1
|
Gupta S, de Rink R, Klok JBM, Muyzer G, Plugge CM. Process conditions affect microbial diversity and activity in a haloalkaline biodesulfurization system. Appl Environ Microbiol 2024; 90:e0186423. [PMID: 38078763 PMCID: PMC10807427 DOI: 10.1128/aem.01864-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 01/25/2024] Open
Abstract
Biodesulfurization (BD) systems that treat sour gas employ mixtures of haloalkaliphilic sulfur-oxidizing bacteria to convert sulfide to elemental sulfur. In the past years, these systems have seen major technical innovations that have led to changes in microbial community composition. Different studies have identified and discussed the microbial communities in both traditional and improved systems. However, these studies do not identify metabolically active community members and merely focus on members' presence/absence. Therefore, their results cannot confirm the activity and role of certain bacteria in the BD system. To investigate the active community members, we determined the microbial communities of six different runs of a pilot-scale BD system. 16S rRNA gene-based amplicon sequencing was performed using both DNA and RNA. A comparison of the DNA- and RNA-based sequencing results identified the active microbes in the BD system. Statistical analyses indicated that not all the existing microbes were actively involved in the system and that microbial communities continuously evolved during the operation. At the end of the run, strains affiliated with Alkalilimnicola ehrlichii and Thioalkalivibrio sulfidiphilus were confirmed as the most active key bacteria in the BD system. This study determined that microbial communities were shaped predominantly by the combination of hydraulic retention time (HRT) and sulfide concentration in the anoxic reactor and, to a lesser extent, by other operational parameters.IMPORTANCEHaloalkaliphilic sulfur-oxidizing bacteria are integral to biodesulfurization (BD) systems and are responsible for converting sulfide to sulfur. To understand the cause of conversions occurring in the BD systems, knowing which bacteria are present and active in the systems is essential. So far, only a few studies have investigated the BD system's microbial composition, but none have identified the active microbial community. Here, we reveal the metabolically active community, their succession, and their influence on product formation.
Collapse
Affiliation(s)
- Suyash Gupta
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Rieks de Rink
- Environmental Technology, Wageningen University & Research, Wageningen, the Netherlands
- Paqell B.V., Utrecht, the Netherlands
| | - Johannes B. M. Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Caroline M. Plugge
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
2
|
Johnston KKY, van Lankveld M, de Rink R, Roman P, Klok JBM, Mol AR, Keesman KJ, Buisman CJN. Polysulfide Concentration and Chain Length in the Biological Desulfurization Process: Effect of Biomass Concentration and the Sulfide Loading Rate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13530-13540. [PMID: 37639370 PMCID: PMC10501124 DOI: 10.1021/acs.est.3c03017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
Removal of hydrogen sulfide (H2S) can be achieved using the sustainable biological desulfurization process, where H2S is converted to elemental sulfur using sulfide-oxidizing bacteria (SOB). A dual-bioreactor process was recently developed where an anaerobic (sulfidic) bioreactor was used between the absorber column and micro-oxic bioreactor. In the absorber column and sulfidic bioreactor, polysulfides (Sx2-) are formed due to the chemical equilibrium between H2S and sulfur (S8). Sx2- is thought to be the intermediate for SOB to produce sulfur via H2S oxidation. In this study, we quantify Sx2-, determine their chain-length distribution under high H2S loading rates, and elucidate the relationship between biomass and the observed biological removal of sulfides under anaerobic conditions. A linear relationship was observed between Sx2- concentration and H2S loading rates at a constant biomass concentration. Increasing biomass concentrations resulted in a lower measured Sx2- concentration at similar H2S loading rates in the sulfidic bioreactor. Sx2- of chain length 6 (S62-) showed a substantial decrease at higher biomass concentrations. Identifying Sx2- concentrations and their chain lengths as a function of biomass concentration and the sulfide loading rate is key in understanding and controlling sulfide uptake by the SOB. This knowledge will contribute to a better understanding of how to reach and maintain a high selectivity for S8 formation in the dual-reactor biological desulfurization process.
Collapse
Affiliation(s)
- Kestral
A. K. Y. Johnston
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700
AA Wageningen, The
Netherlands
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 AD Leeuwarden, The Netherlands
| | - Mark van Lankveld
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700
AA Wageningen, The
Netherlands
- Paqell
B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
| | - Rieks de Rink
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700
AA Wageningen, The
Netherlands
- Paqell
B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
| | - Pawel Roman
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 AD Leeuwarden, The Netherlands
| | - Johannes B. M. Klok
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 AD Leeuwarden, The Netherlands
| | - Annemerel R. Mol
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700
AA Wageningen, The
Netherlands
| | - Karel J. Keesman
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 AD Leeuwarden, The Netherlands
- Mathematical
and Statistical Methods − Biometris, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Cees J. N. Buisman
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700
AA Wageningen, The
Netherlands
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 AD Leeuwarden, The Netherlands
| |
Collapse
|
3
|
Mol AR, van Langeveld LJ, van der Weijden RD, Klok JBM, Buisman CJN. Effect of sulfide on morphology and particle size of biologically produced elemental sulfur from industrial desulfurization reactors. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127696. [PMID: 34823957 DOI: 10.1016/j.jhazmat.2021.127696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/12/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
We investigated the effect of polysulfide formation on properties of biologically produced elemental sulfur (S8) crystals, which are produced during biological desulfurization (BD) of gas. The recent addition of an anoxic-sulfidic reactor (AnSuR) to the BD process resulted in agglomerated particles with better settleability for S8 separation. In the AnSuR, polysulfides are formed by the reaction of bisulfide (HS-) with S8 and are subsequently oxidized to S8 in a gas-lift reactor. Therefore, sulfur particles from the BD are shaped (i.e. morphology and particle size) both by formation and dissolution. We assessed the reaction of HS- with S8 particles in anoxic, abiotic experiments in a batch reactor using two S8 samples from industrial BD reactors. Under these conditions, the sulfur particle surface became coarser and more porous, and in addition the smallest particles disappeared. Agglomerates initially fell apart but were reformed at a later stage. Moreover, we found different observed polysulfide formation rates for each S8 sample, which was related to the initial morphology and size. Our findings show that particle properties can be controlled abiotically and that settleability of S8 is increased by increasing both the HS--S8 ratio and retention time.
Collapse
Affiliation(s)
- Annemerel R Mol
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Paqell B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands.
| | - Lourens J van Langeveld
- Paqell B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands; Department of Earth Sciences, Utrecht University, Princetonlaan 8, 3584 CB Utrecht, The Netherlands.
| | - Renata D van der Weijden
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O: Box 1113, 8900 CC Leeuwarden, The Netherlands.
| | - Johannes B M Klok
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Paqell B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O: Box 1113, 8900 CC Leeuwarden, The Netherlands.
| | - Cees J N Buisman
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O: Box 1113, 8900 CC Leeuwarden, The Netherlands.
| |
Collapse
|
4
|
Gupta S, Plugge CM, Klok JBM, Muyzer G. Comparative analysis of microbial communities from different full-scale haloalkaline biodesulfurization systems. Appl Microbiol Biotechnol 2022; 106:1759-1776. [PMID: 35147744 PMCID: PMC8882115 DOI: 10.1007/s00253-022-11771-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Abstract In biodesulfurization (BD) at haloalkaline and dO2-limited conditions, sulfide-oxidizing bacteria (SOB) effectively convert sulfide into elemental sulfur that can be used in agriculture as a fertilizer and fungicide. Here we show which bacteria are present in this biotechnological process. 16S rRNA gene amplicon sequencing of biomass from ten reactors sampled in 2018 indicated the presence of 444 bacterial Amplicon Sequence Variants (ASVs). A core microbiome represented by 30 ASVs was found in all ten reactors, with Thioalkalivibrio sulfidiphilus as the most dominant species. The majority of these ASVs are phylogenetically related to bacteria previously identified in haloalkaline BD processes and in natural haloalkaline ecosystems. The source and composition of the feed gas had a great impact on the microbial community composition followed by alkalinity, sulfate, and thiosulfate concentrations. The halophilic SOB of the genus Guyparkeria (formerly known as Halothiobacillus) and heterotrophic SOB of the genus Halomonas were identified as potential indicator organisms of sulfate and thiosulfate accumulation in the BD process. Key points • Biodesulfurization (BD) reactors share a core microbiome • The source and composition of the feed gas affects the microbial composition in the BD reactors • Guyparkeria and Halomonas indicate high concentrations of sulfate and thiosulfate in the BD process Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11771-y.
Collapse
Affiliation(s)
- Suyash Gupta
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Caroline M Plugge
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Johannes B M Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Paqell B.V, Utrecht, The Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Zhang IH, Mullen S, Ciccarese D, Dumit D, Martocello DE, Toyofuku M, Nomura N, Smriga S, Babbin AR. Ratio of Electron Donor to Acceptor Influences Metabolic Specialization and Denitrification Dynamics in Pseudomonas aeruginosa in a Mixed Carbon Medium. Front Microbiol 2021; 12:711073. [PMID: 34566916 PMCID: PMC8461185 DOI: 10.3389/fmicb.2021.711073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Abstract
Denitrifying microbes sequentially reduce nitrate (NO3 -) to nitrite (NO2 -), NO, N2O, and N2 through enzymes encoded by nar, nir, nor, and nos. Some denitrifiers maintain the whole four-gene pathway, but others possess partial pathways. Partial denitrifiers may evolve through metabolic specialization whereas complete denitrifiers may adapt toward greater metabolic flexibility in nitrogen oxide (NOx -) utilization. Both exist within natural environments, but we lack an understanding of selective pressures driving the evolution toward each lifestyle. Here we investigate differences in growth rate, growth yield, denitrification dynamics, and the extent of intermediate metabolite accumulation under varying nutrient conditions between the model complete denitrifier Pseudomonas aeruginosa and a community of engineered specialists with deletions in the denitrification genes nar or nir. Our results in a mixed carbon medium indicate a growth rate vs. yield tradeoff between complete and partial denitrifiers, which varies with total nutrient availability and ratios of organic carbon to NOx -. We found that the cultures of both complete and partial denitrifiers accumulated nitrite and that the metabolic lifestyle coupled with nutrient conditions are responsible for the extent of nitrite accumulation.
Collapse
Affiliation(s)
- Irene H. Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- Program in Microbiology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Susan Mullen
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Davide Ciccarese
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Diana Dumit
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Donald E. Martocello
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Steven Smriga
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Andrew R. Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
6
|
Scott KM, Harmer TL, Gemmell BJ, Kramer AM, Sutter M, Kerfeld CA, Barber KS, Bari S, Boling JW, Campbell CP, Gallard-Gongora JF, Jackson JK, Lobos A, Mounger JM, Radulovic PW, Sanson JM, Schmid S, Takieddine C, Warlick KF, Whittaker R. Ubiquity and functional uniformity in CO2 concentrating mechanisms in multiple phyla of Bacteria is suggested by a diversity and prevalence of genes encoding candidate dissolved inorganic carbon transporters. FEMS Microbiol Lett 2021; 367:5863185. [PMID: 32589217 DOI: 10.1093/femsle/fnaa106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
Autotrophic microorganisms catalyze the entry of dissolved inorganic carbon (DIC; = CO2 + HCO3- + CO32-) into the biological component of the global carbon cycle, despite dramatic differences in DIC abundance and composition in their sometimes extreme environments. "Cyanobacteria" are known to have CO2 concentrating mechanisms (CCMs) to facilitate growth under low CO2 conditions. These CCMs consist of carboxysomes, containing enzymes ribulose 1,5-bisphosphate oxygenase and carbonic anhydrase, partnered to DIC transporters. CCMs and their DIC transporters have been studied in a handful of other prokaryotes, but it was not known how common CCMs were beyond "Cyanobacteria". Since it had previously been noted that genes encoding potential transporters were found neighboring carboxysome loci, α-carboxysome loci were gathered from bacterial genomes, and potential transporter genes neighboring these loci are described here. Members of transporter families whose members all transport DIC (CHC, MDT and Sbt) were common in these neighborhoods, as were members of the SulP transporter family, many of which transport DIC. 109 of 115 taxa with carboxysome loci have some form of DIC transporter encoded in their genomes, suggesting that CCMs consisting of carboxysomes and DIC transporters are widespread not only among "Cyanobacteria", but also among members of "Proteobacteria" and "Actinobacteria".
Collapse
Affiliation(s)
- Kathleen M Scott
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620 USA
| | - Tara L Harmer
- Biology Program, Stockton University, Galloway, NJ, USA
| | - Bradford J Gemmell
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620 USA
| | - Andrew M Kramer
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620 USA
| | - Markus Sutter
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.,Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kourtney S Barber
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620 USA
| | - Saaurav Bari
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620 USA
| | - Joshua W Boling
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620 USA
| | - Cassandra P Campbell
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620 USA
| | | | - Jessica K Jackson
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620 USA
| | - Aldo Lobos
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620 USA
| | - Jeannie M Mounger
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620 USA
| | - Peter W Radulovic
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620 USA
| | - Jacqueline M Sanson
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620 USA
| | - Sarah Schmid
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620 USA
| | - Candice Takieddine
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620 USA
| | - Kiley F Warlick
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620 USA
| | - Robert Whittaker
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620 USA
| |
Collapse
|
7
|
Wang B, Huang J, Yang J, Jiang H, Xiao H, Han J, Zhang X. Bicarbonate uptake rates and diversity of RuBisCO genes in saline lake sediments. FEMS Microbiol Ecol 2021; 97:6149456. [PMID: 33629724 DOI: 10.1093/femsec/fiab037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/23/2021] [Indexed: 11/12/2022] Open
Abstract
There is limited knowledge of microbial carbon fixation rate, and carbon-fixing microbial abundance and diversity in saline lakes. In this study, the inorganic carbon uptake rates and carbon-fixing microbial populations were investigated in the surface sediments of lakes with a full range of salinity from freshwater to salt saturation. The results showed that in the studied lakes light-dependent bicarbonate uptake contributed substantially (>70%) to total bicarbonate uptake, while the contribution of dark bicarbonate uptake (1.35-25.17%) cannot be ignored. The light-dependent bicarbonate uptake rates were significantly correlated with pH and turbidity, while dark bicarbonate uptake rates were significantly influenced by dissolved inorganic carbon, pH, temperature and salinity. Carbon-fixing microbial populations using the Calvin-Benson-Bassham pathway were widespread in the studied lakes, and they were dominated by the cbbL and cbbM gene types affiliated with Cyanobacteria and Proteobacteria, respectively. The cbbL and cbbM gene abundance and population structures were significantly affected by different environmental variables, with the cbbL and cbbM genes being negatively correlated with salinity and organic carbon concentration, respectively. In summary, this study improves our knowledge of the abundance, diversity and function of carbon-fixing microbial populations in the lakes with a full range of salinity.
Collapse
Affiliation(s)
- Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jianrong Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haiyi Xiao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jibin Han
- Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Xining 81008, China
| | - Xiying Zhang
- Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Xining 81008, China
| |
Collapse
|
8
|
Lee J, Mahandra H, Hein GA, Ramsay J, Ghahreman A. Toward Sustainable Solution for Biooxidation of Waste and Refractory Materials Using Neutrophilic and Alkaliphilic Microorganisms—A Review. ACS APPLIED BIO MATERIALS 2021; 4:2274-2292. [DOI: 10.1021/acsabm.0c01582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jung Lee
- Hydrometallurgy and Environment Laboratory, Robert M. Buchan Department of Mining, Queen’s University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada
| | - Harshit Mahandra
- Hydrometallurgy and Environment Laboratory, Robert M. Buchan Department of Mining, Queen’s University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada
| | - Guillermo Alvial Hein
- Hydrometallurgy and Environment Laboratory, Robert M. Buchan Department of Mining, Queen’s University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada
| | - Juliana Ramsay
- Department of Chemical Engineering, Queen’s University, 19 Division Street, Kingston, Ontario K7L 3N6, Canada
| | - Ahmad Ghahreman
- Hydrometallurgy and Environment Laboratory, Robert M. Buchan Department of Mining, Queen’s University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
9
|
Kiragosyan K, Picard M, Sorokin DY, Dijkstra J, Klok JBM, Roman P, Janssen AJH. Effect of dimethyl disulfide on the sulfur formation and microbial community composition during the biological H 2S removal from sour gas streams. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121916. [PMID: 31884361 DOI: 10.1016/j.jhazmat.2019.121916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/06/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Removal of organic and inorganic sulfur compounds from sour gases is required because of their toxicity and atmospheric pollution. The most common are hydrogen sulfide (H2S) and methanethiol (MT). Under oxygen-limiting conditions about 92 mol% of sulfide is oxidized to sulfur by haloalkaliphilic sulfur-oxidizing bacteria (SOB), whilst the remainder is oxidized either biologically to sulfate or chemically to thiosulfate. MT is spontaneously oxidized to dimethyl disulfide (DMDS), which was found to inhibit the oxidation of sulfide to sulfate. Hence, we assessed the effect of DMDS on product formation in a lab-scale biodesulfurization setup. DMDS was quantified using a newly, in-house developed analytical method. Subsequently, a chemical reaction mechanism was proposed for the formation of methanethiol and dimethyl trisulfide from the reaction between sulfide and DMDS. Addition of DMDS resulted in significant inhibition of sulfate formation, leading to 96 mol% of sulfur formation. In addition, a reduction in the dominating haloalkaliphilic SOB species, Thioalkalivibrio sulfidiphilus, was observed in favor of Thioalkaibacter halophilus as a more DMDS-tolerant with the 50 % inhibition coefficient at 2.37 mM DMDS.
Collapse
Affiliation(s)
- Karine Kiragosyan
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Magali Picard
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Eurofins Agroscience Services Chem SAS 75, chemin de Sommières 30310, Vergèze, France
| | - Dimitry Y Sorokin
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Prospect 60-let Oktyabrya 7/2, Moscow, Russian Federation; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jelmer Dijkstra
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Johannes B M Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Paqell B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
| | - Pawel Roman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Albert J H Janssen
- Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Shell, Oostduinlaan 2, 2596 JM the Hague, The Netherlands
| |
Collapse
|
10
|
Zorz JK, Sharp C, Kleiner M, Gordon PMK, Pon RT, Dong X, Strous M. A shared core microbiome in soda lakes separated by large distances. Nat Commun 2019; 10:4230. [PMID: 31530813 PMCID: PMC6748926 DOI: 10.1038/s41467-019-12195-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/16/2019] [Indexed: 11/25/2022] Open
Abstract
In alkaline soda lakes, concentrated dissolved carbonates establish productive phototrophic microbial mats. Here we show how microbial phototrophs and autotrophs contribute to this exceptional productivity. Amplicon and shotgun DNA sequencing data of microbial mats from four Canadian soda lakes indicate the presence of > 2,000 species of Bacteria and Eukaryotes. We recover metagenome-assembled-genomes for a core microbiome of < 100 abundant bacteria, present in all four lakes. Most of these are related to microbes previously detected in sediments of Asian alkaline lakes, showing that common selection principles drive community assembly from a globally distributed reservoir of alkaliphile biodiversity. Detection of > 7,000 proteins show how phototrophic populations allocate resources to specific processes and occupy complementary niches. Carbon fixation proceeds by the Calvin-Benson-Bassham cycle, in Cyanobacteria, Gammaproteobacteria, and, surprisingly, Gemmatimonadetes. Our study provides insight into soda lake ecology, as well as a template to guide efforts to engineer biotechnology for carbon dioxide conversion.
Collapse
Affiliation(s)
- Jackie K Zorz
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Christine Sharp
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Paul M K Gordon
- Centre for Health Genomics and Informatics, University of Calgary, Calgary, AB, T2N 2T9, Canada
| | - Richard T Pon
- Centre for Health Genomics and Informatics, University of Calgary, Calgary, AB, T2N 2T9, Canada
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
11
|
Noor Ul Huda K, Shimizu K, Gong X, Takagi S. Numerical investigation of COD reduction in compact bioreactor with bubble plumes. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.03.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Kalantari H, Nosrati M, Shojaosadati SA, Shavandi M. Investigation of transient forms of sulfur during biological treatment of spent caustic. ENVIRONMENTAL TECHNOLOGY 2018; 39:1597-1606. [PMID: 28554258 DOI: 10.1080/09593330.2017.1334707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
In the present study, the production of various transient forms of sulfur during biological oxidation of sulfidic spent caustics under haloalkaline conditions in a stirred tank bioreactor is investigated. Also, the effects of abiotic aeration (chemical oxidation), dissolved oxygen (DO) concentration and sodium concentration on forms of sulfur during biological treatment are demonstrated. Thioalkalivibrio versutus strain was used for sulfide oxidation in spent caustic (SC). The aeration had an important effect on sulfide oxidation and its final products. At DO concentrations above 2 mg l-1, majority of sulfide was oxidized to sulfate. Maximum sulfide removal efficiency (%R) and yield of sulfate production [Formula: see text] was obtained in Na+ concentration ranging from 0.6 to 2 M. Abiotic aeration, which is the most important factor of production of thiosulfate, resulted in the formation of an undesired product-polysulfide. However, abiotic aeration can be used as a pretreatment to biological treatment. In the bioreactor the removal efficiency was obtained as 82.7% and various forms of sulfur such as polysulfide, biosulfur, thiosulfate and sulfate was observed during biological treatment of SC.
Collapse
Affiliation(s)
- Hamed Kalantari
- a Biotechnology Group, Faculty of Chemical Engineering , Tarbiat Modares University , Tehran , Iran
| | - Mohsen Nosrati
- a Biotechnology Group, Faculty of Chemical Engineering , Tarbiat Modares University , Tehran , Iran
| | - Seyed Abbas Shojaosadati
- a Biotechnology Group, Faculty of Chemical Engineering , Tarbiat Modares University , Tehran , Iran
| | - Mahmoud Shavandi
- b Environment and Biotechnology Group , Research Institute of Petroleum Industry , Tehran , Iran
| |
Collapse
|
13
|
Arellano-García L, Le Borgne S, Revah S. Simultaneous treatment of dimethyl disulfide and hydrogen sulfide in an alkaline biotrickling filter. CHEMOSPHERE 2018; 191:809-816. [PMID: 29145133 DOI: 10.1016/j.chemosphere.2017.10.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/26/2017] [Accepted: 10/16/2017] [Indexed: 05/20/2023]
Abstract
Foul odors comprise generally a complex mixture of molecules, where reduced sulfur compounds play a key role due to their toxicity and low odor threshold. Previous reports on treating mixtures of sulfur compounds in single biofilters showed that hydrogen sulfide (H2S) interferes with the removal and degradation of other sulfur compounds. In this study, hydrogen sulfide (H2S) and dimethyl disulfide (DMDS) were fed to an alkaline biotrickling filter (ABTF) at pH 10, to evaluate the simultaneous removal of inorganic and organic sulfur compounds in a single, basic-pH system. The H2S-DMDS mixture was treated for more than 200 days, with a gas residence time of 40 s, attaining elimination capacities of 86 gDMDS m-3 h-1 and 17 gH2S m-3 h-1 and removal efficiencies close to 100%. Conversion of H2S and DMDS to sulfate was generally above 70%. Consumption of sulfide and formaldehyde was verified by respirometry, suggesting the coexistence of both methylotrophic and chemoautotrophic breakdown pathways by the immobilized alkaliphilic biomass. The molecular biology analysis showed that the long-term acclimation of the ABTF led to a great variety of bacteria, predominated by Thioalkalivibrio species, while fungal community was notoriously less diverse and dominated by Fusarium species.
Collapse
Affiliation(s)
- Luis Arellano-García
- Depto. Procesos y Tecnología, UAM Cuajimalpa, Av. Vasco de Quiroga 4871, Mexico City, 05300, Mexico
| | - Sylvie Le Borgne
- Depto. Procesos y Tecnología, UAM Cuajimalpa, Av. Vasco de Quiroga 4871, Mexico City, 05300, Mexico
| | - Sergio Revah
- Depto. Procesos y Tecnología, UAM Cuajimalpa, Av. Vasco de Quiroga 4871, Mexico City, 05300, Mexico.
| |
Collapse
|
14
|
Mu T, Zhou J, Yang M, Xing J. Complete genome sequence of Thialkalivibrio versutus D301 isolated from Soda Lake in northern China, a typical strain with great ability to oxidize sulfide. J Biotechnol 2016; 227:21-22. [DOI: 10.1016/j.jbiotec.2016.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 11/15/2022]
|
15
|
Santini TC, Kerr JL, Warren LA. Microbially-driven strategies for bioremediation of bauxite residue. JOURNAL OF HAZARDOUS MATERIALS 2015; 293:131-157. [PMID: 25867516 DOI: 10.1016/j.jhazmat.2015.03.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
Globally, 3 Gt of bauxite residue is currently in storage, with an additional 120 Mt generated every year. Bauxite residue is an alkaline, saline, sodic, massive, and fine grained material with little organic carbon or plant nutrients. To date, remediation of bauxite residue has focused on the use of chemical and physical amendments to address high pH, high salinity, and poor drainage and aeration. No studies to date have evaluated the potential for microbial communities to contribute to remediation as part of a combined approach integrating chemical, physical, and biological amendments. This review considers natural alkaline, saline environments that present similar challenges for microbial survival and evaluates candidate microorganisms that are both adapted for survival in these environments and have the capacity to carry out beneficial metabolisms in bauxite residue. Fermentation, sulfur oxidation, and extracellular polymeric substance production emerge as promising pathways for bioremediation whether employed individually or in combination. A combination of bioaugmentation (addition of inocula from other alkaline, saline environments) and biostimulation (addition of nutrients to promote microbial growth and activity) of the native community in bauxite residue is recommended as the approach most likely to be successful in promoting bioremediation of bauxite residue.
Collapse
Affiliation(s)
- Talitha C Santini
- Centre for Mined Land Rehabilitation, Sir James Foots Building, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Geography, Planning, and Environmental Management, Steele Building, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Earth and Environment, The University of Western Australia, 35 Stirling Hwy Crawley, WA 6009, Australia.
| | - Janice L Kerr
- Centre for Mined Land Rehabilitation, Sir James Foots Building, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Lesley A Warren
- School of Geography and Earth Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
16
|
Lipson DA. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Front Microbiol 2015; 6:615. [PMID: 26136742 PMCID: PMC4468913 DOI: 10.3389/fmicb.2015.00615] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 06/03/2015] [Indexed: 01/15/2023] Open
Affiliation(s)
- David A. Lipson
- Department of Biology, San Diego State UniversitySan Diego, CA, USA
| |
Collapse
|
17
|
Xu Y, Zhang R, Li Q, Liu K, Jiao N. Marivirga lumbricoides sp. nov., a marine bacterium isolated from the South China Sea. Int J Syst Evol Microbiol 2015; 65:452-456. [DOI: 10.1099/ijs.0.066027-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel, aerobic, heterotrophic, orange-pigmented, Gram-staining-negative, rod-shaped, gliding bacterial strain, designated JLT2000T, was isolated from surface water of the South China Sea. The strain was oxidase- and catalase-positive. The major cellular fatty acids of strain JLT2000
T
were C12 : 0, iso-C15 : 1 G, iso-C15 : 0, iso-C17 : 0 3-OH, summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C18 : 0. MK-7 was the major respiratory quinone and the major polar lipids were phosphatidylcholine and phosphatidylethanolamine. The genomic DNA G+C content of strain JLT2000T was 37.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain JLT2000T formed a branch within the genus
Marivirga
, but was clearly separated from the two established species of this genus,
Marivirga tractuosa
and
Marivirga sericea
. The 16S rRNA gene sequence similarity of strain JLT2000T with the type strains of these two species was 95.8 % and 96.1 %, respectively. Strain JLT2000T had a shorter cell length and wider growth range in different temperatures and salinities than those of
Marivirga tractuosa
NBRC 15989T and
Marivirga sericea
NBRC 15983T. In addition, strain JLT2000T could utilize more carbon sources and hydrolyse more polymers than
Marivirga tractuosa
NBRC 15989T and
Marivirga sericea
NBRC 15983T. Based on this polyphasic analysis, strain JLT2000T represents a novel species of the genus
Marivirga
, for which the name Marivirga lumbricoides sp. nov. is proposed. The type strain is JLT2000T ( = JCM 18012T = CGMCC 1.10832T).
Collapse
Affiliation(s)
- Yongle Xu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361005, PR China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361005, PR China
| | - Qipei Li
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361005, PR China
| | - Keshao Liu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361005, PR China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
18
|
Muthusamy S, Baltar F, González JM, Pinhassi J. Dynamics of metabolic activities and gene expression in the Roseobacter clade bacterium Phaeobacter sp. strain MED193 during growth with thiosulfate. Appl Environ Microbiol 2014; 80:6933-42. [PMID: 25172867 PMCID: PMC4249017 DOI: 10.1128/aem.02038-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/27/2014] [Indexed: 11/20/2022] Open
Abstract
Metagenomic analyses of surface seawater reveal that genes for sulfur oxidation are widespread in bacterioplankton communities. However, little is known about the metabolic processes used to exploit the energy potentially gained from inorganic sulfur oxidation in oxic seawater. We therefore studied the sox gene system containing Roseobacter clade isolate Phaeobacter sp. strain MED193 in acetate minimal medium with and without thiosulfate. The addition of thiosulfate enhanced the bacterial growth yields up to 40% in this strain. Concomitantly, soxB and soxY gene expression increased about 8-fold with thiosulfate and remained 11-fold higher than that in controls through stationary phase. At stationary phase, thiosulfate stimulated protein synthesis and anaplerotic CO2 fixation rates up to 5- and 35-fold, respectively. Several genes involved in anaplerotic CO2 fixation (i.e., pyruvate carboxylase, propionyl coenzyme A [CoA], and crotonyl-CoA carboxylase) were highly expressed during active growth, coinciding with high CO2 fixation rates. The high expression of key genes in the ethylmalonyl-CoA pathway suggests that this is an important pathway for the utilization of two-carbon compounds in Phaeobacter sp. MED193. Overall, our findings imply that Roseobacter clade bacteria carrying sox genes can use their lithotrophic potential to gain additional energy from sulfur oxidation for both increasing their growth capacity and improving their long-term survival.
Collapse
Affiliation(s)
- Saraladevi Muthusamy
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Federico Baltar
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - José M González
- Department of Microbiology, University of La Laguna, La Laguna, Tenerife, Spain
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
19
|
Ontiveros-Valencia A, Tang Y, Krajmalnik-Brown R, Rittmann BE. Managing the interactions between sulfate- and perchlorate-reducing bacteria when using hydrogen-fed biofilms to treat a groundwater with a high perchlorate concentration. WATER RESEARCH 2014; 55:215-224. [PMID: 24607522 DOI: 10.1016/j.watres.2014.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/11/2014] [Accepted: 02/07/2014] [Indexed: 06/03/2023]
Abstract
A groundwater containing an unusually high concentration (∼4000 μg/L) of perchlorate (ClO4(-)) and significant (∼60 mg/L) sulfate (SO4(2-)) was treated with hydrogen (H2)-fed biofilms. The objective was to manage the interactions between sulfate-reducing bacteria (SRB) and perchlorate-reducing bacteria (PRB) by controlling the H2-delivery capacity to achieve ClO4(-) reduction to below the detection limit (4 μg/L). Complete ClO4(-) reduction with minimized SO4(2-) reduction was achieved by using two membrane biofilm reactors (MBfRs) in series. The lead MBfR removed >96% ClO4(-), and the lag MBfR further reduced ClO4(-) to below the detection limit. SO4(2-) reduction ranged from 10 to 60%, and lower SO4(2-) reduction corresponded to lower H2 availability (i.e., lower H2 pressure or membranes with lower H2-delivery capacity). Minimizing SO4(2-) reduction improved ClO4(-) removal by increasing the fraction of PRB in the biofilm. High SO4(2-) flux correlated with enrichment of Desulfovibrionales, autotrophic SRB that can compete strongly with denitrifying bacteria (DB) and PRB. Increased SO4(2-) reduction also led to enrichment of: 1) Ignavibacteriales and Thiobacteriales, sulfide-oxidizing bacteria that allow sulfur cycling in the biofilm; 2) Bacteroidales, heterotrophic microorganisms likely using organic sources of carbon (e.g., acetate); and 3) Spirochaetales, which potentially utilize soluble microbial products (SMPs) from autotrophic SRB to produce acetate.
Collapse
Affiliation(s)
- Aura Ontiveros-Valencia
- Biodesign Institute, Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Ave. Tempe, AZ 85287-5701, USA; School of Sustainability, Arizona State University, USA
| | - Youneng Tang
- Biodesign Institute, Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Ave. Tempe, AZ 85287-5701, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Institute, Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Ave. Tempe, AZ 85287-5701, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, USA.
| | - Bruce E Rittmann
- Biodesign Institute, Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Ave. Tempe, AZ 85287-5701, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, USA.
| |
Collapse
|
20
|
Jiang Y, Sorokin DY, Junicke H, Kleerebezem R, van Loosdrecht MCM. Plasticicumulans lactativorans sp. nov., a polyhydroxybutyrate-accumulating gammaproteobacterium from a sequencing-batch bioreactor fed with lactate. Int J Syst Evol Microbiol 2014; 64:33-38. [DOI: 10.1099/ijs.0.051045-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial consortium that accumulated more than 90 % (w/w) polyhydroxybutyrate (PHB) from lactate was selected in a laboratory-scale bioreactor with a ‘feast–famine’ regime. Bacterial strain YDT, representing a dominant species in this enrichment, was isolated and characterized. Analysis of the 16S rRNA gene sequence revealed that the isolate is a member of the class
Gammaproteobacteria
, forming an independent phylogenetic lineage. The closest relative of the isolate was
Plasticicumulans acidivorans
TUD-YJ37T, with 94 % 16S rRNA gene sequence similarity. Strain YDT was an obligate aerobe with large, ovoid, Gram-negative cells, motile by means of a polar flagellum. It utilized a relatively broad spectrum of substrates (e.g. carbohydrates, fatty acids) as carbon and energy sources. The temperature range for growth was 20–45 °C, with an optimum at 40 °C; the pH range was pH 6.0–8.0, with an optimum at pH 7.0. The major respiratory lipoquinones were Q-8 (91 %) and Q-7 (9 %). The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and an unidentified aminolipid. The predominant fatty acids in the membrane polar lipids were C16 : 1ω7c, C16 : 0 and C18 : 1ω7c. The G+C content of the genomic DNA was 68.5 mol%. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, the isolate is proposed to represent a novel species in the genus
Plasticicumulans
, for which the name Plasticicumulans lactativorans sp. nov. is proposed. The type strain is YDT ( = DSM 25287T = NCCB 100398T).
Collapse
Affiliation(s)
- Yang Jiang
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117811 Moscow, Russia
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Helena Junicke
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Mark C. M. van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
21
|
Khan NH, Bondici VF, Medihala PG, Lawrence JR, Wolfaardt GM, Warner J, Korber DR. Bacterial diversity and composition of an alkaline uranium mine tailings-water interface. J Microbiol 2013; 51:558-69. [PMID: 24037656 DOI: 10.1007/s12275-013-3075-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
The microbial diversity and biogeochemical potential associated with a northern Saskatchewan uranium mine water-tailings interface was examined using culture-dependent and -independent techniques. Morphologically-distinct colonies from uranium mine water-tailings and a reference lake (MC) obtained using selective and non-selective media were selected for 16S rRNA gene sequencing and identification, revealing that culturable organisms from the uranium tailings interface were dominated by Firmicutes and Betaproteobacteria; whereas, MC organisms mainly consisted of Bacteroidetes and Gammaproteobacteria. Ion Torrent (IT) 16S rRNA metagenomic analysis carried out on extracted DNA from tailings and MC interfaces demonstrated the dominance of Firmicutes in both of the systems. Overall, the tailings-water interface environment harbored a distinct bacterial community relative to the MC, reflective of the ambient conditions (i.e., total dissolved solids, pH, salinity, conductivity, heavy metals) dominating the uranium tailings system. Significant correlations among the physicochemical data and the major bacterial groups present in the tailings and MC were also observed. Presence of sulfate reducing bacteria demonstrated by culture-dependent analyses and the dominance of Desulfosporosinus spp. indicated by Ion Torrent analyses within the tailings-water interface suggests the existence of anaerobic microenvironments along with the potential for reductive metabolic processes.
Collapse
Affiliation(s)
- Nurul H Khan
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Perner M, Hansen M, Seifert R, Strauss H, Koschinsky A, Petersen S. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments. GEOBIOLOGY 2013; 11:340-355. [PMID: 23647923 DOI: 10.1111/gbi.12039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/01/2013] [Indexed: 06/02/2023]
Abstract
Hydrothermal fluids passing through basaltic rocks along mid-ocean ridges are known to be enriched in sulfide, while those circulating through ultramafic mantle rocks are typically elevated in hydrogen. Therefore, it has been estimated that the maximum energy in basalt-hosted systems is available through sulfide oxidation and in ultramafic-hosted systems through hydrogen oxidation. Furthermore, thermodynamic models suggest that the greatest biomass potential arises from sulfide oxidation in basalt-hosted and from hydrogen oxidation in ultramafic-hosted systems. We tested these predictions by measuring biological sulfide and hydrogen removal and subsequent autotrophic CO2 fixation in chemically distinct hydrothermal fluids from basalt-hosted and ultramafic-hosted vents. We found a large potential of microbial hydrogen oxidation in naturally hydrogen-rich (ultramafic-hosted) but also in naturally hydrogen-poor (basalt-hosted) hydrothermal fluids. Moreover, hydrogen oxidation-based primary production proved to be highly attractive under our incubation conditions regardless whether hydrothermal fluids from ultramafic-hosted or basalt-hosted sites were used. Site-specific hydrogen and sulfide availability alone did not appear to determine whether hydrogen or sulfide oxidation provides the energy for primary production by the free-living microbes in the tested hydrothermal fluids. This suggests that more complex features (e.g., a combination of oxygen, temperature, biological interactions) may play a role for determining which energy source is preferably used in chemically distinct hydrothermal vent biotopes.
Collapse
Affiliation(s)
- M Perner
- Molecular Biology of Microbial Consortia, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Hart KM, Kulakova AN, Allen CCR, Simpson AJ, Oppenheimer SF, Masoom H, Courtier-Murias D, Soong R, Kulakov LA, Flanagan PV, Murphy BT, Kelleher BP. Tracking the fate of microbially sequestered carbon dioxide in soil organic matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5128-5137. [PMID: 23611116 DOI: 10.1021/es3050696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The microbial contribution to soil organic matter (SOM) has recently been shown to be much larger than previously thought and thus its role in carbon sequestration may also be underestimated. In this study we employ (13)C ((13)CO₂) to assess the potential CO₂ sequestration capacity of soil chemoautotrophic bacteria and combine nuclear magnetic resonance (NMR) with stable isotope probing (SIP), techniques that independently make use of the isotopic enrichment of soil microbial biomass. In this way molecular information generated from NMR is linked with identification of microbes responsible for carbon capture. A mathematical model is developed to determine real-time CO₂ flux so that net sequestration can be calculated. Twenty-eight groups of bacteria showing close homologies with existing species were identified. Surprisingly, Ralstonia eutropha was the dominant group. Through NMR we observed the formation of lipids, carbohydrates, and proteins produced directly from CO₂ utilized by microbial biomass. The component of SOM directly associated with CO₂ capture was calculated at 2.86 mg C (89.21 mg kg(-1)) after 48 h. This approach can differentiate between SOM derived through microbial uptake of CO₂ and other SOM constituents and represents a first step in tracking the fate and dynamics of microbial biomass in soil.
Collapse
Affiliation(s)
- Kris M Hart
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Handley KM, VerBerkmoes NC, Steefel CI, Williams KH, Sharon I, Miller CS, Frischkorn KR, Chourey K, Thomas BC, Shah MB, Long PE, Hettich RL, Banfield JF. Biostimulation induces syntrophic interactions that impact C, S and N cycling in a sediment microbial community. THE ISME JOURNAL 2013; 7:800-16. [PMID: 23190730 PMCID: PMC3603403 DOI: 10.1038/ismej.2012.148] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/28/2012] [Accepted: 10/08/2012] [Indexed: 11/09/2022]
Abstract
Stimulation of subsurface microorganisms to induce reductive immobilization of metals is a promising approach for bioremediation, yet the overall microbial community response is typically poorly understood. Here we used proteogenomics to test the hypothesis that excess input of acetate activates complex community functioning and syntrophic interactions among autotrophs and heterotrophs. A flow-through sediment column was incubated in a groundwater well of an acetate-amended aquifer and recovered during microbial sulfate reduction. De novo reconstruction of community sequences yielded near-complete genomes of Desulfobacter (Deltaproteobacteria), Sulfurovum- and Sulfurimonas-like Epsilonproteobacteria and Bacteroidetes. Partial genomes were obtained for Clostridiales (Firmicutes) and Desulfuromonadales-like Deltaproteobacteria. The majority of proteins identified by mass spectrometry corresponded to Desulfobacter-like species, and demonstrate the role of this organism in sulfate reduction (Dsr and APS), nitrogen fixation and acetate oxidation to CO2 during amendment. Results indicate less abundant Desulfuromonadales, and possibly Bacteroidetes, also actively contributed to CO2 production via the tricarboxylic acid (TCA) cycle. Proteomic data indicate that sulfide was partially re-oxidized by Epsilonproteobacteria through nitrate-dependent sulfide oxidation (using Nap, Nir, Nos, SQR and Sox), with CO2 fixed using the reverse TCA cycle. We infer that high acetate concentrations, aimed at stimulating anaerobic heterotrophy, led to the co-enrichment of, and carbon fixation in Epsilonproteobacteria. Results give an insight into ecosystem behavior following addition of simple organic carbon to the subsurface, and demonstrate a range of biological processes and community interactions were stimulated.
Collapse
Affiliation(s)
- Kim M Handley
- Department of Earth and Planetary Science,
University of California, Berkeley, CA,
USA
| | - Nathan C VerBerkmoes
- Chemical Sciences and Biosciences Divisions,
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN,
USA
| | - Carl I Steefel
- Earth Science Division, Lawrence Berkeley
National Laboratory (LBNL), Berkeley, CA,
USA
| | - Kenneth H Williams
- Earth Science Division, Lawrence Berkeley
National Laboratory (LBNL), Berkeley, CA,
USA
| | - Itai Sharon
- Department of Earth and Planetary Science,
University of California, Berkeley, CA,
USA
| | - Christopher S Miller
- Department of Earth and Planetary Science,
University of California, Berkeley, CA,
USA
| | - Kyle R Frischkorn
- Department of Earth and Planetary Science,
University of California, Berkeley, CA,
USA
| | - Karuna Chourey
- Chemical Sciences and Biosciences Divisions,
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN,
USA
| | - Brian C Thomas
- Department of Earth and Planetary Science,
University of California, Berkeley, CA,
USA
| | - Manesh B Shah
- Chemical Sciences and Biosciences Divisions,
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN,
USA
| | - Philip E Long
- Earth Science Division, Lawrence Berkeley
National Laboratory (LBNL), Berkeley, CA,
USA
| | - Robert L Hettich
- Chemical Sciences and Biosciences Divisions,
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN,
USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science,
University of California, Berkeley, CA,
USA
- Earth Science Division, Lawrence Berkeley
National Laboratory (LBNL), Berkeley, CA,
USA
| |
Collapse
|
25
|
Klok JBM, de Graaff M, van den Bosch PLF, Boelee NC, Keesman KJ, Janssen AJH. A physiologically based kinetic model for bacterial sulfide oxidation. WATER RESEARCH 2013; 47:483-492. [PMID: 23177655 DOI: 10.1016/j.watres.2012.09.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 09/04/2012] [Accepted: 09/08/2012] [Indexed: 05/27/2023]
Abstract
In the biotechnological process for hydrogen sulfide removal from gas streams, a variety of oxidation products can be formed. Under natron-alkaline conditions, sulfide is oxidized by haloalkaliphilic sulfide oxidizing bacteria via flavocytochrome c oxidoreductase. From previous studies, it was concluded that the oxidation-reduction state of cytochrome c is a direct measure for the bacterial end-product formation. Given this physiological feature, incorporation of the oxidation state of cytochrome c in a mathematical model for the bacterial oxidation kinetics will yield a physiologically based model structure. This paper presents a physiologically based model, describing the dynamic formation of the various end-products in the biodesulfurization process. It consists of three elements: 1) Michaelis-Menten kinetics combined with 2) a cytochrome c driven mechanism describing 3) the rate determining enzymes of the respiratory system of haloalkaliphilic sulfide oxidizing bacteria. The proposed model is successfully validated against independent data obtained from biological respiration tests and bench scale gas-lift reactor experiments. The results demonstrate that the model is a powerful tool to describe product formation for haloalkaliphilic biomass under dynamic conditions. The model predicts a maximum S⁰ formation of about 98 mol%. A future challenge is the optimization of this bioprocess by improving the dissolved oxygen control strategy and reactor design.
Collapse
Affiliation(s)
- Johannes B M Klok
- Sub-department of Environmental Technology, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
26
|
Klok JBM, van den Bosch PLF, Buisman CJN, Stams AJM, Keesman KJ, Janssen AJH. Pathways of sulfide oxidation by haloalkaliphilic bacteria in limited-oxygen gas lift bioreactors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:7581-6. [PMID: 22697609 DOI: 10.1021/es301480z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Physicochemical processes, such as the Lo-cat and Amine-Claus process, are commonly used to remove hydrogen sulfide from hydrocarbon gas streams such as landfill gas, natural gas, and synthesis gas. Biodesulfurization offers environmental advantages, but still requires optimization and more insight in the reaction pathways and kinetics. We carried out experiments with gas lift bioreactors inoculated with haloalkaliphilic sulfide-oxidizing bacteria. At oxygen-limiting levels, that is, below an O(2)/H(2)S mole ratio of 1, sulfide was oxidized to elemental sulfur and sulfate. We propose that the bacteria reduce NAD(+) without direct transfer of electrons to oxygen and that this is most likely the main route for oxidizing sulfide to elemental sulfur which is subsequently oxidized to sulfate in oxygen-limited bioreactors. We call this pathway the limited oxygen route (LOR). Biomass growth under these conditions is significantly lower than at higher oxygen levels. These findings emphasize the importance of accurate process control. This work also identifies a need for studies exploring similar pathways in other sulfide oxidizers such as Thiobacillus bacteria.
Collapse
Affiliation(s)
- Johannes B M Klok
- Systems and Control group, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
27
|
Perner M, Hentscher M, Rychlik N, Seifert R, Strauss H, Bach W. Driving forces behind the biotope structures in two low-temperature hydrothermal venting sites on the southern Mid-Atlantic Ridge. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:727-737. [PMID: 23761363 DOI: 10.1111/j.1758-2229.2011.00291.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Although it has been more than 30 years since the discovery of deep-sea hydrothermal vents, comprehending the interconnections between hydrothermal venting and microbial life remains a challenge. Here we investigate abiotic-biotic linkages in low-temperature hydrothermal biotopes at Desperate and Lilliput on the southern Mid-Atlantic Ridge. Both sites are basalt-hosted and fluids exhibit the expected chemical signatures. However, contrasting crustal permeabilities have been proposed, supporting pervasive mixing at Desperate but restricting circulation at Lilliput. In Desperate fluids, sulfide and O2 were readily available but H2 hardly detectable. Under incubation conditions (oxic unamended, sulfide-spiked, oxic and anoxic H2 -spiked at 18°C), only sulfide oxidation by Thiomicrospira fuelled biomass synthesis. Microbial phylogenies from Desperate incubation experiments resembled those of the natural samples suggesting that the incubation conditions mimicked the environment. In Lilliput fluids, O2 was limited, whereas sulfide and H2 were enriched. Autotrophy appeared to be stimulated by residual sulfide and by amended H2 . Yet, based on bacterial phylogenies only conditions in anoxic H2 -spiked Lilliput incubations appeared similar to parts of the Lilliput habitat. In anoxic H2 -spiked Lilliput enrichments Campylobacteraceae likely supported biomass production through H2 oxidation. We argue that the diverging circulation patterns arising from different subseafloor permeabilities act as major driving forces shaping these biotope structures.
Collapse
Affiliation(s)
- Mirjam Perner
- Molecular Biology of Microbial Consortia, University of Hamburg, Biocenter Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany. Department of Geosciences, University of Bremen, Klagenfurter Street 2, 28359 Bremen, Germany. Institute of Biogeochemistry and Marine Chemistry, University of Hamburg, Bundesstr. 55, 20146 Hamburg, Germany. Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, Corrensstr. 24, 48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
28
|
The sulfate-rich and extreme saline sediment of the ephemeral tirez lagoon: a biotope for acetoclastic sulfate-reducing bacteria and hydrogenotrophic methanogenic archaea. Int J Microbiol 2011; 2011:753758. [PMID: 21915180 PMCID: PMC3170894 DOI: 10.1155/2011/753758] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 06/23/2011] [Indexed: 11/18/2022] Open
Abstract
Our goal was to examine the composition of methanogenic archaea (MA) and sulfate-reducing (SRP) and sulfur-oxidizing (SOP) prokaryotes in the extreme athalassohaline and particularly sulfate-rich sediment of Tirez Lagoon (Spain). Thus, adenosine-5′-phosphosulfate (APS) reductase α (aprA) and methyl coenzyme M reductase α (mcrA) gene markers were amplified given that both enzymes are specific for SRP, SOP, and MA, respectively. Anaerobic populations sampled at different depths in flooded and dry seasons from the anoxic sediment were compared qualitatively via denaturing gradient gel electrophoresis (DGGE) fingerprint analysis. Phylogenetic analyses allowed the detection of SRP belonging to Desulfobacteraceae, Desulfohalobiaceae, and Peptococcaceae in ∂-proteobacteria and Firmicutes and SOP belonging to Chromatiales/Thiotrichales clade and Ectothiorhodospiraceae in γ-proteobacteria as well as MA belonging to methylotrophic species in Methanosarcinaceae and one hydrogenotrophic species in Methanomicrobiaceae. We also estimated amino acid composition, GC content, and preferential codon usage for the AprA and McrA sequences from halophiles, nonhalophiles, and Tirez phylotypes. Even though our results cannot be currently conclusive regarding the halotolerant strategies carried out by Tirez phylotypes, we discuss the possibility of a plausible “salt-in” signal in SRP and SOP as well as of a speculative complementary haloadaptation between salt-in and salt-out strategies in MA.
Collapse
|
29
|
Luo H, Löytynoja A, Moran MA. Genome content of uncultivated marine Roseobacters in the surface ocean. Environ Microbiol 2011; 14:41-51. [DOI: 10.1111/j.1462-2920.2011.02528.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Datta S, Mody K, Gopalsamy G, Jha B. Novel application of κ-carrageenan: As a gelling agent in microbiological media to study biodiversity of extreme alkaliphiles. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.02.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Sorokin DY, Kuenen JG, Muyzer G. The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Front Microbiol 2011; 2:44. [PMID: 21747784 PMCID: PMC3128939 DOI: 10.3389/fmicb.2011.00044] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 02/25/2011] [Indexed: 11/13/2022] Open
Abstract
Soda lakes represent a unique ecosystem with extremely high pH (up to 11) and salinity (up to saturation) due to the presence of high concentrations of sodium carbonate in brines. Despite these double extreme conditions, most of the lakes are highly productive and contain a fully functional microbial system. The microbial sulfur cycle is among the most active in soda lakes. One of the explanations for that is high-energy efficiency of dissimilatory conversions of inorganic sulfur compounds, both oxidative and reductive, sufficient to cope with costly life at double extreme conditions. The oxidative part of the sulfur cycle is driven by chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria (SOB), which are unique for soda lakes. The haloalkaliphilic SOB are present in the surface sediment layer of various soda lakes at high numbers of up to 10(6) viable cells/cm(3). The culturable forms are so far represented by four novel genera within the Gammaproteobacteria, including the genera Thioalkalivibrio, Thioalkalimicrobium, Thioalkalispira, and Thioalkalibacter. The latter two were only found occasionally and each includes a single species, while the former two are widely distributed in various soda lakes over the world. The genus Thioalkalivibrio is the most physiologically diverse and covers the whole spectrum of salt/pH conditions present in soda lakes. Most importantly, the dominant subgroup of this genus is able to grow in saturated soda brines containing 4 M total Na(+) - a so far unique property for any known aerobic chemolithoautotroph. Furthermore, some species can use thiocyanate as a sole energy source and three out of nine species can grow anaerobically with nitrogen oxides as electron acceptor. The reductive part of the sulfur cycle is active in the anoxic layers of the sediments of soda lakes. The in situ measurements of sulfate reduction rates and laboratory experiments with sediment slurries using sulfate, thiosulfate, or elemental sulfur as electron acceptors demonstrated relatively high sulfate reduction rates only hampered by salt-saturated conditions. However, the highest rates of sulfidogenesis were observed not with sulfate, but with elemental sulfur followed by thiosulfate. Formate, but not hydrogen, was the most efficient electron donor with all three sulfur electron acceptors, while acetate was only utilized as an electron donor under sulfur-reducing conditions. The native sulfidogenic populations of soda lakes showed a typical obligately alkaliphilic pH response, which corresponded well to the in situ pH conditions. Microbiological analysis indicated a domination of three groups of haloalkaliphilic autotrophic sulfate-reducing bacteria belonging to the order Desulfovibrionales (genera Desulfonatronovibrio, Desulfonatronum, and Desulfonatronospira) with a clear tendency to grow by thiosulfate disproportionation in the absence of external electron donor even at salt-saturating conditions. Few novel representatives of the order Desulfobacterales capable of heterotrophic growth with volatile fatty acids and alcohols at high pH and moderate salinity have also been found, while acetate oxidation was a function of a specialized group of haloalkaliphilic sulfur-reducing bacteria, which belong to the phylum Chrysiogenetes.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Russian Academy of Sciences Moscow, Russia
| | | | | |
Collapse
|
32
|
Abstract
Life at high salt concentrations is energetically expensive. The upper salt concentration limit at which different dissimilatory processes occur in nature appears to be determined to a large extent by bioenergetic constraints. The main factors that determine whether a certain type of microorganism can make a living at high salt are the amount of energy generated during its dissimilatory metabolism and the mode of osmotic adaptation used. I here review new data, both from field observations and from the characterization of cultures of new types of prokaryotes growing at high salt concentrations, to evaluate to what extent the theories formulated 12 years ago are still valid, need to be refined, or should be refuted on the basis of the novel information collected. Most data agree well with the earlier theories. Some new observations, however, are not easily explained: the properties of Natranaerobius and other haloalkaliphilic thermophilic fermentative anaerobes, growth of the sulfate-reducing Desulfosalsimonas propionicica with complete oxidation of propionate and Desulfovermiculus halophilus with complete oxidation of butyrate, growth of lactate-oxidizing sulfate reducers related to Desulfonatronovibrio at 346 g l(-1) salts at pH 9.8, and occurrence of methane oxidation in the anaerobic layers of Big Soda Lake and Mono Lake.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, Institute of Life Sciences, and Moshe Shilo Minerva Center for Marine Biogeochemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
33
|
Evaluation of haloalkaliphilic sulfur-oxidizing microorganisms with potential application in the effluent treatment of the petroleum industry. Biodegradation 2010; 22:83-93. [DOI: 10.1007/s10532-010-9378-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 06/15/2010] [Indexed: 11/26/2022]
|
34
|
Geelhoed JS, Kleerebezem R, Sorokin DY, Stams AJM, van Loosdrecht MCM. Reduced inorganic sulfur oxidation supports autotrophic and mixotrophic growth of Magnetospirillum strain J10 and Magnetospirillum gryphiswaldense. Environ Microbiol 2010; 12:1031-40. [PMID: 20105221 DOI: 10.1111/j.1462-2920.2009.02148.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnetotactic bacteria are present at the oxic-anoxic transition zone where opposing gradients of oxygen and reduced sulfur and iron exist. Growth of non-magnetotactic lithoautotrophic Magnetospirillum strain J10 and its close relative magnetotactic Magnetospirillum gryphiswaldense was characterized in microaerobic continuous culture. Both strains were able to grow in mixotrophic (acetate + sulfide) and autotrophic (sulfide or thiosulfate) conditions. Autotrophically growing cells completely converted sulfide or thiosulfate to sulfate and produced 7.5 g dry weight per mol substrate at a maximum observed growth rate of 0.09 h(-1) for strain J10 and 0.07 h(-1) for M. gryphiswaldense. The respiratory activity for acetate was repressed in autotrophic and also in mixotrophic cultures, suggesting acetate was used as C-source in the latter. We have estimated the proportions of substrate used for assimilatory processes and evaluated the biomass yields per mol dissimilated substrate. The yield for lithoheterotrophic growth using acetate as the C-source was approximately twice the autotrophic growth yield and very similar to the heterotrophic yield, showing the importance of reduced sulfur compounds for growth. In the draft genome sequence of M. gryphiswaldense homologues of genes encoding a partial sulfur-oxidizing (Sox) enzyme system and reverse dissimilatory sulfite reductase (Dsr) were identified, which may be involved in the oxidation of sulfide and thiosulfate. Magnetospirillum gryphiswaldense is the first freshwater magnetotactic species for which autotrophic growth is shown.
Collapse
Affiliation(s)
- Jeanine S Geelhoed
- Environmental Biotechnology, Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands.
| | | | | | | | | |
Collapse
|
35
|
Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, Howard EC, King E, Oakley CA, Reisch CR, Rinta-Kanto JM, Sharma S, Sun S, Varaljay V, Vila-Costa M, Westrich JR, Moran MA. Genome characteristics of a generalist marine bacterial lineage. ISME JOURNAL 2010; 4:784-98. [DOI: 10.1038/ismej.2009.150] [Citation(s) in RCA: 300] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Munz G, Gori R, Mori G, Lubello C. Monitoring biological sulphide oxidation processes using combined respirometric and titrimetric techniques. CHEMOSPHERE 2009; 76:644-650. [PMID: 19450866 DOI: 10.1016/j.chemosphere.2009.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 04/16/2009] [Accepted: 04/16/2009] [Indexed: 05/27/2023]
Abstract
The application of respirometric and titrimetric techniques to evaluate kinetic parameters and stoichiometry of the sulphide-oxidising biomass is a new promising approach for biotechnological sulphide oxidation process monitoring. It was possible to estimate the yield coefficients of each oxidation step of sulphide to elemental sulphur and to sulphate using respirometric tests, while evaluating the behaviour of the biomass in endogenous conditions. Furthermore, it was demonstrated how the combined application of titrimetric and respirometric techniques enabled the monitoring of sulphur and sulphate formation as a function of the environmental conditions. This approach provided valuable information of the biological sulphide oxidation processes and preliminary results may be used as a starting point for the formulation and use of a mathematical model.
Collapse
Affiliation(s)
- Giulio Munz
- Department of Civil and Environmental Engineering, University of Florence, Via S. Marta n. 3, 50139 Florence, Italy.
| | | | | | | |
Collapse
|
37
|
van den Bosch PLF, Sorokin DY, Buisman CJN, Janssen AJH. The effect of pH on thiosulfate formation in a biotechnological process for the removal of hydrogen sulfide from gas streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:2637-2642. [PMID: 18505009 DOI: 10.1021/es7024438] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In a biotechnological process for hydrogen sulfide (H2S) removal from gas streams, operating at natronophilic conditions, formation of thiosulfate (S2O3(2-)) is unfavorable, as it leads to a reduced sulfur production. Thiosulfate formation was studied in gas-lift bioreactors, using natronophilic biomass at [Na+] + [K+] = 2 mol L(-1). The results show that at sulfur producing conditions, selectivity for S2O3(2-) formation mainly depends on the equilibrium between free sulfide (HS(-)) and polysulfide (Sx(2-)), which can be controlled via the pH. At pH 8.6, 21% of the total dissolved sulfide is present as Sx(2-) and selectivity for S2O3(2-) formation is 3.9-5.5%. At pH 10, 87% of the total dissolved sulfide is present as Sx(2-) and 20-22% of the supplied H2S is converted to S2O3(2-), independent of the H2S loading rate. Based on results of bioreactor experiments and biomass activity tests, a mechanistic model is proposed to describe the relation between S2O3(2-) formation and pH.
Collapse
Affiliation(s)
- Pim L F van den Bosch
- Sub-department of Environmental Technology, Wageningen University, Bomenweg 2, P.O. Box 8129, 6700 EV Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Banciu HL, Sorokin DY, Tourova TP, Galinski EA, Muntyan MS, Kuenen JG, Muyzer G. Influence of salts and pH on growth and activity of a novel facultatively alkaliphilic, extremely salt-tolerant, obligately chemolithoautotrophic sufur-oxidizing Gammaproteobacterium Thioalkalibacter halophilus gen. nov., sp. nov. from South-Western Siberian soda lakes. Extremophiles 2008; 12:391-404. [DOI: 10.1007/s00792-008-0142-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 01/17/2008] [Indexed: 11/29/2022]
|
39
|
van den Bosch PLF, van Beusekom OC, Buisman CJN, Janssen AJH. Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor. Biotechnol Bioeng 2007; 97:1053-63. [PMID: 17216660 DOI: 10.1002/bit.21326] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A biotechnological process is described to remove hydrogen sulfide (H(2)S) from high-pressure natural gas and sour gases produced in the petrochemical industry. The process operates at halo-alkaline conditions and combines an aerobic sulfide-oxidizing reactor with an anaerobic sulfate (SO(4) (2-)) and thiosulfate (S(2)O(3) (2-)) reducing reactor. The feasibility of biological H(2)S oxidation at pH around 10 and total sodium concentration of 2 mol L(-1) was studied in gas-lift bioreactors, using halo-alkaliphilic sulfur-oxidizing bacteria (HA-SOB). Reactor operation at different oxygen to sulfide (O(2):H(2)S) supply ratios resulted in a stable low redox potential that was directly related with the polysulfide (S(x) (2-)) and total sulfide concentration in the bioreactor. Selectivity for SO(4) (2-) formation decreased with increasing S(x) (2-) and total sulfide concentrations. At total sulfide concentrations above 0.25 mmol L(-1), selectivity for SO(4) (2-) formation approached zero and the end products of H(2)S oxidation were elemental sulfur (S(0)) and S(2)O(3) (2-). Maximum selectivity for S(0) formation (83.3+/-0.7%) during stable reactor operation was obtained at a molar O(2):H(2)S supply ratio of 0.65. Under these conditions, intermediary S(x) (2-) plays a major role in the process. Instead of dissolved sulfide (HS(-)), S(x) (2-) seemed to be the most important electron donor for HA-SOB under S(0) producing conditions. In addition, abiotic oxidation of S(x) (2-) was the main cause of undesirable formation of S(2)O(3) (2-). The observed biomass growth yield under SO(4) (2-) producing conditions was 0.86 g N mol(-1) H(2)S. When selectivity for SO(4) (2-) formation was below 5%, almost no biomass growth was observed.
Collapse
Affiliation(s)
- Pim L F van den Bosch
- Sub-Department of Environmental Technology, Wageningen University, Bomenweg 2, 6700 EV Wageningen, The Netherlands
| | | | | | | |
Collapse
|
40
|
Sorokin DY, Foti M, Pinkart HC, Muyzer G. Sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake with an unprecedented high sulfide content. Appl Environ Microbiol 2006; 73:451-5. [PMID: 17114324 PMCID: PMC1796962 DOI: 10.1128/aem.02087-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Culture-dependent and -independent techniques were used to study the diversity of chemolithoautotrophic sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake containing an unprecedentedly high sulfide concentration in the anoxic monimolimnion. Both approaches revealed the dominance of bacteria belonging to the genus Thioalkalimicrobium, which are common inhabitants of soda lakes. A dense population of Thioalkalimicrobium (up to 10(7) cells/ml) was found at the chemocline, which is characterized by a steep oxygen-sulfide gradient. Twelve Thioalkalimicrobium strains exhibiting three different phenotypes were isolated in pure culture from various locations in Soap Lake. The isolates fell into two groups according to 16S rRNA gene sequence analysis. One of the groups was closely related to T. cyclicum, which was isolated from Mono Lake (California), a transiently meromictic, haloalkaline lake. The second group, consisting of four isolates, was phylogenetically and phenotypically distinct from known Thioalkalimicrobium species and unique to Soap Lake. It represented a new species, for which we suggest the name Thioalkalimicrobium microaerophilum sp. nov.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands.
| | | | | | | |
Collapse
|
41
|
Schmidt M, Priemé A, Stougaard P. Bacterial diversity in permanently cold and alkaline ikaite columns from Greenland. Extremophiles 2006; 10:551-62. [PMID: 16770690 DOI: 10.1007/s00792-006-0529-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 04/12/2006] [Indexed: 10/24/2022]
Abstract
Bacterial diversity in alkaline (pH 10.4) and permanently cold (4 degrees C) ikaite tufa columns from the Ikka Fjord, SW Greenland, was investigated using growth characterization of cultured bacterial isolates with Terminal-restriction fragment length polymorphism (T-RFLP) and sequence analysis of bacterial 16S rRNA gene fragments. More than 200 bacterial isolates were characterized with respect to pH and temperature tolerance, and it was shown that the majority were cold-active alkaliphiles. T-RFLP analysis revealed distinct bacterial communities in different fractions of three ikaite columns, and, along with sequence analysis, it showed the presence of rich and diverse bacterial communities. Rarefaction analysis showed that the 109 sequenced clones in the 16S rRNA gene library represented between 25 and 65% of the predicted species richness in the three ikaite columns investigated. Phylogenetic analysis of the 16S rRNA gene sequences revealed many sequences with similarity to alkaliphilic or psychrophilic bacteria, and showed that 33% of the cloned sequences and 33% of the cultured bacteria showed less than 97% sequence identity to known sequences in databases, and may therefore represent yet unknown species.
Collapse
|
42
|
Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J. Prokaryotic sulfur oxidation. Curr Opin Microbiol 2005; 8:253-9. [PMID: 15939347 DOI: 10.1016/j.mib.2005.04.005] [Citation(s) in RCA: 315] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 04/20/2005] [Indexed: 11/28/2022]
Abstract
Recent biochemical and genomic data differentiate the sulfur oxidation pathway of Archaea from those of Bacteria. From these data it is evident that members of the Alphaproteobacteria harbor the complete sulfur-oxidizing Sox enzyme system, whereas members of the beta and gamma subclass and the Chlorobiaceae contain sox gene clusters that lack the genes encoding sulfur dehydrogenase. This indicates a different pathway for oxidation of sulfur to sulfate. Acidophilic bacteria oxidize sulfur by a system different from the Sox enzyme system, as do chemotrophic endosymbiotic bacteria.
Collapse
Affiliation(s)
- Cornelius G Friedrich
- Department of Biochemical and Chemical Engineering, University of Dortmund, D-44221 Dortmund, Germany.
| | | | | | | | | |
Collapse
|
43
|
Banciu H, Sorokin DY, Rijpstra WIC, Sinninghe Damsté JS, Galinski EA, Takaichi S, Muyzer G, Kuenen JG. Fatty acid, compatible solute and pigment composition of obligately chemolithoautotrophic alkaliphilic sulfur-oxidizing bacteria from soda lakes. FEMS Microbiol Lett 2005; 243:181-7. [PMID: 15668017 DOI: 10.1016/j.femsle.2004.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 12/02/2004] [Accepted: 12/06/2004] [Indexed: 11/28/2022] Open
Abstract
Salt adaptation in chemolithotrophic alkaliphilic sulfur-oxidizing strains belonging to genera Thioalkalimicrobium and Thioalkalivibrio has been studied by determination of salt-dependent changes in fatty acid and compatible solute composition. In both alkaliphilic groups, represented by the low salt-tolerant Thioalkalimicrobium aerophilum strain AL 3T and the extremely salt-tolerant Thioalkalivibrio versutus strain ALJ 15, unsaturated fatty acids predominate over saturated fatty acids. In strain AL 3T, C18:1, C16:0 and C16:1 were the dominant fatty acids. In strain ALJ 15, the concentrations of C18:1 and C19cyclo were salt-regulated in an inverse proportional relationship, suggesting the stimulation of cyclopropyl-synthetase activity. Squalene has been found in substantial amounts only in strain ALJ 15. Ectoine and glycine betaine were found to be the main osmolytes in Thioalkalimicrobium aerophilum and Thioalkalivibrio versutus, respectively. The production of ectoine and glycine betaine was positively correlated with the salt concentration in the growth medium. A novel type of membrane-bound yellow pigments was uniformly detected in the extremely salt-tolerant strains of Thioalkalivibrio with a backbone consisting of C15-polyene, whose specific concentration correlated with increasing salinity of the growth medium. The results suggest that the mechanisms of haloalkaliphilic adaptation in Thioalkalimicrobium sp. and Thioalkalivibrio sp. involve the production of cyclopropane fatty acids, organic compatible solutes and, possibly specific pigments.
Collapse
Affiliation(s)
- Horia Banciu
- Department of Environmental Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Sorokin DY, Kuenen JG. Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev 2004; 29:685-702. [PMID: 16102598 DOI: 10.1016/j.femsre.2004.10.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 09/23/2004] [Accepted: 10/15/2004] [Indexed: 11/25/2022] Open
Abstract
The existence of chemolithoautotrophic sulfur-oxidizing bacteria (SOB) capable of growth in an extremely alkaline and saline environment has not been recognized until recently. Extensive studies of saline, alkaline (soda) lakes located in Central Asia, Africa and North America have now revealed the presence, at relatively high numbers, of a new branch of obligately autotrophic SOB in these doubly extreme environments. Overall more than 100 strains were isolated in pure culture. All of them have the potential to grow optimally at around pH 10 in media strongly buffered with sodium carbonate/bicarbonate and cannot grow at pH<7.5 and Na(+) concentration <0.2 M. The majority of the isolates fell into two distinct groups with differing phylogeny and physiology, that have been described as two new genera in the Gammaproteobacteria; Thioalkalimicrobium and Thioalkalivibrio. The third genus, Thioalkalispira, contains a single obligate microaerophilic species T. microaerophila. The Thioalkalimicrobium group represents a typical opportunistic strategy, including highly specialized, relatively fast-growing and low salt-tolerant bacteria, dominating in hyposaline steppe soda lakes of Central Asia. The genus Thioalkalivibrio includes mostly slowly growing species better adapted to life in hypersaline conditions and with a more versatile metabolism. It includes denitrifying, thiocyanate-utilizing and facultatively alkaliphilic species.
Collapse
|
45
|
Banciu H, Sorokin DY, Galinski EA, Muyzer G, Kleerebezem R, Kuenen JG. Thialkalivibrio halophilus sp. nov., a novel obligately chemolithoautotrophic, facultatively alkaliphilic, and extremely salt-tolerant, sulfur-oxidizing bacterium from a hypersaline alkaline lake. Extremophiles 2004; 8:325-34. [PMID: 15309564 DOI: 10.1007/s00792-004-0391-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 03/25/2004] [Indexed: 10/26/2022]
Abstract
A new chemolithoautotrophic, facultatively alkaliphilic, extremely salt-tolerant, sulfur-oxidizing bacterium was isolated from an alkaline hypersaline lake in the Altai Steppe (Siberia, Russia). According to 16S rDNA analysis and DNA-DNA hybridization, strain HL 17T was identified as a new species of the genus Thialkalivibrio belonging to the gamma subdivision of the Proteobacteria for which the name Thialkalivibrio halophilus is proposed. Strain HL 17T is an extremely salt-tolerant bacterium growing at sodium concentrations between 0.2 and 5 M, with an optimum of 2 M Na+. It grew at high concentrations of NaCl and of Na2CO3/NaHCO3 (soda). Strain HL 17T is a facultative alkaliphile growing at pH range 7.5-9.8, with a broad optimum between pH 8.0 and 9.0. It used reduced inorganic sulfur compounds (thiosulfate, sulfide, polysulfide, elemental sulfur, and tetrathionate) as energy sources and electron donors. In continuous culture under energy limitation, thiosulfate was stoichiometrically oxidized to sulfate. In sodium carbonate medium under alkaline conditions, the maximum growth rate was similar, while the biomass yield was lower as compared with the NaCl-grown culture. The maximum sulfur-oxidizing capacity measured in washed cells was higher in the soda buffer independent of the growth conditions. The compatible solute content of the biomass was higher in the sodium chloride-grown culture than in the sodium carbonate/bicarbonate-grown culture. The data suggest that the osmotic pressure differences between soda and NaCl solutions might be responsible for the difference observed in compatible solutes production. This may have important implications in overall energetic metabolism of high salt adaptation.
Collapse
Affiliation(s)
- Horia Banciu
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628, Delft, BC, The Netherlands.
| | | | | | | | | | | |
Collapse
|
46
|
Banciu H, Sorokin DY, Kleerebezem R, Muyzer G, Galinski EA, Kuenen JG. Growth kinetics of haloalkaliphilic, sulfur-oxidizing bacterium Thioalkalivibrio versutus strain ALJ 15 in continuous culture. Extremophiles 2004; 8:185-92. [PMID: 14991424 DOI: 10.1007/s00792-004-0376-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Accepted: 12/25/2003] [Indexed: 10/26/2022]
Abstract
The chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio versutus strain ALJ 15, isolated from a soda lake in Kenya, was grown in a continuous culture, with thiosulfate or polysulfide as growth-limiting energy source and oxygen as electron acceptor, at pH 10 and at pH 0.6, 2 M and 4 M total sodium. The end product of the sulfur-compound oxidation was sulfate. Elemental sulfur and a cell-bound, polysulfide-like compound appeared as intermediates during substrate oxidation. In the thiosulfate-limited culture, the biomass yields and maximum specific growth rates decreased two and three times, respectively, with increasing sodium concentration. The apparent affinity constant measured for thiosulfate and polysulfide was in the micromolar range (Ks = 6 +/- 3 microM). The maintenance requirement (ms = 8 +/- 5 mmol S2O3(2)/g dry weight h(-1)) was in the range of values found for other autotrophic sulfur-oxidizing bacteria. The organism had a comparable maximum specific rate of oxygen uptake with thiosulfate, polysulfide, and sulfide, while elemental sulfur was oxidized at a lower rate. Glycine betaine was the main organic compatible solute. The respiration rates with different species of polysulfides (Sn2-) were tested. All polysulfide species were completely oxidized at high rates to sulfate. Overall data demonstrated efficient growth and sulfur compounds oxidation of haloalkaliphilic chemolithoautotrophic bacteria from soda lakes.
Collapse
Affiliation(s)
- Horia Banciu
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands,
| | | | | | | | | | | |
Collapse
|