1
|
Bugajova M, Raudenska M, Hanelova K, Navratil J, Gumulec J, Petrlak F, Vicar T, Hrachovinova S, Masarik M, Kalfert D, Grega M, Plzak J, Betka J, Balvan J. Glutamine and serum starvation alters the ATP production, oxidative stress, and abundance of mitochondrial RNAs in extracellular vesicles produced by cancer cells. Sci Rep 2024; 14:25815. [PMID: 39468126 PMCID: PMC11519472 DOI: 10.1038/s41598-024-73943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Induction of autophagy represents an effective survival strategy for nutrient-deprived or stressed cancer cells. Autophagy contributes to the modulation of communication within the tumor microenvironment. Here, we conducted a study of the metabolic and signaling implications associated with autophagy induced by glutamine (Gln) and serum starvation and PI3K/mTOR inhibitor and autophagy inducer NVP-BEZ235 (BEZ) in the head and neck squamous cell carcinoma (HNSCC) cell line FaDu. We compared the effect of these different types of autophagy induction on ATP production, lipid peroxidation, mitophagy, RNA cargo of extracellular vesicles (EVs), and EVs-associated cytokine secretome of cancer cells. Both BEZ and starvation resulted in a decline in ATP production. Simultaneously, Gln starvation enhanced oxidative damage of cancer cells by lipid peroxidation. In starved cells, there was a discernible fragmentation of the mitochondrial network coupled with an increase in the presence of tumor susceptibility gene 101 (TSG101) on the mitochondrial membrane, indicative of the sorting of mitochondrial cargo into EVs. Consequently, the abundance of mitochondrial RNAs (mtRNAs) in EVs released by FaDu cells was enhanced. Notably, mtRNAs were also detectable in EVs isolated from the serum of both HNSCC patients and healthy controls. Starvation and BEZ reduced the production of EVs by cancer cells, yet the characteristic molecular profile of these EVs remained unchanged. We also found that alterations in the release of inflammatory cytokines constitute a principal response to autophagy induction. Importantly, the specific mechanism driving autophagy induction significantly influenced the composition of the EVs-associated cytokine secretome.
Collapse
Affiliation(s)
- Maria Bugajova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Klara Hanelova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Jiri Navratil
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Frantisek Petrlak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Tomas Vicar
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Sarka Hrachovinova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, CZ- 625 00, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - David Kalfert
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, V Uvalu 84, Prague, CZ-15006, Czech Republic
| | - Marek Grega
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University, University Hospital Motol/ V Uvalu 84, Prague 5, CZ-15006, Czech Republic
| | - Jan Plzak
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, V Uvalu 84, Prague, CZ-15006, Czech Republic
| | - Jan Betka
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, V Uvalu 84, Prague, CZ-15006, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
2
|
Shao F, Hu J, Zhang P, Akarapipad P, Park JS, Lei H, Hsieh K, Wang TH. Enhanced CRISPR/Cas-Based Immunoassay through Magnetic Proximity Extension and Detection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.06.24313206. [PMID: 39314939 PMCID: PMC11419220 DOI: 10.1101/2024.09.06.24313206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-associated systems have recently emerged as a focal point for developing next-generation molecular diagnosis, particularly for nucleic acid detection. However, the detection of proteins is equally critical across diverse applications in biology, medicine, and the food industry, especially for diagnosing and prognosing diseases like cancer, Alzheimer's and cardiovascular conditions. Despite recent efforts to adapt CRISPR/Cas systems for protein detection with immunoassays, these methods typically achieved sensitivity only in the femtomolar to picomolar range, underscoring the need for enhanced detection capabilities. To address this, we developed CRISPR-AMPED, an innovative CRISPR/Cas-based immunoassay enhanced by magnetic proximity extension and detection. This approach combines proximity extension assay (PEA) with magnetic beads that converts protein into DNA barcodes for quantification with effective washing steps to minimize non-specific binding and hybridization, therefore reducing background noise and increasing detection sensitivity. The resulting DNA barcodes are then detected through isothermal nucleic acid amplification testing (NAAT) using recombinase polymerase amplification (RPA) coupled with the CRISPR/Cas12a system, replacing the traditional PCR. This integration eliminates the need for thermocycling and bulky equipment, reduces amplification time, and provides simultaneous target and signal amplification, thereby significantly boosting detection sensitivity. CRISPR-AMPED achieves attomolar level sensitivity, surpassing ELISA by over three orders of magnitude and outperforming existing CRISPR/Cas-based detection systems. Additionally, our smartphone-based detection device demonstrates potential for point-of-care applications, and the digital format extends dynamic range and enhances quantitation precision. We believe CRISPR-AMPED represents a significant advancement in the field of protein detection.
Collapse
|
3
|
Miller ZA, Muthuswami S, Mueller A, Ma RZ, Sywanycz SM, Naik A, Huang L, Brody RM, Diab A, Carey RM, Lee RJ. GLUT1 inhibitor BAY-876 induces apoptosis and enhances anti-cancer effects of bitter receptor agonists in head and neck squamous carcinoma cells. Cell Death Discov 2024; 10:339. [PMID: 39060287 PMCID: PMC11282258 DOI: 10.1038/s41420-024-02106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are cancers that arise in the mucosa of the upper aerodigestive tract. The five-year patient survival rate is ~50%. Treatment includes surgery, radiation, and/or chemotherapy and is associated with lasting effects even when successful in irradicating the disease. New molecular targets and therapies must be identified to improve outcomes for HNSCC patients. We recently identified bitter taste receptors (taste family 2 receptors, or T2Rs) as a novel candidate family of receptors that activate apoptosis in HNSCC cells through mitochondrial Ca2+ overload and depolarization. We hypothesized that targeting another component of tumor cell metabolism, namely glycolysis, may increase the efficacy of T2R-directed therapies. GLUT1 (SLC2A1) is a facilitated-diffusion glucose transporter expressed by many cancer cells to fuel their increased rates of glycolysis. GLUT1 is already being investigated as a possible cancer target, but studies in HNSCCs are limited. Examination of immortalized HNSCC cells, patient samples, and The Cancer Genome Atlas revealed high expression of GLUT1 and upregulation in some patient tumor samples. HNSCC cells and tumor tissue express GLUT1 on the plasma membrane and within the cytoplasm (perinuclear, likely co-localized with the Golgi apparatus). We investigated the effects of a recently developed small molecule inhibitor of GLUT1, BAY-876. This compound decreased HNSCC glucose uptake, viability, and metabolism and induced apoptosis. Moreover, BAY-876 had enhanced effects on apoptosis when combined at low concentrations with T2R bitter taste receptor agonists. Notably, BAY-876 also decreased TNFα-induced IL-8 production, indicating an additional mechanism of possible tumor-suppressive effects. Our study demonstrates that targeting GLUT1 via BAY-876 to kill HNSCC cells, particularly in combination with T2R agonists, is a potential novel treatment strategy worth exploring further in future translational studies.
Collapse
Affiliation(s)
- Zoey A Miller
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Pharmacology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Sahil Muthuswami
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Arielle Mueller
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ray Z Ma
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Sarah M Sywanycz
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Anusha Naik
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Lily Huang
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Robert M Brody
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ahmed Diab
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ryan M Carey
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Liu J, Li J, Jin F, Li Q, Zhao G, Wu L, Li X, Xia J, Cheng N. dbCRAF: a curated knowledgebase for regulation of radiation response in human cancer. NAR Cancer 2024; 6:zcae008. [PMID: 38406264 PMCID: PMC10894039 DOI: 10.1093/narcan/zcae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/10/2023] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
Radiation therapy (RT) is one of the primary treatment modalities of cancer, with 40-60% of cancer patients benefiting from RT during their treatment course. The intrinsic radiosensitivity or acquired radioresistance of tumor cells would affect the response to RT and clinical outcomes in patients. Thus, mining the regulatory mechanisms in tumor radiosensitivity or radioresistance that have been verified by biological experiments and computational analysis methods will enhance the overall understanding of RT. Here, we describe a comprehensive database dbCRAF (http://dbCRAF.xialab.info/) to document and annotate the factors (1,677 genes, 49 proteins and 612 radiosensitizers) linked with radiation response, including radiosensitivity, radioresistance in cancer cells and prognosis in cancer patients receiving RT. On the one hand, dbCRAF enables researchers to directly access knowledge for regulation of radiation response in human cancer buried in the vast literature. On the other hand, dbCRAF provides four flexible modules to analyze and visualize the functional relationship between these factors and clinical outcome, KEGG pathway and target genes. In conclusion, dbCRAF serves as a valuable resource for elucidating the regulatory mechanisms of radiation response in human cancers as well as for the improvement of RT options.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Jing Li
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Fangfang Jin
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Qian Li
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guoping Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Lijun Wu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Xiaoyan Li
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Junfeng Xia
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Na Cheng
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
5
|
Rashidova G, Tilegen M, Pham TT, Bekmurzayeva A, Tosi D. Functionalized optical fiber ball-shaped biosensor for label-free, low-limit detection of IL-8 protein. BIOMEDICAL OPTICS EXPRESS 2024; 15:185-198. [PMID: 38223184 PMCID: PMC10783906 DOI: 10.1364/boe.504780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 01/16/2024]
Abstract
Detection of biomarkers for tracking disease progression is becoming increasingly important in biomedicine. Using saliva as a diagnostic sample appears to be a safe, cost-effective, and non-invasive approach. Salivary interleukin-8 levels demonstrate specific changes associated with diseases such as obstructive pulmonary disease, squamous cell carcinoma, oral cancer, and breast cancer. Traditional protein detection methods, such as enzyme-linked immunosorbent assay (ELISA), mass spectrometry, and Western blot are often expensive, complex, and time-consuming. In this study, an optical fiber-based biosensor was developed to detect salivary IL-8 protein in a label-free manner. The biosensor was able to achieve an ultra-low limit detection of 0.91 fM. Moreover, the tested concentration range was wide: from 273 aM to 59 fM. As a proof-of-concept for detecting the protein in real clinical samples, the detection was carried out in artificial saliva. It was possible to achieve high sensitivity for the target protein and minimal signal alterations for the control proteins.
Collapse
Affiliation(s)
- Gyunel Rashidova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Meruyert Tilegen
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Tri T. Pham
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Aliya Bekmurzayeva
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Daniele Tosi
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
6
|
Schoen RE, Boardman LA, Cruz-Correa M, Bansal A, Kastenberg D, Hur C, Dzubinski L, Kaufman SF, Rodriguez LM, Richmond E, Umar A, Szabo E, Salazar A, McKolanis J, Beatty P, Pai RK, Singhi AD, Jacqueline CM, Bao R, Diergaarde B, McMurray RP, Strand C, Foster NR, Zahrieh DM, Limburg PJ, Finn OJ. Randomized, Double-Blind, Placebo-Controlled Trial of MUC1 Peptide Vaccine for Prevention of Recurrent Colorectal Adenoma. Clin Cancer Res 2023; 29:1678-1688. [PMID: 36892581 PMCID: PMC10159922 DOI: 10.1158/1078-0432.ccr-22-3168] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 03/07/2023] [Indexed: 03/10/2023]
Abstract
PURPOSE To assess whether MUC1 peptide vaccine produces an immune response and prevents subsequent colon adenoma formation. PATIENTS AND METHODS Multicenter, double-blind, placebo-controlled randomized trial in individuals age 40 to 70 with diagnosis of an advanced adenoma ≤1 year from randomization. Vaccine was administered at 0, 2, and 10 weeks with a booster injection at week 53. Adenoma recurrence was assessed ≥1 year from randomization. The primary endpoint was vaccine immunogenicity at 12 weeks defined by anti-MUC1 ratio ≥2.0. RESULTS Fifty-three participants received the MUC1 vaccine and 50 placebo. Thirteen of 52 (25%) MUC1 vaccine recipients had a ≥2-fold increase in MUC1 IgG (range, 2.9-17.3) at week 12 versus 0/50 placebo recipients (one-sided Fisher exact P < 0.0001). Of 13 responders at week 12, 11 (84.6%) responded to a booster injection at week 52 with a ≥2-fold increase in MUC1 IgG measured at week 55. Recurrent adenoma was observed in 31 of 47 (66.0%) in the placebo group versus 27 of 48 (56.3%) in the MUC1 group [adjusted relative risk (aRR), 0.83; 95% confidence interval (CI), 0.60-1.14; P = 0.25]. Adenoma recurrence occurred in 3/11 (27.3%) immune responders at week 12 and week 55 (aRR, 0.41; 95% CI, 0.15-1.11; P = 0.08 compared with placebo). There was no difference in serious adverse events. CONCLUSIONS An immune response was observed only in vaccine recipients. Adenoma recurrence was not different than placebo, but a 38% absolute reduction in adenoma recurrence compared with placebo was observed in participants who had an immune response at week 12 and with the booster injection.
Collapse
Affiliation(s)
- Robert E. Schoen
- Division of Gastroenterology, Hepatology and Nutrition, and Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | - Chin Hur
- Massachusetts General Hospital, Boston, MA (now at Columbia University, NY)
| | - Lynda Dzubinski
- Division of Gastroenterology, Hepatology and Nutrition, and Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | | | - Luz M. Rodriguez
- Division of Cancer Prevention, National Cancer Institute, Bethesda MD
| | - Ellen Richmond
- Division of Cancer Prevention, National Cancer Institute, Bethesda MD
| | - Asad Umar
- Division of Cancer Prevention, National Cancer Institute, Bethesda MD
| | - Eva Szabo
- Division of Cancer Prevention, National Cancer Institute, Bethesda MD
| | | | - John McKolanis
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Pamela Beatty
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Reetesh K. Pai
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Aatur D. Singhi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | | | - Riuye Bao
- Division of Hematology and Oncology, University of Pittsburgh, Pittsburgh, PA
- UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Brenda Diergaarde
- UPMC Hillman Cancer Center, Pittsburgh, PA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | | - Olivera J. Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
7
|
Denaro N, Solinas C, Garrone O, Cauchi C, Ruatta F, Wekking D, Abbona A, Paccagnella M, Merlano MC, Lo Nigro C. The Role of Cytokinome in the HNSCC Tumor Microenvironment: A Narrative Review and Our Experience. Diagnostics (Basel) 2022; 12:2880. [PMID: 36428939 PMCID: PMC9689412 DOI: 10.3390/diagnostics12112880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer. In locally advanced (LA) HNSCC, a multidisciplinary approach consisting of surgery followed by chemoradiation (CRT) or definitive CRT is the mainstay of treatment. In recurrent metastatic (R/M), HNSCC immune checkpoint inhibitors (ICIs) with or without chemotherapy represent the new first-line option. However, cancer will recur in about two out of five patients with LA HNSCC. If progression occurs within six months from platin-radiotherapy treatment, anti-programmed cell death-1 (PD-1) may be prescribed. Otherwise, immunotherapy with or without chemotherapy might be considered if PD-L1 is expressed. Despite several improvements in the outcome of patients with R/M HNSCC, overall survival (OS) remains dismal, equaling a median of 14 months. In-depth knowledge of the tumor microenvironment (TME) would be required to change the course of this complex disease. In recent years, many predictive and prognostic biomarkers have been studied in the HNSCC TME, but none of them alone can select the best candidates for response to ICIs or targeted therapy (e.g., Cetuximab). The presence of cytokines indicates an immune response that might occur, among other things, after tumor antigen recognition, viral and bacterial infection, and physic damage. An immune response against HNSCC results in the production of some cytokines that induce a pro-inflammatory response and attract cells, such as neutrophils, macrophages, and T cell effectors, to enhance the innate and adaptive anti-tumor response. We revised the role of a group of cytokines as biomarkers for treatment response in HNSCC.
Collapse
Affiliation(s)
- Nerina Denaro
- Oncology Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Cinzia Solinas
- Medical Oncology, AOU Cagliari, Policlinico di Monserrato (CA), 09042 Monserrato, Italy
| | - Ornella Garrone
- Oncology Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Carolina Cauchi
- Oncology Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Fiorella Ruatta
- Oncology Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Demi Wekking
- Amsterdam UMC, Location Academic Medical Centre, University of Amsterdam, 1012 WX Amsterdam, The Netherlands
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea Abbona
- Translational Oncology Fondazione Arco Cuneo, 12100 Cuneo, Italy
| | | | - Marco Carlo Merlano
- Candiolo Cancer Institute, FPO-IRCCS Candiolo (Turin), 10060 Candiolo, Italy
| | | |
Collapse
|
8
|
Meirovitz A, Gross M, Cohen S, Popovtzer A, Barak V. Effect of irradiation on cytokine production in cancer patients. Int J Biol Markers 2022; 37:360-367. [PMID: 35929109 DOI: 10.1177/03936155221116388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Irradiation, which affects cytokine secretion, is used to treat cancer patients. Cytokine levels have correlations to disease parameters, serving as biomarkers for patients. We aim to explore the effect of irradiation on cytokine production both in vitro (using lymphocytes from healthy donors) and in vivo (using serum levels of head and neck cancer patients following irradiation) and correlating them to mucositis severity/need for percutaneous endoscopic gastroscopy (PEG) tube installation. METHODS Cytokine production by cultured lymphocytes from healthy donors, in vitro, following irradiation of 5 or 10 Gy. In addition, blood from 23 patients with head and neck cancers, irradiated by 60-72G in vivo, were assessed for inflammatory cytokines (tumor necrosis factor (TNF)α, interleukin (IL)-6, IL-8, IL-18), the anti-inflammatory cytokine IL-10, and the general marker sIL-2R. Following radiation, selected patients who were developing mucositis were treated by PEG tube installation. Changes in cytokine levels were studied as predictive biomarkers of response to therapy/PEG tube installation. Cytokine production levels were measured using ELISAs kits. RESULTS Irradiation decreased the levels of all tested cytokines, most notably IL-6 and IL-8, proportional to irradiation dose. In patients, increases in cytokine levels, correlated with mucositis severity and potentially the need for PEG tube installation. CONCLUSIONS Irradiation decreased the levels of all cytokines of healthy lymphocytes in a dose-dependent manner, especially those of IL-6 and IL-8. This study shows a correlation between high and increasing levels of inflammatory cytokines, sIL-2R, plus radiation toxicity and the need for PEG. The reduction of cytokine levels after radiotherapy predicts that PEG will not be required. Thus, our study shows that cytokine changes are predictive biomarkers in head and neck cancer patients.
Collapse
Affiliation(s)
- Amichay Meirovitz
- Oncology and Head and Neck Departments, 58884Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Menachem Gross
- Oncology and Head and Neck Departments, 58884Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shani Cohen
- Oncology and Head and Neck Departments, 58884Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aron Popovtzer
- Oncology and Head and Neck Departments, 58884Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vivian Barak
- Oncology and Head and Neck Departments, 58884Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Shabbir A, Waheed H, Ahmed S, Shaikh SS, Farooqui WA. Association of salivary Cathepsin B in different histological grades among patients presenting with oral squamous cell carcinoma. BMC Oral Health 2022; 22:63. [PMID: 35260133 PMCID: PMC8905853 DOI: 10.1186/s12903-022-02052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oral cancer is considered a major public health problem due to its high mortality and morbidity rates. Survival rate of OSCC can be significantly improved by using non-invasive tool such as salivary biomarkers for detection of OSCC which is considered a promising approach. Cathepsin B is a lysosomal cysteine protease, present in abundant quantities in lysosome of cells, tissues and different biological fluids. Increased expression of Cathepsin B was observed in many malignancies including oral cancer. The present study was designed to determine the salivary levels of Cathepsin B in different histological grades of OSCC. METHOD In this study, total no. of 80 research participants were enrolled which were divided into four groups. Each group comprised 20 participants, group 1 comprised 20 patients of OSCC (well differentiated), group 2 comprised 20 patients of OSCC (moderately differentiated), group 3 comprised 20 patients of OSCC (poorly differentiated) and group 4 comprised 20 healthy controls. Saliva sample was collected from all the four study groups and salivary Cathepsin B levels were analyzed by ELISA sandwich technique in duplicate. RESULTS Salivary levels of Cathepsin B were significantly increased with p value (< 0.001) in patients of OSCC as compared to control group according to both histological grades and tumor size. Highest mean Cathepsin B levels in well differentiated OSCC followed by poorly differentiated OSCC and moderately differentiated OSCC were observed. CONCLUSION Results of the present study suggests that Cathepsin B has a great value as a salivary biomarker for diagnosis and monitoring of OSCC in different histological grades. This will further lead to increase survival rate and improve the prognosis of OSCC.
Collapse
Affiliation(s)
- Alveena Shabbir
- Department of Oral Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Humera Waheed
- Department of Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan.
| | - Shaheen Ahmed
- Department of Oral and Maxillofacial Surgery, Dow University of Health Sciences, Karachi, Pakistan.
| | | | - Waqas Ahmed Farooqui
- Department of School of Public Health, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|