murcia, Murcia, Spain
| | - Francisco J Rodríguez-Lozano
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, IMIB Pascual Parrilla, Murcia, Spain
| | - Ricardo E Oñate-Sánchez
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, IMIB Pascual Parrilla, Murcia, Spain
| |
Collapse
|
8
|
Hashemi S, Nahidi R, Ansari H, Firoozi K, Rokhshad R. Comparative analysis of cytotoxicity effects of two denture hard lining materials on human gingival fibroblasts: an in vitro study. Saudi Dent J 2024; 36:765-769. [PMID: 38766280 PMCID: PMC11096615 DOI: 10.1016/j.sdentj.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 05/22/2024] Open
Abstract
Background The objective of this study was to compare the cytotoxicity of TDV and Rebase II denture hard liners on human gingival fibroblasts, aiming to address issues associated with incomplete polymerization and free monomers that affect material properties. Methods Seventy-two specimens (24 each of TDV, Rebase II, and controls) were prepared under aseptic conditions according to factory instructions. Cytotoxicity was determined using the MTT test with methyl tetrazolium salt added to the cell culture medium. A two-way ANOVA and a post-hoc Tukey test was used to evaluate the results of incubation before mitochondrial activity was measured using Multiscan spectrophotometry (570 nm). Results There were significant differences in cell viability between the groups after 24 hours (P < 0.001), with TDV having higher viability than Rebase II. The difference between Rebase II and TDV, however, was not significant at 48 and 96 hours (P > 0.131). At 24 hours, Rebase II exhibited significantly lower viability than TDV liner, with a significant difference between the two groups (P = 0.001). Conclusion Due to the maximum monomer release in the early hours of incubation, the amount of cytotoxicity decreased with increasing incubation time.
Collapse
Affiliation(s)
- Somayeh Hashemi
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Nahidi
- Prosthodontics Department, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Azad Dental school, Neyestan 9, Tehran, Iran
| | - Homeyra Ansari
- Prosthodontics Department, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Azad Dental school, Neyestan 9, Tehran, Iran
| | - Kiarash Firoozi
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rata Rokhshad
- Department of Medicine, Boston University Medical Center, USA
| |
Collapse
|
9
|
López-García S, Aznar-Cervantes SD, Pagán A, Llena C, Forner L, Sanz JL, García-Bernal D, Sánchez-Bautista S, Ceballos L, Fuentes V, Melo M, Rodríguez-Lozano FJ, Oñate-Sánchez RE. 3D Graphene/silk fibroin scaffolds enhance dental pulp stem cell osteo/odontogenic differentiation. Dent Mater 2024; 40:431-440. [PMID: 38114344 DOI: 10.1016/j.dental.2023.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/24/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVES The current in vitro study aims to evaluate silk fibroin with and without the addition of graphene as a potential scaffold material for regenerative endodontics. MATERIAL AND METHODS Silk fibroin (SF), Silk fibroin/graphene oxide (SF/GO) and silk fibroin coated with reduced graphene oxide (SF/rGO) scaffolds were prepared (n = 30). The microarchitectures and mechanical properties of scaffolds were evaluated using field emission scanning electron microscopy (FESEM), pore size and water uptake, attenuated total reflectance fourier transformed infrared spectroscopy (ATR-FTIR), Raman spectroscopy and mechanical compression tests. Next, the study analyzed the influence of these scaffolds on human dental pulp stem cell (hDPSC) viability, apoptosis or necrosis, cell adhesion, odontogenic differentiation marker expression and mineralized matrix deposition. The data were analyzed with ANOVA complemented with the Tukey post-hoc test (p < 0.005). RESULTS SEM analysis revealed abundant pores with a size greater than 50 nm on the surface of tested scaffolds, primarily between 50 nm and 600 µm. The average value of water uptake obtained in pure fibroin scaffolds was statistically higher than that of those containing GO or rGO (p < 0.05). ATR-FTIR evidenced that the secondary structures did not present differences between pure fibroin and fibroin coated with graphene oxide, with a similar infrared spectrum in all tested scaffolds. Raman spectroscopy showed a greater number of defects in the links in SF/rGO scaffolds due to the reduction of graphene. In addition, adequate mechanical properties were exhibited by the tested scaffolds. Regarding biological properties, hDPSCs attached to scaffolds were capable of proliferating at a rate similar to the control, without affecting their viability over time. A significant upregulation of ALP, ON and DSPP markers was observed with SF/rGO and SF/GO groups. Finally, SF/GO and SF/rGO promoted a significantly higher mineralization than the control at 21 days. SIGNIFICANCE Data obtained suggested that SF/GO and SF/rGO scaffolds promote hDPSC differentiation at a genetic level, increasing the expression of key osteo/odontogenic markers, and supports the mineralization of the extracellular matrix. However, results from this study are to be interpreted with caution, requiring further in vivo studies to confirm the potential of these scaffolds.
Collapse
Affiliation(s)
- Sergio López-García
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia 46010, Spain
| | - Salvador D Aznar-Cervantes
- Biotechnology, Genomics and PlantBreedingDepartment, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), La Alberca 30150, Murcia, Spain
| | - Ana Pagán
- Biotechnology, Genomics and PlantBreedingDepartment, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), La Alberca 30150, Murcia, Spain
| | - Carmen Llena
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia 46010, Spain
| | - Leopoldo Forner
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia 46010, Spain
| | - José L Sanz
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia 46010, Spain
| | - David García-Bernal
- Department of Biochemistry, Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Biomedical Research Institute (IMIB), Murcia 30120, Spain
| | | | - Laura Ceballos
- IDIBO Research Group, Area of Stomatology, Health Sciences Faculty, Rey Juan Carlos University, Alcorcón, Madrid, Spain
| | - Victoria Fuentes
- IDIBO Research Group, Area of Stomatology, Health Sciences Faculty, Rey Juan Carlos University, Alcorcón, Madrid, Spain
| | - María Melo
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia 46010, Spain
| | - Francisco J Rodríguez-Lozano
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Biomedical Research Institute (IMIB), Regional Campus of International Excellence "Campus Mare Nostrum", Faculty of Medicine, University of Murcia, Murcia 30008, Spain.
| | - Ricardo E Oñate-Sánchez
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Biomedical Research Institute (IMIB), Regional Campus of International Excellence "Campus Mare Nostrum", Faculty of Medicine, University of Murcia, Murcia 30008, Spain
| |
Collapse
|
10
|
Mohamed SS, Zaki HF, Raafat SN. The Effect of Clopidogrel and Ticagrelor on Human Adipose Mesenchymal Stem Cell Osteogenic Differentiation Potential: In Vitro Comparative Study. Adv Pharmacol Pharm Sci 2024; 2024:2990670. [PMID: 38390313 PMCID: PMC10883741 DOI: 10.1155/2024/2990670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Ticagrelor (TICA) and clopidogrel (CLP) are extensively used antiplatelet drugs that act by antagonizing the P2Y12 receptors that are found on platelets in addition to bone cells. Aim. The purpose of this study was to investigate the effect of clopidogrel and ticagrelor on stem cells osteogenic differentiation in vitro. Methods. Human adipose-derived mesenchymal stem cells (hAd-MSCs) were divided into (1) control group, (2) osteogenic group (osteo group), (3) clopidogrel group (CLP group), and (4) ticagrelor group (TICA group). The osteogenic differentiation potential was determined by mineralization nodule formation using Alizarin Red S staining, measuring ALP enzyme activity by alkaline phosphatase assay. Quantitative determination for osteogenic markers included osteocalcin (OC); runt-related transcription factor 2 (RUNX2) performed using western blot; osteoprotegerin (OPG) using enzyme-linked immunosorbent assay (ELISA) and inflammatory markers; and tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) measured using real-time polymerase chain reaction quantitative (RT-PCR) and ELISA. Results. In comparison to all study groups, the TICA group showed significant increase in the mineralized extracellular matrix, ALP enzyme activity, and bone markers expression as RUNX2 (P < 0.0001), OC, and OPG (P < 0.05). The expression of IL-6 and TNF-α was determined by RT-qPCR and ELISA techniques. TICA and CLP significantly decreased both markers compared to the control group. The TICA group showed statistically significant lower levels of both markers (P < 0.0001) than the CLP and control groups via the ELISA technique. Conclusion. TICA may possess a positive effect on hAd-MSCs osteogenic differentiation compared to CLP.
Collapse
Affiliation(s)
- Sally S Mohamed
- Pharmacology Department, Faculty of Dentistry, The British University in Egypt, Al Shorouk City, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Shereen N Raafat
- Pharmacology Department, Faculty of Dentistry, The British University in Egypt, Al Shorouk City, Egypt
- Dental Science Research Group, Health Research Centre of Excellence, The British University in Egypt, Al Shorouk City, Egypt
| |
Collapse
|
11
|
Park SH, Ye JR, Asiri NM, Chae YK, Choi SC, Nam OH. Biocompatibility and Bioactivity of a Dual-Cured Resin-Based Calcium Silicate Cement: In Vitro and in vivo Evaluation. J Endod 2024; 50:235-242. [PMID: 37995904 DOI: 10.1016/j.joen.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION This study aimed to assess the biocompatibility and bioactivity of a dual-cured resin-based calcium silicate cement in vitro and in vivo. METHODS For in vitro analyses, standardized samples were prepared using TheraCal LC, TheraCal PT, and ProRoot MTA. The amount of residual monomer released from TheraCal LC and TheraCal PT was assessed using liquid chromatography/mass spectrometry. Calcium ion release from the materials was evaluated using inductively coupled plasma-optical emission spectroscopy. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to determine the calcium weight volume in the materials. For in vivo analysis, a rat direct pulp capping model with TheraCal LC, TheraCal PT, and ProRoot MTA groups (n = 16 per group) was used. The rats were euthanized after 7 or 28 days, and histological and immunohistochemical analyses (CD68 and DSPP) were performed. RESULTS Bisphenol A-glycidyl methacrylate and polyethylene glycol dimethacrylate release from TheraCal PT was lower than that from TheraCal LC (P < .05). Similar results were obtained for calcium-ion release and calcium weight volume, with ProRoot MTA showing the highest values. In the in vivo evaluation, TheraCal PT showed significantly greater hard tissue formation than TheraCal LC (P < .017). TheraCal PT showed lower CD68 expression and greater DSPP expression than TheraCal LC (P < .017). There were no significant differences in the expression of CD68 or DSPP between the TheraCal PT and ProRoot MTA groups. CONCLUSIONS Within the limitations of this study, the biocompatibility and bioactivity of TheraCal PT could be comparable to those of ProRoot MTA.
Collapse
Affiliation(s)
- Seung Hwan Park
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea
| | - Ju Ri Ye
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea
| | - Naif Mohammed Asiri
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea
| | - Yong Kwon Chae
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea
| | - Sung Chul Choi
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea; Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Ok Hyung Nam
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea; Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
12
|
Bakr MM, Shamel M, Raafat SN, Love RM, Al‐Ankily MM. Effect of pulp capping materials on odontogenic differentiation of human dental pulp stem cells: An in vitro study. Clin Exp Dent Res 2024; 10:e816. [PMID: 38053499 PMCID: PMC10860438 DOI: 10.1002/cre2.816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
OBJECTIVES Migration and differentiation of human dental pulp stem cells (hDPSCs) is a vital and key factor in the success of reparative dentin formation for maintenance of pulp vitality. Pulp capping materials are used to stimulate DPSCs to induce new dentin formation. Thus, the aim of the present study was to compare the response of DPSCs to four commercially available pulp capping materials: a bioactive bioceramic (Material 1), a nonresinous ready-to-use bioceramic cement (Material 2), a bioactive composite (Material 3), and a biocompatible, dual-cured, resin-modified calcium silicate (Material 4). MATERIALS AND METHODS hDPSCs were isolated and cultured from freshly extracted teeth and were then characterized by flow cytometry and multilineage differentiation. Discs prepared from pulp capping materials were tested with hDPSCs and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, cell migration assay and odontogenic differentiation assay was performed. Expression of osteogenic markers (osteopontin, RUNX family transcription factor 2, osteocalcin) and the odontogenic marker (dentin sialophosphoprotein) was detected using reverse transcription-polymerase chain reaction. RESULTS Materials 1, 2, and 3 generated more cell viability than Material 4. Furthermore, Material 4 showed the least wound exposure percentage, while Material 3 showed the highest percentage. Enhanced mineralization was found in hDSCPs cultured with Material 3, followed by Material 1, and then Material 2, while Material 4 revealed the least calcified mineralization. CONCLUSIONS The results of this study were inconclusive regards contemporary bioceramic materials designed for vital pulp therapy as they have different effects on hDPSC. Further testing for cytotoxicity using live-dead staining, animal experiments, clinical trials, and independent analyses of these biomaterials is necessary for clinicians to make an informed decision for their use.
Collapse
Affiliation(s)
- Mahmoud M. Bakr
- School of Medicine and DentistryGriffith UniversityGold CoastQueenslandAustralia
| | - Mohamed Shamel
- Oral Biology Department, Faulty of DentistryThe British University in EgyptCairoEgypt
| | - Shereen N. Raafat
- Department of Pharmacology and Toxicology, Faculty of DentistryThe British University in EgyptCairoEgypt
| | - Robert M. Love
- School of Medicine and DentistryGriffith UniversityGold CoastQueenslandAustralia
| | - Mahmoud M. Al‐Ankily
- Oral Biology Department, Faulty of DentistryThe British University in EgyptCairoEgypt
| |
Collapse
|
13
|
Türkoğlu Kayaci Ş, Solmazgül Yazici Z, Arslan H. Spectrophotometric Analysis of Color Stability Induced by Various Calcium Silicate Cements in Full Pulpotomy of Permanent Molars: Theracal PT, Biodentine, and ProRoot MTA. J Endod 2024; 50:229-234. [PMID: 38007091 DOI: 10.1016/j.joen.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
AIM The objective of this study was to assess the color stability induced by Theracal PT, Biodentine, and ProRoot MTA in teeth subjected to full pulpotomy, over a span of 6 months. MATERIALS AND METHODS The study employed a total of 48 freshly extracted intact human third molar teeth. Samples were randomly assigned into four groups (n = 12). All teeth, with the exception of the control group, underwent endodontic access. All materials were mixed in accordance with the manufacturer's guidelines and applied at a thickness of 3 mm at the orifice level before they set. The study groups were negative control (was not prepared), positive control (ProRootMTA), Biodentine, and Theracal PT. Glass ionomer and composite resin material was applied to the cavities. The color measurements were performed using the VITA Easy Shade spectrophotometer. All measurements were repeated 3 times in the determined area on the middle buccal surface of the tooth at baseline that (T0); after access preparation and material placement and setting) and then subsequently at 7 (T1), 30 (T2), 90 (T3), and T4 (180) days later. Data were statistically analyzed by using Kruskal-Wallis H at a confidence level of 95% (P < .05). RESULTS Compared with the negative control group, Biodentine and Theracal PT showed color stability (ΔE ≤ 3.7). The teeth treated with MTA showed clinically observable discoloration (ΔE ≥ 3.7) at T0, T1, T2, T3, and T4 intervals. At all-time intervals, the MTA group induced more discoloration than Biodentine and Theracal PT (P < .05). CONCLUSIONS Theracal PT and Biodentine caused least discoloration compared to PMTA even 6 months after its application in teeth undergoing pulpotomy, thereby offering clinicians a reliable alternative for use in the esthetic zone.
Collapse
Affiliation(s)
| | | | - Hakan Arslan
- Department of Endodontics, Istanbul Medeniyet University Faculty of Dentistry, Istanbul, Turkey
| |
Collapse
|
14
|
Ergül R, Aksu S, Çalışkan S, Tüloğlu N. Shear bond strength of calcium silicate-based cements to glass ionomers. BMC Oral Health 2024; 24:140. [PMID: 38281948 PMCID: PMC10822172 DOI: 10.1186/s12903-024-03890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/12/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND A shear bond strength between the biomaterial and restorative material is crucial for minimizing bacterial microleakage and ensuring a favorable long-term prognosis for vital pulp therapy. This study aimed to conduct a comparative evaluation of the shear bond strength between calcium silicate-based biomaterials utilized in vital pulp treatment and various glass ionomer cement materials, both with and without the application of adhesive agents. METHODS A total of 270 acrylic blocks, each featuring cavities measuring 4 mm in diameter and 2 mm in depth, were prepared. Calcium silicate-containing biomaterials (ProRoot MTA, Medcem Pure Portland Cement, and Medcem MTA), following manufacturers' instructions, were placed within the voids in the acrylic blocks and allowed to set for the recommended durations. The biomaterial samples were randomly categorized into three groups based on the restorative material to be applied: conventional glass ionomer cement, resin-modified glass ionomer cement, and bioactive restorative material. Using cylindrical molds with a diameter of 3.2 mm and a height of 3 mm, restorative materials were applied to the biomaterials in two different methods, contingent on whether adhesive was administered. After all samples were incubated in an oven at 37 °C for 24 h, shear bond strength values were measured utilizing a universal testing device. The obtained data were statistically evaluated using ANOVA and post-hoc Tukey tests. RESULTS The highest shear bond strength value was noted in the Medcem MTA + ACTIVA bioactive restorative material group with adhesive application, while the lowest shear bond strength value was observed in the ProRoot MTA White + Equia Forte HT Fil group without adhesive application (P < 0.05). CONCLUSION Activa Bioactive Restorative may be considered a suitable restorative material in combination with calcium silicate-based biomaterials for vital pulp treatment. The application of adhesives to calcium silicate-based biomaterials can effectively address the technical limitations.
Collapse
Affiliation(s)
| | - Seçkin Aksu
- Department of Pediatric Dentistry, Faculty of Dentistry, Mersin University, Çiftlikköy Campus, Yenişehir, Mersin, Turkey.
| | - Seçil Çalışkan
- Department of Pediatric Dentistry, Faculty of Dentistry, Eskişehir Osmangazi University, Eskişehir, Turkey
| | | |
Collapse
|
15
|
Saber SM, Gomaa SM, Elashiry MM, El-Banna A, Schäfer E. Comparative biological properties of resin-free and resin-based calcium silicate-based endodontic repair materials on human periodontal ligament stem cells. Clin Oral Investig 2023; 27:6757-6768. [PMID: 37796335 PMCID: PMC10630253 DOI: 10.1007/s00784-023-05288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVES To investigate the effect of three different calcium silicate-based materials (CSBM) on the biological behavior of human periodontal ligament stem cells (hPDLSCs). METHODS Eluates of Biodentine, NeoPutty and TheraCal PT prepared at 1:1, 1:2, and 1:4 ratios were extracted under sterile conditions. The cytotoxicity of the extracts to the hPDLSCs was assessed using the MTT assay. Scratch wound healing assay was utilized for assessing cell migration. Scanning electron microscopy was used to detect cell attachment and morphology. Calcium ion release was measured using inductively coupled plasma-optical emission spectrometry; the pH-value was evaluated with a pH-meter. ANOVA with post hoc Tukey test was used for statistical analysis. RESULTS Cell viability was significantly higher for Biodentine and NeoPutty at day 1 with all dilutions (p < 0.05), while at day 3 and day 7 with dilutions 1:2 and 1:4; all materials showed similar behavior (p > 0.05). Biodentine had the highest percentage of cell migration into the scratched area at day 1 for all dilutions (p < 0.05). Stem cells were attached favorably on Biodentine and NeoPutty with evident spreading, and intercellular communications; however, this was not shown for TheraCal PT. Biodentine showed the highest pH values and calcium ion release (p < 0.05). CONCLUSIONS The resin-free CSBM showed better performance and favorable biological effects on hPDLSCs and were therefore considered promising for usage as endodontic repair materials. CLINICAL SIGNIFICANCE Proper selection of materials with favorable impact on the host stem cells is crucial to ensure outcome in different clinical scenarios.
Collapse
Affiliation(s)
- Shehabeldin M Saber
- Department of Endodontics, Faculty of Dentistry, The British University in Egypt (BUE), Cairo, Egypt
- Dental Science Research Group, Health Research Centre of Excellence, The British University in Egypt (BUE), Cairo, Egypt
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Egypt, Cairo, Egypt
| | - Shaimaa M Gomaa
- Dental Science Research Group, Health Research Centre of Excellence, The British University in Egypt (BUE), Cairo, Egypt
| | - Mohamed M Elashiry
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Egypt, Cairo, Egypt
- Department of Endodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ahmed El-Banna
- Department of Biomaterials, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Edgar Schäfer
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, Münster, Germany.
| |
Collapse
|
16
|
El Shafei SF, Raafat SN, Farag EA. Enhanced human periodontal ligament stem cell viability and osteogenic differentiation on two implant materials: An experimental in vitro study. F1000Res 2023; 12:447. [PMID: 37614561 PMCID: PMC10442589 DOI: 10.12688/f1000research.129562.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/25/2023] Open
Abstract
Background: Surface roughness of dental implants impacts the survival of adult periodontal stem cells and rate of differentiation. This research was conducted to test how human periodontal ligament stem cells behaved on yttria stabilized tetragonal zirconia polycrystals and polyetheretherketone (PEEK) discs with different surface topographies. Methods: Discs roughening was prepared by sandblasting. Stem cells were cultivated on zirconia discs with a polished surface, PEEK discs with a polished surface, sandblasted zirconia discs and sandblasted PEEK discs. Cells viability was assessed after 24, 48, 72 hours. Scanning electron microscopy was used to examine the adherence and attachment of cells. Osteoblastic differentiation capacity was studied by checking the mineralization clusters development through alizarin red S staining and alkaline phosphatase assay. ANOVA and the Tukey post hoc test were used for the statistical analysis. Results: Polished PEEK discs showed lower cell viability, whereas roughened sandblasted zirconia and PEEK discs showed the highest proliferation rates and cell viability percent. The osteogenic differentiation was enhanced for rough surfaces in comparison to polished surfaces. Sandblasted zirconia and PEEK discs showed a markedly increased mineralized nodule development and ALP enzyme activity compared to the polished surface and control. Conclusions: Micro- topographies creation on the PEEK implant surface enhances stem cell attachment, viability, and osteogenic differentiation.
Collapse
Affiliation(s)
- Sara F. El Shafei
- Removable Prosthodontics, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | - Shereen N. Raafat
- Department of Pharmacology, Director of Stem Cell and Tissue Culture Hub, Centre of Innovative Dental Sciences (CIDS), Faculty of Dentistry,, The British University in Egypt, Cairo, Egypt
| | - Engy A. Farag
- Fixed Prosthodontics, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
17
|
Lee SB, Lee HJ, Park JB. Bone Morphogenetic Protein-9 Promotes Osteogenic Differentiation and Mineralization in Human Stem-Cell-Derived Spheroids. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1315. [PMID: 37512125 PMCID: PMC10384578 DOI: 10.3390/medicina59071315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Background and Objectives: Alkaline phosphatase activity, mineralized matrix, and osteogenic-related gene expression have been shown to increase in response to bone morphogenetic protein-9 (BMP-9). In this study, spheroids derived from human gingival stem cells were used to determine the effects of BMP-9 on cell survival, osteogenesis, and mineralization. Materials and Methods: Human gingival stem cells were used to produce spheroids and then grown to concentrations of 0, 0.1, 1, 10, and 100 ng/mL with BMP-9. On days 1, 3, 5, and 7, morphological examination was carried out. A live/dead assay and Cell Counting Kit-8 was used to assess the vitality of cells. On days 7 and 14, alkaline phosphatase activity assays were carried out using a commercially available kit to examine the osteogenic differentiation of cell spheroids. Alizarin Red Staining was performed on the 7th and 14th days to evaluate mineralization, and RUNX2 and COL1A1 expression levels were evaluated on the 7th and 14th days using real-time polymerase chain reactions. Results: The BMP-9 added at the measured quantities did not appear to alter the shape of the well-formed spheroids produced by stem cells on day 1. In addition, treatment with BMP-9 at doses of 0, 0.1, 1, 10, or 100 ng/mL did not significantly alter cell diameter. Throughout the whole experimental process, viability was maintained. On day 14, the alkaline phosphatase activity in the groups dosed with 0.1, 1, 10, or 100 ng/mL was statistically higher than that in the unloaded control group (p < 0.05). According to qPCR data, the mRNA expression level of RUNX2 with 1 ng/mL dosing was higher on day 7 compared to that of the unloaded control group (p < 0.05). Conclusions: These findings suggest that BMP-9 can be employed to stimulate early osteogenic differentiation in stem cell spheroids.
Collapse
Affiliation(s)
- Sung-Bin Lee
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyun-Jin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun-Beom Park
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
18
|
Kim M, Lee SH, Shin DH. In Vitro Study of the Biological and Physical Properties of Dual-Cure Resin-Modified Calcium Silicate-Based Cement. Dent J (Basel) 2023; 11:dj11050120. [PMID: 37232772 DOI: 10.3390/dj11050120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The aim of the present study was to compare the biological and mechanical properties of a novel dual-cure, resin-modified calcium silicate material, Theracal PT® (TP), with those of Theracal LC® (TL) and BiodentineTM (BD). METHODS The cell counting kit-8 was used on human dental pulp cells to test cell the viability of the three materials. Antibacterial activity of TP, TL, and BD against Enterococcus faecalis was investigated under anaerobic conditions. The ability of the materials to support odontogenic differentiation was studied by examining the relative gene expression of osteocalcin (OCN), osteopontin (OPN), and Collagen I (ColI) using real-time polymerase chain reaction. For mechanical property tests, microhardness was evaluated using the Vickers microhardness (VHN) test, and the bond strength to the resin was evaluated using a shear bond test machine. RESULTS There was no significant difference in cell viability between TL and TP after 48 h, and BD showed the highest cell viability, while TP showed the highest antibacterial effect. At the 12-h time point, there was no significant difference in ColI and OCN expression between BD and TP, but TP showed a higher expression of OPN than BD. However, at the 48-h time point, ColI and OCN showed higher levels of expression for BD than for TP and TL. At the same time point, only OPN had a higher diffusion for TP than for BD. TP demonstrated a VHN of approximately 30-35. This value was higher than that of TL and lower than that of BD. In contrast to VHN, the shear bond strength to resin was significantly higher for TL and TP than for BD. CONCLUSION TP showed lower biocompatibility than BD but higher OPN expression and antibacterial effects than BD and TL. TP showed higher shear bond strength than BD and higher VHN than TL and BD at the 24-h time point.
Collapse
Affiliation(s)
- Minjung Kim
- Department of Conservative Dentistry, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Sung-Hoon Lee
- Department of Oral Microbiology and Immunology, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Dong-Hoon Shin
- Department of Conservative Dentistry, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
19
|
Ahmed B, Ragab MH, Galhom RA, Hassan HY. Evaluation of dental pulp stem cells behavior after odontogenic differentiation induction by three different bioactive materials on two different scaffolds. BMC Oral Health 2023; 23:252. [PMID: 37127635 PMCID: PMC10150498 DOI: 10.1186/s12903-023-02975-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND To study the odontogenic potential of dental pulp stem cells (DPSCs) after induction with three different bioactive materials: activa bioactive (base/liner) (AB), TheraCal LC (TC), and mineral trioxide aggregate (MTA), when combined with two different types of scaffolds. METHODS DPSCs were isolated from freshly extracted premolars of young orthodontic patients, cultured, expanded to passage 4 (P), and characterized by flow cytometric analysis. DPSCs were seeded onto two scaffolds in contact with different materials (AB, TC, and MTA). The first scaffold contained polycaprolactone-nano-chitosan and synthetic hydroxyapatite (PCL-NC-HA), whereas the second scaffold contained polycaprolactone-nano-chitosan and synthetic Mg-substituted hydroxyapatite (PCL-NC-Mg-HA). DPSC viability and proliferation were evaluated at various time points. To assess odontoblastic differentiation, gene expression analysis of dentin sialophosphoprotein (DSPP) by quantitative real-time polymerase chain reaction (qRT-PCR) and morphological changes in cells were performed using inverted microscope phase contrast images and scanning electron microscopy. The fold-change in DSPP between subgroups was compared using a one-way ANOVA. Tukey's test was used to compare the fold-change in DSPP between the two subgroups in multiple comparisons, and P was set at p < 0.05. RESULTS DSPP expression was significantly higher in the PCL-NC-Mg-HA group than in the PCL-NC-HA group, and scanning electron microscopy revealed a strong attachment of odontoblast-like cells to the scaffold that had a stronger odontogenic differentiation effect on DPSCs than the scaffold that did not contain magnesium. MTA has a significantly higher odontogenic differentiation effect on cultured DPSCs than AB or TC does. The combination of scaffolds and bioactive materials improves DPSCs induction in odontoblast-like cells. CONCLUSIONS The PCL-NC-Mg-HA scaffold showed better odontogenic differentiation effects on cultured DPSCs. Compared to AB and TC, MTA is the most effective bioactive material for inducing the odontogenic differentiation of cultured DPSCs.
Collapse
Affiliation(s)
- Basma Ahmed
- Endodontic Department, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Mai H Ragab
- Endodontic Department, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Rania A Galhom
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hayam Y Hassan
- Endodontic Department, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
20
|
Falakaloğlu S, Yeniçeri Özata M, Plotino G. Micro-shear bond strength of different calcium silicate materials to bulk-fill composite. PeerJ 2023; 11:e15183. [PMID: 37013141 PMCID: PMC10066686 DOI: 10.7717/peerj.15183] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction
This study aimed to compare the micro-shear bond strength (µSBS) performances of two resin-based calcium silicate-based cement (CSC) (TheraCal PT and TheraCal LC), Biodentine, and two modified-MTA CSC materials (NeoMTA 2 and BioMTA+) to bulk-fill restorative material.
Materials and Methods
Fifty 3D printed cylindrical resin blocks with a central hole were used (2 mm in depth and 4 mm in diameter). CSCs were placed in the holes (per each group n = 10) and incubated for 24 h. Cylindrical polyethylene molds (2 mm in height and diameter) were used to place the bulk-fill restorative materials on the CSCs and polymerize for 20 s. Then, all specimens were incubated for 24 h at 37 °C at a humidity of 100%. Specimen’s µSBSs were determined with a universal testing machine. Data were analyzed with one-way ANOVA (Welch) and Tamhane test.
Results
Statistically higher µSBS was found for TheraCal PT (29.91 ± 6.13 MPa) (p < 0.05) respect to all the other materials tested. TheraCal LC (20.23 ± 6.32 MPa) (p > 0.05) reported higher µSBS than NeoMTA 2 (11.49 ± 5.78 MPa) and BioMTA+ (6.45 ± 1.89 MPa) (p < 0.05). There was no statistical difference among TheraCal LC, NeoMTA 2 and Biodentine (15.23 ± 7.37 MPa) and between NeoMTA 2 and BioMTA+ (p > 0.05).
Conclusion
Choosing TheraCal PT as the pulp capping material may increase the adhesion and µSBS to the bulk-fill composite superstructure and sealing ability.
Collapse
Affiliation(s)
- Seda Falakaloğlu
- Department of Endodontics, Faculty of Dentistry, Istanbul Health and Technology University, Istanbul, Turkey
- Current Affiliation: Afyonkarahisar Health Sciences University, Faculty of Dentistry, Department of Endodontics, Afyonkarahisar, Turkey
| | - Merve Yeniçeri Özata
- Department of Endodontics, Faculty of Dentistry, Dicle University, Diyarbakır, Turkey
| | - Gianluca Plotino
- Private Practice, Grande Plotino & Torsello—Studio di Odontoiatria, Via Calabria, Rome, Italy
| |
Collapse
|
21
|
Saber S, Raafat S, Elashiry M, El-Banna A, Schäfer E. Effect of Different Sealers on the Cytocompatibility and Osteogenic Potential of Human Periodontal Ligament Stem Cells: An In Vitro Study. J Clin Med 2023; 12:jcm12062344. [PMID: 36983344 PMCID: PMC10056919 DOI: 10.3390/jcm12062344] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Background: There is tendency for unavoidable sealer extrusion in some clinical cases. This might adversely affect host stem cells and affect healing. This study aimed to investigate the effect of different sealers on the cytocompatibility and osteogenic potential of human periodontal ligament stem cells (hPDLSCs). Methods: The cytotoxic effect of the extracted elutes of VDW.1Seal (VDW.1), Endosequence BC Sealer HiFlow (ES), GuttaFlow-2 (GF), and ADSeal (AD-S) on the hPDLSCs was determined using the MTT assay. Cell proliferation and migration were assessed by the scratch wound healing assay. Osteogenic differentiation potential was assessed. Measurement of pH values and calcium ions release was performed. Results: GF had a significantly higher percentage of viable cells. The cell migration assay showed that GF demonstrated the lowest open wound area percentage. GF and AD-S showed the highest calcium nodule deposition. GF demonstrated higher ALP activity than ES. Expression of RUNX2 and OC genes was similar for all sealers, while OPG gene expression was significantly higher for VDW.1 and GF. ES and AD-S displayed the highest pH values on day 1. Calcium ion release of ES and VDW.1 was significantly the highest. Conclusions: GuttaFlow-2 and VDW.1Seal sealers have favorable behavior toward host stem cells.
Collapse
Affiliation(s)
- Shehabeldin Saber
- Department of Endodontics, Faculty of Dentistry, The British University in Egypt (BUE), El Sherouk City 11837, Egypt
- Centre for Innovative Dental Sciences (CIDS), Faculty of Dentistry, The British University in Egypt (BUE), El Sherouk City 11837, Egypt;
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo 11566, Egypt;
- Correspondence:
| | - Shereen Raafat
- Centre for Innovative Dental Sciences (CIDS), Faculty of Dentistry, The British University in Egypt (BUE), El Sherouk City 11837, Egypt;
- Pharmacology Department, Faculty of Dentistry, The British University in Egypt (BUE), El Sherouk City 11837, Egypt
| | - Mohamed Elashiry
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo 11566, Egypt;
| | - Ahmed El-Banna
- Department of Biomaterials, Faculty of Dentistry, Ain Shams University, Cairo 11566, Egypt;
| | - Edgar Schäfer
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, 48149 Münster, Germany;
| |
Collapse
|
22
|
Analysis of Pulp Tissue Viability and Cytotoxicity of Pulp Capping Agents. J Clin Med 2023; 12:jcm12020539. [PMID: 36675467 PMCID: PMC9861128 DOI: 10.3390/jcm12020539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
The present research study assessed the cell viability and cytotoxic effect of mineral tri-oxide aggregate (MTA), Tetric N-Bond Universal bonding agent, Theracal PT (pulpotomy treatment), and platelet-rich fibrin (PRF) as pulp capping agents on human dental pulp stem cells (hDPSCs). The cells were isolated from the pulp tissue of an extracted healthy permanent third molar. After four passages in Dulbecco’s Modified Eagle’s Medium, the primary cells were employed for the investigation. The test materials and untreated cells (negative control) were subjected to an Methylthiazol-diphenyl-tetrazolium (MTT) cytotoxicity assay and assessed at 24-, 48-, and 72-h intervals. The Wilcoxon matched-paired t-test and Kruskal−Wallis analysis of variance (ANOVA) test were applied (p < 0.05). PRF imparted the highest cell viability at 48 h (p < 0.001), followed by MTA, Theracal PT, and Tetric N-Bond. Similarly, PRF had the highest potential to enhance cell proliferation and differentiation (p < 0.001), followed by Theracal PT, MTA, and the bonding agent at the end of 24 h and 72 h, respectively. Finally, PRF sustained the viability of human primary dental pulp stem cells more effectively than Theracal PT and MTA; however, the application of a Tetric N-Bond as a pulp capping agent was ineffective.
Collapse
|
23
|
Kato G, Gomes PS, Neppelenbroek KH, Rodrigues C, Fernandes MH, Grenho L. Fast-Setting Calcium Silicate-Based Pulp Capping Cements-Integrated Antibacterial, Irritation and Cytocompatibility Assessment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:450. [PMID: 36614788 PMCID: PMC9822223 DOI: 10.3390/ma16010450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Calcium silicate-based cements (CSCs) are endodontic materials widely used in vital pulp-capping approaches. Concerning the clinical application, the reduced set time and pre-mixed formulations are relevant characteristics during the operative management of pulpal exposure, aiming to optimise the work time and improve cross-infection/asepsis control. Additionally, clinical success seems to be greatly dependent on the biological performance of the materials that directly contact the living pulp. As such, this work approaches an integrative biological characterisation (i.e., antibacterial, irritation, and cytocompatibility assays) of three fast-setting CSCs-BiodentineTM, TotalFill® BC RRM™ Fast Putty, and Theracal LC®. These cements, after setting for 24 h, presented the expected topography and elemental composition (assessed by scanning electron microscopy, coupled with EDS analysis), in accordance with the information of the manufacturer. The set cements displayed a significant and similar antibiofilm activity against S. mutans, in a direct contact assay. Twenty-four-hour eluates were not irritant in the standardised CAM assay, but elicited distinct dose- and time-dependent cytotoxicity profiles on fibroblastic cells-i.e., Biodentine was devoid of toxicity, TotalFill presented a slight dose-dependent initial toxicity that was easily overcome, and Theracal LC was deleterious at high concentrations. When compared to long-setting ProRoot MTA cement, which highlighted the pursued integrative approach, Biodentine presented a similar profile, but TotalFill and Theracal LC displayed a poorer performance regarding antibiofilm activity/cytocompatibility features, and Theracal LC suggested eventual safety concerns.
Collapse
Affiliation(s)
- Gabriel Kato
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
- LAQV/Requimte, University of Porto, 4100-007 Porto, Portugal
| | - Pedro Sousa Gomes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
- LAQV/Requimte, University of Porto, 4100-007 Porto, Portugal
| | - Karin Hermana Neppelenbroek
- Department of Periodontics and Prosthodontics, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru 17012-901, SP, Brazil
| | - Cláudia Rodrigues
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
| | - Maria Helena Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
- LAQV/Requimte, University of Porto, 4100-007 Porto, Portugal
| | - Liliana Grenho
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
- LAQV/Requimte, University of Porto, 4100-007 Porto, Portugal
| |
Collapse
|
24
|
Bioactivity of Dental Restorative Materials: FDI Policy Statement. Int Dent J 2022; 73:21-27. [PMID: 36577639 PMCID: PMC9875272 DOI: 10.1016/j.identj.2022.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 12/28/2022] Open
Abstract
The term bioactivity is being increasingly used in medicine and dentistry. Due to its positive connotation, it is frequently utilised for advertising dental restorative materials. However, there is confusion about what the term means, and concerns have been raised about its potential overuse. Therefore, FDI decided to publish a Policy Statement about the bioactivity of dental restorative materials to clarify the term and provide some caveats for its use in advertising. Background information for this Policy Statement was taken from the current literature, mainly from the PubMed database and the internet. Bioactive restorative materials should have beneficial/desired effects. These effects should be local, intended, and nontoxic and should not interfere with a material's principal purpose, namely dental tissue replacement. Three mechanisms for the bioactivity of such materials have been identified: purely biological, mixed biological/chemical, or strictly chemical. Therefore, when the term bioactivity is used in an advertisement or in a description of a dental restorative material, scientific evidence (in vitro or in situ, and preferably in clinical studies) should be provided describing the mechanism of action, the duration of the effect (especially for materials releasing antibacterial substances), and the lack of significant adverse biological side effects (including the development and spread of antimicrobial resistance). Finally, it should be documented that the prime purpose, for instance, to be used to rebuild the form and function of lost tooth substance or lost teeth, is not impaired, as demonstrated by data from in vitro and clinical studies. The use of the term bioactive dental restorative material in material advertisement/information should be restricted to materials that fulfil all the requirements as described in the FDI Policy Statement.
Collapse
|
25
|
Comparative chemical properties, bioactivity, and cytotoxicity of resin-modified calcium silicate-based pulp capping materials on human dental pulp stem cells. Clin Oral Investig 2022; 26:6839-6853. [PMID: 36104606 DOI: 10.1007/s00784-022-04713-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/07/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES This study investigated the cytotoxicity, the residual monomer release, degree of conversion (DC), calcium ion (Ca2+) release, and crystal structure of TheraCal PT (ThPT) by comparison with TheraCal LC (ThLC) and mineral trioxide aggregate (MTA). MATERIALS AND METHODS The cytotoxicity of the cured materials was evaluated on human dental pulp stem cells (hDPSCs) isolated from third molars by the water-soluble tetrazolium salt (WST-1) method. The monomer release and DC of the resin-containing materials were analyzed by high-performance liquid chromatography (HPLC) and Fourier transform infrared (FTIR), respectively. The chemical composition and Ca2+ release of the materials were determined by scanning electronic microscopy-energy-dispersive spectroscopy (SEM-EDS), X-ray diffractometry (XRD), and inductively coupled plasma-optical emission spectroscopy (ICP-OES), respectively. Statistical differences were evaluated with one-way ANOVA, repeated measure ANOVA, and the Tukey test (p < 0.05). RESULTS MTA showed significantly lower cytotoxicity than either ThLC or ThPT after 1, 3, and 7 days (p < 0.05). TEGDMA release of ThPT is significantly higher than ThLC (p < 0.05). All materials showed calcium Ca2+ release, with MTA significantly higher than the others (p < 0.05). CONCLUSIONS MTA showed low cytotoxicity and high Ca2+ release compared to ThLC and ThPT. CLINICAL RELEVANCE The cytotoxicity and residual monomer release of ThLC and ThPT may raise concerns about the viability of hDPSCs. Further investigations with the use of in vivo research models are required to validate in vitro bioactivity properties and the potential adverse biological effects of ThLC and ThPT on hDPSCs.
Collapse
|
26
|
The Cytotoxicity and Genotoxicity of Bioactive Dental Materials. Cells 2022; 11:cells11203238. [PMID: 36291107 PMCID: PMC9600439 DOI: 10.3390/cells11203238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 12/31/2022] Open
Abstract
The promotion of biologically based treatment strategies in restorative dentistry is of paramount importance, as invasive treatments should be avoided to maintain the tooth's vitality. This study aimed to assess the biocompatibility of commercially available bioactive materials that can be used for dental pulp capping. The study was performed with a monocyte/macrophage peripheral blood SC cell line (ATCC CRL-9855) on the following six specific bioactive materials: ProRoot MTA (Dentsply Sirona), MTA Angelus (Angelus), Biodentine (Septodont), TheraCal LC (Bisco), ACTIVA BioACTIVE (Pulpdent) and Predicta Bioactive Bulk (Parkell). The cytotoxicity of the investigated agents was measured using a resazurin-based cell viability assay, while the genotoxicity was evaluated using an alkaline comet assay. Additionally, flow cytometry (FC) apoptosis detection was conducted with a FITC (fluorescein isothiocyanate) Annexin V Apoptosis Detection Kit I. FC cell-cycle arrest assessment was carried out with propidium iodide staining. The results of this study showed no significant cytotoxicity and genotoxicity (p > 0.05) in ProRoot MTA, MTA Angelus, Biodentine, ACTIVA BioACTIVE and Predicta Bioactive. Conversely, TheraCal LC presented a significant decrease (p < 0.001). In conclusion, due to excellent biocompatibility and low cytotoxicity, MTA, Biodentine, ACTIVA BioACTIVE and Predicta Bioactive may be suitable for pulp capping treatments. On the other hand, due to the high cytotoxicity of TheraCal LC, its use should be avoided in vital pulp therapies.
Collapse
|
27
|
Toledano-Osorio M, López-García S, Osorio R, Toledano M, García-Bernal D, Sánchez-Bautista S, Rodríguez-Lozano FJ. Dexamethasone and Doxycycline Doped Nanoparticles Increase the Differentiation Potential of Human Bone Marrow Stem Cells. Pharmaceutics 2022; 14:pharmaceutics14091865. [PMID: 36145613 PMCID: PMC9505251 DOI: 10.3390/pharmaceutics14091865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/21/2022] Open
Abstract
Non-resorbable polymeric nanoparticles (NPs) are proposed as an adjunctive treatment for bone regenerative strategies. The present in vitro investigation aimed to evaluate the effect of the different prototypes of bioactive NPs loaded with zinc (Zn-NPs), doxycycline (Dox-NPs) or dexamethasone (Dex-NPs) on the viability, morphology, migration, adhesion, osteoblastic differentiation, and mineralization potential of human bone marrow stem cells (hBMMSCs). Cell viability, proliferation, and differentiation were assessed using a resaruzin-based assay, cell cycle analysis, cell migration evaluation, cell cytoskeleton staining analysis, Alizarin Red S staining, and expression of the osteogenic-related genes by a real-time quantitative polymerase chain reaction (RT-qPCR). One-Way ANOVA and Tukey’s test were employed. The resazurin assay showed adequate cell viability considering all concentrations and types of NPs at 24, 48, and 72 h of culture. The cell cycle analysis revealed a regular cell cycle profile at 0.1, 1, and 10 µg/mL, whereas 100 µg/mL produced an arrest of cells in the S phase. Cells cultured with 0.1 and 1 µg/mL NP concentrations showed a similar migration capacity to the untreated group. After 21 days, mineralization was increased by all the NPs prototypes. Dox-NPs and Dex-NPs produced a generalized up-regulation of the osteogenic-related genes. Dex-NPs and Dox-NPs exhibited excellent osteogenic potential and promoted hBMMSC differentiation. Future investigations, both in vitro and in vivo, are required to confirm the suitability of these NPs for their clinical application.
Collapse
Affiliation(s)
- Manuel Toledano-Osorio
- Faculty of Dentistry, University of Granada Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
- Medicina Clínica y Salud Pública Programm, University of Granada, 18071 Granada, Spain
| | - Sergio López-García
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain
| | - Raquel Osorio
- Faculty of Dentistry, University of Granada Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-24-37-89
| | - Manuel Toledano
- Faculty of Dentistry, University of Granada Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine and Odontology, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
| | - Sonia Sánchez-Bautista
- Department of Health Sciences, Catholic University San Antonio of Murcia, 30107 Murcia, Spain
| | - Francisco Javier Rodríguez-Lozano
- Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine and Odontology, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
28
|
Ilisulu SC, Oztop NE, Akkoc T, Seymen F. In vitro evaluation of pediatric restorative materials on human dental pulp stem cells. Tissue Cell 2022; 77:101871. [DOI: 10.1016/j.tice.2022.101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
|
29
|
Sismanoglu S, Ercal P. Effects of calcium silicate-based cements on odonto/osteogenic differentiation potential in mesenchymal stem cells. AUST ENDOD J 2022; 49:66-74. [PMID: 35229930 DOI: 10.1111/aej.12615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 02/13/2022] [Indexed: 11/30/2022]
Abstract
The objective of this study was to evaluate the biological effects and odonto/osteogenic differentiation potential of Biodentine, NeoMTA Plus and TheraCal LC in tooth germ-derived stem cells (TGSCs). TGSCs were exposed to the material extracts. Biocompatibility was tested with MTS cell proliferation assay. Odonto/osteogenic differentiation was assessed with alkaline phosphatase (ALP) activity and mRNA gene expressions (RUNX2, DSPP and DMP-1). Scanning electronic microscopy/energy-dispersive X-ray (SEM/EDX) analysis and pH analysis were also performed for the materials. Data were evaluated using the one-way ANOVA and Tukey's tests. TGSCs remained viable after 7 days of incubation with all tested materials. Biodentine and NeoMTA Plus showed high ALP activity and increased expression of RUNX2, DSPP and DMP-1 compared to that of TheraCal LC. All materials can induce odonto/osteogenic differentiation of MSCs in various levels. Biocompatibility and odonto/osteogenic differentiation potential of Biodentine and NeoMTA Plus are similar and superior to that of TheraCal LC.
Collapse
Affiliation(s)
- Soner Sismanoglu
- Department of Restorative Dentistry, Faculty of Dentistry, Altınbaş University, Istanbul, Turkey
| | - Pinar Ercal
- Centre for Oral Immunobiology and Regenerative Medicine and Centre for Oral Clinical Research, Institute of Dentistry, Queen Mary University London (QMUL), London, UK
| |
Collapse
|
30
|
Elbanna A, Atta D, Sherief D. In vitro bioactivity of newly introduced dual-cured resin-modified calcium silicate cement. Dent Res J (Isfahan) 2022; 19:1. [PMID: 35308449 PMCID: PMC8927947 DOI: 10.4103/1735-3327.336686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/21/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
Background: This study was designed to investigate the in vitro bioactivity of a new dual cured calcium silicate cement (TheraCal PT) compared to its light cured (TheraCal LC) and chemically set (Biodentine) counterparts. Materials and Methods: The study is an in vitro original research article. Prepared cements discs were immersed in deionized water. Ca2+ release was evaluated using inductively coupled plasma-optical emission spectrometry while pH was assessed using a pH meter after 1, 14, and 28 days. Discs for surface characterization were immersed in phosphate-buffered saline (PBS) and were examined using an environmental scanning electron microscope with energy dispersive X-ray (ESEM/EDX), immediately after setting and at 1, 14, and 28 days intervals after that. Attenuated total reflectance (ATR)/Fourier transform infrared (FTIR) and Raman spectroscopy analyses were performed after setting and after 28 days storage in PBS. Statistical analysis was performed using the two-way repeated measure analysis of variance test followed by Bonferroni test for multiple comparisons (P < 0.05). Results: Biodentine exhibited the highest mean values for Ca2+ release (792,639,278 ppm) and pH (10.99, 12.7, 11.54) at all time intervals. ESEM/EDX displayed a continuous layer of calcium phosphate formed by Biodentine and TheraCal LC while TheraCal PT developed scarce interrupted precipitates after immersion in PBS. ATR/FTIR and Raman spectroscopy for the formed precipitates confirmed the presence of phosphate and Ca (OH) 2 in Biodentine, TheraCal LC and TheraCal PT. Conclusion: TheraCal PT exhibited limited in vitro bioactivity which may limit its prognosis in clinical applications for vital pulp therapy. TheraCal LC is considered a potential bioactive calcium silicate cement despite its lower Ca2+ release compared to Biodentine. Highest bioactivity was observed in Biodentine.
Collapse
|
31
|
Sanz JL, Soler-Doria A, López-García S, García-Bernal D, Rodríguez-Lozano FJ, Lozano A, Llena C, Forner L, Guerrero-Gironés J, Melo M. Comparative Biological Properties and Mineralization Potential of 3 Endodontic Materials for Vital Pulp Therapy: Theracal PT, Theracal LC, and Biodentine on Human Dental Pulp Stem Cells. J Endod 2021; 47:1896-1906. [PMID: 34425148 DOI: 10.1016/j.joen.2021.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The aim of this study was to assess the biological properties and mineralization potential of the new Theracal PT (Bisco Inc, Schaumburg, IL) compared with its predecessor Theracal LC (Bisco Inc) and the hydraulic silicate-based cement Biodentine (Septodont, Saint-Maur-des-Fossés, France) on human dental pulp stem cells (hDPSCs) in vitro. METHODS Standardized sample discs were obtained for each material (n = 30) together with 1:1, 1:2, and 1:4 material eluates. Previously characterized hDPSCs were cultured with the different materials in standardized conditions, and the following assays were performed: a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, a wound healing assay, Annexin-V-FITC and 7-AAD staining (BD Biosciences, San Jose, CA), reactive oxygen species production analysis, cell adhesion and morphology evaluation via scanning electron microscopy and immunofluorescence, quantification of the expression of osteo/odontogenic markers via real-time quantitative reverse-transcriptase polymerase chain reaction, and alizarin red S staining. Statistical significance was established at P < .05. RESULTS All of the tested dilutions of Theracal LC exhibited a significantly higher cytotoxicity and reactive oxygen species production (P < .001) and a lower cell migration rate than the control group (hDPSCs cultured in growth medium without material extracts) at all of the measured time points (P < .001). Both 1:4 Theracal PT and Biodentine-treated hDPSCs exhibited similar levels of cytocompatibility to that of the control group, a significant up-regulation of at least 1 odontogenic marker (Biodentine: dentin sialophosphoprotein (P < .05); Theracal PT: osteonectin and runt-related transcription factor 2 [P < .001]), and a significantly higher mineralized nodule formation (P < .001). CONCLUSIONS The newly introduced TheraCal PT offers an improved in vitro cytocompatibility and mineralization potential on hDPSCs compared with its predecessor, TheraCal LC, and comparable biological properties to Biodentine.
Collapse
Affiliation(s)
- José Luis Sanz
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
| | - Anna Soler-Doria
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
| | - Sergio López-García
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, IMIB Arrixaca, University of Murcia, Murcia, Spain; Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, IMIB Arrixaca, University of Murcia, Murcia, Spain
| | - Francisco J Rodríguez-Lozano
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, IMIB Arrixaca, University of Murcia, Murcia, Spain; Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Adrián Lozano
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
| | - Carmen Llena
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
| | - Leopoldo Forner
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
| | - Julia Guerrero-Gironés
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, Murcia, Spain.
| | - María Melo
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
| |
Collapse
|
32
|
Biomineralization potential and biological properties of a new tantalum oxide (Ta 2O 5)-containing calcium silicate cement. Clin Oral Investig 2021; 26:1427-1441. [PMID: 34382106 PMCID: PMC8816786 DOI: 10.1007/s00784-021-04117-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/01/2021] [Indexed: 12/16/2022]
Abstract
Objective The present study evaluated the biological effects and biomineralization potential of a new tantalum oxide (Ta2O5)–containing material designed for vital pulp therapy or perforation repair (NeoMTA 2), compared to NeoMTA Plus and Bio-C Repair. Material and methods Human dental pulp stem cells (hDPSCs) were exposed to different eluates from NeoMTA Plus, NeoMTA 2, and Bio-C Repair. Ion release from each material was determined using inductively coupled plasma-optical emission spectrometry (ICP-MS). The biological experiments performed were MTT assays, apoptosis/necrosis assays, adhesion assays, migration assays, morphology evaluation, and reactive oxygen species (ROS) production analysis. Biomineralization was assessed by Alizarin red S staining. Finally, osteo/odontogenic gene expression was determined by real-time quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR). Data were analyzed using one-way ANOVA followed by Tukey’s multiple comparison test. Results NeoMTA 2 displayed a significantly higher calcium release compared to the other materials (p < 0.05). When hDPSCs were cultured in presence of the different material eluates, all groups exhibited similar hDPSC viability and migration rates when compared to untreated cells. Substantial cell attachment and spreading were observed in all materials’ surfaces, without significant differences. hDPSCs treated with NeoMTA 2 displayed an upregulation of ALP, Col1A1, RUNX2 (p < 0.001), ON, and DSPP genes (p < 0.05), and showed the highest mineralization potential compared to other groups (p < 0.001). Finally, the more concentrated eluates from these materials, specially NeoMTA Plus and NeoMTA 2, promoted higher ROS production in hDPSCs compared to Bio-C Repair and control cells (p < 0.001), although these ROS levels did not result in increased cell death. Conclusions The new tantalum oxide (Ta2O5)–containing material shows an adequate cytocompatibility and the ability to promote biomineralization without using chemical osteogenic inducers, showing great potential as a new material for vital pulp therapy. Clinical relevance NeoMTA 2 seems to be a promising material for vital pulp therapy. Further studies considering its biocompatibility and biomineralization potential are necessary.
Collapse
|
33
|
Karobari MI, Basheer SN, Sayed FR, Shaikh S, Agwan MAS, Marya A, Messina P, Scardina GA. An In Vitro Stereomicroscopic Evaluation of Bioactivity between Neo MTA Plus, Pro Root MTA, BIODENTINE & Glass Ionomer Cement Using Dye Penetration Method. MATERIALS 2021; 14:ma14123159. [PMID: 34201321 PMCID: PMC8230002 DOI: 10.3390/ma14123159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/24/2022]
Abstract
The ideal root end filling material should form a tight seal in the root canal by adhering to the cavity walls. Several materials have been used for root end filling. The present study aims to find out and compare the bioactivity of Neo MTA Plus, Pro Root MTA White, BIODENTINE & glass ionomer cement as root end filling materials using 1% methylene blue as tracer. Materials and methods: 80 extracted human permanent maxillary anterior teeth were used in the study. They were divided into four groups. Specimens were sectioned transversely in the cervical area to separate the crown from the root. The root canal was obturated with gutta percha and zinc oxide eugenol sealers. Thereafter, each sample was resected apically by removing 3 mm of the apex and filled with different materials. Samples were kept in buffering solution at 37 °C until the recommended evaluation periods. The specimens were then suspended in 1% methylene blue for 24 h, prior to the analysis. The teeth were then sectioned, and dye penetration was examined, photographed, and evaluated under a stereomicroscope. Results: Vertical dye penetration showed significant differences across different groups. The minimum dye penetration was seen in Neo MTA plus followed by BIODENTINE, Pro Root MTA and maximum in GIC. There was no significant difference in dye penetration between Neo MTA plus and BIODENTINE both at fifteen days and one-month intervals. Conclusion: The present study suggests Neo MTA plus and BIODENTINE should be the preferred material for root end filling.
Collapse
Affiliation(s)
- Mohmed Isaqali Karobari
- Conservative Dentistry Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Conservative Dentistry & Endodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences University, Chennai 600077, Tamil Nadu, India
- Correspondence: (M.I.K.); (G.A.S.)
| | - Syed Nahid Basheer
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | | | - Sufiyan Shaikh
- Happy Mouth Dental Clinic, Mumbai 400018, Maharashtra, India;
| | - Muhammad Atif Saleem Agwan
- Department of Restorative Dentistry, College of Dentistry in Alrass, Qassim University, Ar Rass 52719, Saudi Arabia;
| | - Anand Marya
- Department of Orthodontics, University of Puthisastra, Phnom Penh 12211, Cambodia;
| | - Pietro Messina
- Department of Surgical, Oncological and Stomatological Disciplines, University of Palermo, 90133 Palermo, Italy;
| | - Giuseppe Alessandro Scardina
- Department of Surgical, Oncological and Stomatological Disciplines, University of Palermo, 90133 Palermo, Italy;
- Correspondence: (M.I.K.); (G.A.S.)
| |
Collapse
|
34
|
Song W, Li S, Tang Q, Chen L, Yuan Z. In vitro biocompatibility and bioactivity of calcium silicate‑based bioceramics in endodontics (Review). Int J Mol Med 2021; 48:128. [PMID: 34013376 PMCID: PMC8136140 DOI: 10.3892/ijmm.2021.4961] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/19/2021] [Indexed: 12/26/2022] Open
Abstract
Calcium silicate-based bioceramics have been applied in endodontics as advantageous materials for years. In addition to excellent physical and chemical properties, the biocompatibility and bioactivity of calcium silicate-based bioceramics also serve an important role in endodontics according to previous research reports. Firstly, bioceramics affect cellular behavior of cells such as stem cells, osteoblasts, osteoclasts, fibroblasts and immune cells. On the other hand, cell reaction to bioceramics determines the effect of wound healing and tissue repair following bioceramics implantation. The aim of the present review was to provide an overview of calcium silicate-based bioceramics currently applied in endodontics, including mineral trioxide aggregate, Bioaggregate, Biodentine and iRoot, focusing on their in vitro biocompatibility and bioactivity. Understanding their underlying mechanism may help to ensure these materials are applied appropriately in endodontics.
Collapse
Affiliation(s)
- Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shue Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|