1
|
Mendonça M, Barroca M, Collins T. Endo-1,4-β-xylanase-containing glycoside hydrolase families: Characteristics, singularities and similarities. Biotechnol Adv 2023; 65:108148. [PMID: 37030552 DOI: 10.1016/j.biotechadv.2023.108148] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Endo-1,4-β-xylanases (EC 3.2.1.8) are O-glycoside hydrolases that cleave the internal β-1,4-D-xylosidic linkages of the complex plant polysaccharide xylan. They are produced by a vast array of organisms where they play critical roles in xylan saccharification and plant cell wall hydrolysis. They are also important industrial biocatalysts with widespread application. A large and ever growing number of xylanases with wildly different properties and functionalites are known and a better understanding of these would enable a more effective use in various applications. The Carbohydrate-Active enZYmes database (CAZy), which classifies evolutionarily related proteins into a glycoside hydrolase family-subfamily organisational scheme has proven powerful in understanding these enzymes. Nevertheless, ambiguity currently exists as to the number of glycoside hydrolase families and subfamilies harbouring catalytic domains with true endoxylanase activity and as to the specific characteristics of each of these families/subfamilies. This review seeks to clarify this, identifying 9 glycoside hydrolase families containing enzymes with endo-1,4-β-xylanase activity and discussing their properties, similarities, differences and biotechnological perspectives. In particular, substrate specificities and hydrolysis patterns and the structural determinants of these are detailed, with taxonomic aspects of source organisms being also presented. Shortcomings in current knowledge and research areas that require further clarification are highlighted and suggestions for future directions provided. This review seeks to motivate further research on these enzymes and especially of the lesser known endo-1,4-β-xylanase containing families. A better understanding of these enzymes will serve as a foundation for the knowledge-based development of process-fitted endo-1,4-β-xylanases and will accelerate their development for use with even the most recalcitrant of substrates in the biobased industries of the future.
Collapse
|
2
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
3
|
Saavedra-Bouza A, Escuder-Rodríguez JJ, deCastro ME, Becerra M, González-Siso MI. Xylanases from thermophilic archaea: a hidden treasure. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
4
|
Genomic attributes of thermophilic and hyperthermophilic bacteria and archaea. World J Microbiol Biotechnol 2022; 38:135. [PMID: 35695998 DOI: 10.1007/s11274-022-03327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Thermophiles and hyperthermophiles are immensely useful in understanding the evolution of life, besides their utility in environmental and industrial biotechnology. Advancements in sequencing technologies have revolutionized the field of microbial genomics. The massive generation of data enhances the sequencing coverage multi-fold and allows to analyse the entire genomic features of microbes efficiently and accurately. The mandate of a pure isolate can also be bypassed where whole metagenome-assembled genomes and single cell-based sequencing have fulfilled the majority of the criteria to decode various attributes of microbial genomes. A boom has, therefore, been seen in analysing the extremophilic bacteria and archaea using sequence-based approaches. Due to extensive sequence analysis, it becomes easier to understand the gene flow and their evolution among the members of bacteria and archaea. For instance, sequencing unveiled that Thermotoga maritima shares around 24% of genes of archaeal origin. Comparative and functional genomics provide an analytical view to understanding the microbial diversity of thermophilic bacteria and archaea, their interactions with other microbes, their adaptations, gene flow, and evolution over time. In this review, the genomic features of thermophilic bacteria and archaea are dealt with comprehensively.
Collapse
|
5
|
Sohail M, Barzkar N, Michaud P, Tamadoni Jahromi S, Babich O, Sukhikh S, Das R, Nahavandi R. Cellulolytic and Xylanolytic Enzymes from Yeasts: Properties and Industrial Applications. Molecules 2022; 27:3783. [PMID: 35744909 PMCID: PMC9229053 DOI: 10.3390/molecules27123783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Lignocellulose, the main component of plant cell walls, comprises polyaromatic lignin and fermentable materials, cellulose and hemicellulose. It is a plentiful and renewable feedstock for chemicals and energy. It can serve as a raw material for the production of various value-added products, including cellulase and xylanase. Cellulase is essentially required in lignocellulose-based biorefineries and is applied in many commercial processes. Likewise, xylanases are industrially important enzymes applied in papermaking and in the manufacture of prebiotics and pharmaceuticals. Owing to the widespread application of these enzymes, many prokaryotes and eukaryotes have been exploited to produce cellulase and xylanases in good yields, yet yeasts have rarely been explored for their plant-cell-wall-degrading activities. This review is focused on summarizing reports about cellulolytic and xylanolytic yeasts, their properties, and their biotechnological applications.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 3995, Iran
| | - Philippe Michaud
- Institute Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France;
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas 3995, Iran
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia; (O.B.); (S.S.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia; (O.B.); (S.S.)
| | - Rakesh Das
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 1433 Aas, Norway;
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj 8361, Iran;
| |
Collapse
|
6
|
Lee A, Jin H, Cha J. Engineering of Sulfolobus acidocaldarius for Hemicellulosic Biomass Utilization. J Microbiol Biotechnol 2022; 32:663-671. [PMID: 35283427 PMCID: PMC9628888 DOI: 10.4014/jmb.2202.02016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
The saccharification of cellulose and hemicellulose is essential for utilizing lignocellulosic biomass as a biofuel. While cellulose is composed of glucose only, hemicelluloses are composed of diverse sugars such as xylose, arabinose, glucose, and galactose. Sulfolobus acidocaldarius is a good potential candidate for biofuel production using hemicellulose as this archaeon simultaneously utilizes various sugars. However, S. acidocaldarius has to be manipulated because the enzyme that breaks down hemicellulose is not present in this species. Here, we engineered S. acidocaldarius to utilize xylan as a carbon source by introducing xylanase and β-xylosidase. Heterologous expression of β-xylosidase enhanced the organism's degradability and utilization of xylooligosaccharides (XOS), but the mutant still failed to grow when xylan was provided as a carbon source. S. acidocaldarius exhibited the ability to degrade xylan into XOS when xylanase was introduced, but no further degradation proceeded after this sole reaction. Following cell growth and enzyme reaction, S. acidocaldarius successfully utilized xylan in the synergy between xylanase and β-xylosidase.
Collapse
Affiliation(s)
- Areum Lee
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Hyeju Jin
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Jaeho Cha
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea,Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea,Corresponding author Phone: +82-51-510-2196 Fax: +82-51-514-1778 E-mail:
| |
Collapse
|
7
|
Klaus T, Ninck S, Albersmeier A, Busche T, Wibberg D, Jiang J, Elcheninov AG, Zayulina KS, Kaschani F, Bräsen C, Overkleeft HS, Kalinowski J, Kublanov IV, Kaiser M, Siebers B. Activity-Based Protein Profiling for the Identification of Novel Carbohydrate-Active Enzymes Involved in Xylan Degradation in the Hyperthermophilic Euryarchaeon Thermococcus sp. Strain 2319x1E. Front Microbiol 2022; 12:734039. [PMID: 35095781 PMCID: PMC8790579 DOI: 10.3389/fmicb.2021.734039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Activity-based protein profiling (ABPP) has so far scarcely been applied in Archaea in general and, especially, in extremophilic organisms. We herein isolated a novel Thermococcus strain designated sp. strain 2319x1E derived from the same enrichment culture as the recently reported Thermococcus sp. strain 2319x1. Both strains are able to grow with xylan as the sole carbon and energy source, and for Thermococcus sp. strain 2319x1E (optimal growth at 85°C, pH 6–7), the induction of xylanolytic activity in the presence of xylan was demonstrated. Since the solely sequence-based identification of xylanolytic enzymes is hardly possible, we established a complementary approach by conducting comparative full proteome analysis in combination with ABPP using α- or β-glycosidase selective probes and subsequent mass spectrometry (MS)-based analysis. This complementary proteomics approach in combination with recombinant protein expression and classical enzyme characterization enabled the identification of a novel bifunctional maltose-forming α-amylase and deacetylase (EGDIFPOO_00674) belonging to the GH57 family and a promiscuous β-glycosidase (EGIDFPOO_00532) with β-xylosidase activity. We thereby further substantiated the general applicability of ABPP in archaea and expanded the ABPP repertoire for the identification of glycoside hydrolases in hyperthermophiles.
Collapse
Affiliation(s)
- Thomas Klaus
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Faculty of Chemistry, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Essen, Germany
| | - Sabrina Ninck
- Department of Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Andreas Albersmeier
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jianbing Jiang
- Section of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Alexander G Elcheninov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Kseniya S Zayulina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Farnusch Kaschani
- Department of Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Faculty of Chemistry, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Essen, Germany
| | - Herman S Overkleeft
- Section of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Markus Kaiser
- Department of Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Faculty of Chemistry, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
Verma D. Extremophilic Prokaryotic Endoxylanases: Diversity, Applicability, and Molecular Insights. Front Microbiol 2021; 12:728475. [PMID: 34566933 PMCID: PMC8458939 DOI: 10.3389/fmicb.2021.728475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Extremophilic endoxylanases grabbed attention in recent years due to their applicability under harsh conditions of several industrial processes. Thermophilic, alkaliphilic, and acidophilic endoxylanases found their employability in bio-bleaching of paper pulp, bioconversion of lignocellulosic biomass into xylooligosaccharides, bioethanol production, and improving the nutritious value of bread and other bakery products. Xylanases obtained from extremophilic bacteria and archaea are considered better than fungal sources for several reasons. For example, enzymatic activity under broad pH and temperature range, low molecular weight, cellulase-free activity, and longer stability under extreme conditions of prokaryotic derived xylanases make them a good choice. In addition, a short life span, easy cultivation/harvesting methods, higher yield, and rapid DNA manipulations of bacterial and archaeal cells further reduces the overall cost of the product. This review focuses on the diversity of prokaryotic endoxylanases, their characteristics, and their functional attributes. Besides, the molecular mechanisms of their extreme behavior have also been presented here.
Collapse
Affiliation(s)
- Digvijay Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
9
|
Lewis AM, Recalde A, Bräsen C, Counts JA, Nussbaum P, Bost J, Schocke L, Shen L, Willard DJ, Quax TEF, Peeters E, Siebers B, Albers SV, Kelly RM. The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol Rev 2021; 45:fuaa063. [PMID: 33476388 PMCID: PMC8557808 DOI: 10.1093/femsre/fuaa063] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered >50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further probe novel features of these microbes but also paved the way for their potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes.
Collapse
Affiliation(s)
- April M Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Alejandra Recalde
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher Bräsen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Phillip Nussbaum
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Jan Bost
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Schocke
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Tessa E F Quax
- Archaeal Virus–Host Interactions, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sonja-Verena Albers
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| |
Collapse
|
10
|
Curci N, Strazzulli A, Iacono R, De Lise F, Maurelli L, Di Fenza M, Cobucci-Ponzano B, Moracci M. Xyloglucan Oligosaccharides Hydrolysis by Exo-Acting Glycoside Hydrolases from Hyperthermophilic Microorganism Saccharolobus solfataricus. Int J Mol Sci 2021; 22:3325. [PMID: 33805072 PMCID: PMC8037949 DOI: 10.3390/ijms22073325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
In the field of biocatalysis and the development of a bio-based economy, hemicellulases have attracted great interest for various applications in industrial processes. However, the study of the catalytic activity of the lignocellulose-degrading enzymes needs to be improved to achieve the efficient hydrolysis of plant biomasses. In this framework, hemicellulases from hyperthermophilic archaea show interesting features as biocatalysts and provide many advantages in industrial applications thanks to their stability in the harsh conditions encountered during the pretreatment process. However, the hemicellulases from archaea are less studied compared to their bacterial counterpart, and the activity of most of them has been barely tested on natural substrates. Here, we investigated the hydrolysis of xyloglucan oligosaccharides from two different plants by using, both synergistically and individually, three glycoside hydrolases from Saccharolobus solfataricus: a GH1 β-gluco-/β-galactosidase, a α-fucosidase belonging to GH29, and a α-xylosidase from GH31. The results showed that the three enzymes were able to release monosaccharides from xyloglucan oligosaccharides after incubation at 65 °C. The concerted actions of β-gluco-/β-galactosidase and the α-xylosidase on both xyloglucan oligosaccharides have been observed, while the α-fucosidase was capable of releasing all α-linked fucose units from xyloglucan from apple pomace, representing the first GH29 enzyme belonging to subfamily A that is active on xyloglucan.
Collapse
Affiliation(s)
- Nicola Curci
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, 80126 Naples, Italy; (N.C.); (A.S.); (R.I.); (M.M.)
- Institute of Biosciences and BioResources—National Research Council of Italy, 80131 Naples, Italy; (F.D.L.); (L.M.); (M.D.F.)
| | - Andrea Strazzulli
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, 80126 Naples, Italy; (N.C.); (A.S.); (R.I.); (M.M.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80134 Naples, Italy
| | - Roberta Iacono
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, 80126 Naples, Italy; (N.C.); (A.S.); (R.I.); (M.M.)
| | - Federica De Lise
- Institute of Biosciences and BioResources—National Research Council of Italy, 80131 Naples, Italy; (F.D.L.); (L.M.); (M.D.F.)
| | - Luisa Maurelli
- Institute of Biosciences and BioResources—National Research Council of Italy, 80131 Naples, Italy; (F.D.L.); (L.M.); (M.D.F.)
| | - Mauro Di Fenza
- Institute of Biosciences and BioResources—National Research Council of Italy, 80131 Naples, Italy; (F.D.L.); (L.M.); (M.D.F.)
| | - Beatrice Cobucci-Ponzano
- Institute of Biosciences and BioResources—National Research Council of Italy, 80131 Naples, Italy; (F.D.L.); (L.M.); (M.D.F.)
| | - Marco Moracci
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, 80126 Naples, Italy; (N.C.); (A.S.); (R.I.); (M.M.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80134 Naples, Italy
| |
Collapse
|
11
|
Fongaro G, Maia GA, Rogovski P, Cadamuro RD, Lopes JC, Moreira RS, Camargo AF, Scapini T, Stefanski FS, Bonatto C, Marques Souza DS, Stoco PH, Duarte RTD, Cabral da Cruz AC, Wagner G, Treichel H. Extremophile Microbial Communities and Enzymes for Bioenergetic Application Based on Multi-Omics Tools. Curr Genomics 2020; 21:240-252. [PMID: 33071618 PMCID: PMC7521039 DOI: 10.2174/1389202921999200601144137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/02/2020] [Accepted: 04/20/2020] [Indexed: 12/03/2022] Open
Abstract
Abstract: Genomic and proteomic advances in extremophile microorganism studies are increasingly demonstrating their ability to produce a variety of enzymes capable of converting biomass into bioenergy. Such microorganisms are found in environments with nutritional restrictions, anaerobic environments, high salinity, varying pH conditions and extreme natural environments such as hydrothermal vents, soda lakes, and Antarctic sediments. As extremophile microorganisms and their enzymes are found in widely disparate locations, they generate new possibilities and opportunities to explore biotechnological prospecting, including biofuels (biogas, hydrogen and ethanol) with an aim toward using multi-omics tools that shed light on biotechnological breakthroughs.
Collapse
Affiliation(s)
- Gislaine Fongaro
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Guilherme Augusto Maia
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Paula Rogovski
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Rafael Dorighello Cadamuro
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Joana Camila Lopes
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Renato Simões Moreira
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Aline Frumi Camargo
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Thamarys Scapini
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Fábio Spitza Stefanski
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Charline Bonatto
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Doris Sobral Marques Souza
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Patrícia Hermes Stoco
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Rubens Tadeu Delgado Duarte
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Ariadne Cristiane Cabral da Cruz
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Glauber Wagner
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Helen Treichel
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
12
|
Suleiman M, Krüger A, Antranikian G. Biomass-degrading glycoside hydrolases of archaeal origin. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:153. [PMID: 32905355 PMCID: PMC7469102 DOI: 10.1186/s13068-020-01792-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
During the last decades, the impact of hyperthermophiles and their enzymes has been intensively investigated for implementation in various high-temperature biotechnological processes. Biocatalysts of hyperthermophiles have proven to show extremely high thermo-activities and thermo-stabilities and are identified as suitable candidates for numerous industrial processes with harsh conditions, including the process of an efficient plant biomass pretreatment and conversion. Already-characterized archaea-originated glycoside hydrolases (GHs) have shown highly impressive features and numerous enzyme characterizations indicated that these biocatalysts show maximum activities at a higher temperature range compared to bacterial ones. However, compared to bacterial biomass-degrading enzymes, the number of characterized archaeal ones remains low. To discover new promising archaeal GH candidates, it is necessary to study in detail the microbiology and enzymology of extremely high-temperature habitats, ranging from terrestrial to marine hydrothermal systems. State-of-the art technologies such as sequencing of genomes and metagenomes and automated binning of genomes out of metagenomes, combined with classical microbiological culture-dependent approaches, have been successfully performed to detect novel promising biomass-degrading hyperthermozymes. In this review, we will focus on the detection, characterization and similarities of archaeal GHs and their unique characteristics. The potential of hyperthermozymes and their impact on high-temperature industrial applications have not yet been exhausted.
Collapse
Affiliation(s)
- Marcel Suleiman
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Anna Krüger
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| | - Garabed Antranikian
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| |
Collapse
|
13
|
Efficient xylan-to-sugar biotransformation using an engineered xylanase in hyperthermic environment. Int J Biol Macromol 2020; 157:17-23. [DOI: 10.1016/j.ijbiomac.2020.04.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Accepted: 04/18/2020] [Indexed: 11/30/2022]
|
14
|
Malik AD, Furtado IJ. Cellulase-Free Xylanase by Halococcus thailandensis GUMFAS7 and Halorubrum saccharovorum GUMFAS1—Bionts of a Sponge Cinachyrella cavernosa. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719020073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Malik AD, Furtado IJ. Haloferax sulfurifontis GUMFAZ2 producing xylanase-free cellulase retrieved from Haliclona sp. inhabiting rocky shore of Anjuna, Goa-India. J Basic Microbiol 2019; 59:692-700. [PMID: 30980726 DOI: 10.1002/jobm.201800672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/28/2019] [Accepted: 03/28/2019] [Indexed: 11/07/2022]
Abstract
Salt stable cellulases are implicated in detritic food webs of marine invertebrates for their role in the degradation of cellulosic material. A haloarchaeon, Haloferax sulfurifontis GUMFAZ2 producing cellulase was successfully isolated from marine Haliclona sp., a sponge inhabiting the rocky intertidal region of Anjuna, Goa. The culture produced extracellular xylanase-free cellulase with a maximum activity of 11.7 U/ml, using carboxymethylcellulose-Na (CMC-Na), as a sole source of carbon in 3.5 M NaCl containing medium, pH 7 at 40°C and produced cellobiose and glucose, detectable by thin-layer chromatography. Nondenaturing polyacrylamide gel electrophoresis of the crude enzyme, revealed a single protein band of 19.6 kDa which on zymographic analysis exhibited cellulase activity while corresponding sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed a molecular weight of 46 kDa. Unlike conventional cellulases, this enzyme is active in presence of 5 M NaCl and does not have accompanying xylanase activity, hence can be considered as xylanase-free cellulase. Such enzymes from haloarchaea offer great potential for biotechnological application because of their stability at high salinity and is therefore worth pursuing.
Collapse
Affiliation(s)
- Alisha D Malik
- Department of Microbiology, Goa University, Taleigao Plateau, Goa, India
| | - Irene J Furtado
- Department of Microbiology, Goa University, Taleigao Plateau, Goa, India
| |
Collapse
|
16
|
Kumar S, Dangi AK, Shukla P, Baishya D, Khare SK. Thermozymes: Adaptive strategies and tools for their biotechnological applications. BIORESOURCE TECHNOLOGY 2019; 278:372-382. [PMID: 30709766 DOI: 10.1016/j.biortech.2019.01.088] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 05/10/2023]
Abstract
In today's scenario of global climate change, there is a colossal demand for sustainable industrial processes and enzymes from thermophiles. Plausibly, thermozymes are an important toolkit, as they are known to be polyextremophilic in nature. Small genome size and diverse molecular conformational modifications have been implicated in devising adaptive strategies. Besides, the utilization of chemical technology and gene editing attributions according to mechanical necessities are the additional key factor for efficacious bioprocess development. Microbial thermozymes have been extensively used in waste management, biofuel, food, paper, detergent, medicinal and pharmaceutical industries. To understand the strength of enzymes at higher temperatures different models utilize X-ray structures of thermostable proteins, machine learning calculations, neural networks, but unified adaptive measures are yet to be totally comprehended. The present review provides a recent updates on thermozymes and various interdisciplinary applications including the aspects of thermophiles bioengineering utilizing synthetic biology and gene editing tools.
Collapse
Affiliation(s)
- Sumit Kumar
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arun K Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Institute of Science and Technology, Gauhati University, Guwahati 781014, Assam, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
17
|
Cabrera MÁ, Blamey JM. Biotechnological applications of archaeal enzymes from extreme environments. Biol Res 2018; 51:37. [PMID: 30290805 PMCID: PMC6172850 DOI: 10.1186/s40659-018-0186-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/25/2018] [Indexed: 11/10/2022] Open
Abstract
To date, many industrial processes are performed using chemical compounds, which are harmful to nature. An alternative to overcome this problem is biocatalysis, which uses whole cells or enzymes to carry out chemical reactions in an environmentally friendly manner. Enzymes can be used as biocatalyst in food and feed, pharmaceutical, textile, detergent and beverage industries, among others. Since industrial processes require harsh reaction conditions to be performed, these enzymes must possess several characteristics that make them suitable for this purpose. Currently the best option is to use enzymes from extremophilic microorganisms, particularly archaea because of their special characteristics, such as stability to elevated temperatures, extremes of pH, organic solvents, and high ionic strength. Extremozymes, are being used in biotechnological industry and improved through modern technologies, such as protein engineering for best performance. Despite the wide distribution of archaea, exist only few reports about these microorganisms isolated from Antarctica and very little is known about thermophilic or hyperthermophilic archaeal enzymes particularly from Antarctica. This review summarizes current knowledge of archaeal enzymes with biotechnological applications, including two extremozymes from Antarctic archaea with potential industrial use, which are being studied in our laboratory. Both enzymes have been discovered through conventional screening and genome sequencing, respectively.
Collapse
Affiliation(s)
- Ma Ángeles Cabrera
- Fundación Científica y Cultural Biociencia, José Domingo Cañas, 2280, Santiago, Chile.,Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O´Higgins, 3363, Santiago, Chile
| | - Jenny M Blamey
- Fundación Científica y Cultural Biociencia, José Domingo Cañas, 2280, Santiago, Chile. .,Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O´Higgins, 3363, Santiago, Chile.
| |
Collapse
|
18
|
Kambourova M. Thermostable enzymes and polysaccharides produced by thermophilic bacteria isolated from Bulgarian hot springs. Eng Life Sci 2018; 18:758-767. [PMID: 32624870 DOI: 10.1002/elsc.201800022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/11/2018] [Accepted: 05/15/2018] [Indexed: 11/07/2022] Open
Abstract
Thermostable enzymes (thermozymes) have been recognized as extremophilic compounds with a greatest biotechnological importance in different industrial areas. Quite recently exopolysaccharides (EPSs) synthesized by thermophiles became an object of increased research interest due to their unique properties appropriate for some specific industrial needs. Thermophilic producers of biotechnologically valuable enzymes and novel EPS were isolated by our group from Bulgarian thermal springs with a diverse geotectonic origin and different water properties. Laboratory reactor processes for their production were developed in batch and continuous cultures. Some of the synthesized thermostable enzymes were among the first described in their groups, for example, the single known thermostable gellan lyase that demonstrated specific activity higher than that of the mesophilic enzymes. Isolated by us thermostable xylanase was able to degrade more than 60% of beechwood xylan in a coprocess with an archaeal β-xylosidase. Lipase purified by us was active between 55 and 90°C with an optimum at 75-80°C in a large pH range. It was able to degrade a broad range of substrates. Isolates from Bulgarian hot springs synthesized EPS with novel composition and high thermostability. Thus, Bulgarian hot springs harbor a wide set of thermophilic producers of novel enzymes and EPS with potential for a large number of biotechnological applications.
Collapse
|
19
|
Production and characterization of a novel acidophilic and thermostable xylanase from Thermoascus aurantiacu. Int J Biol Macromol 2018; 109:1270-1279. [DOI: 10.1016/j.ijbiomac.2017.11.130] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 01/24/2023]
|
20
|
Kumar V, Dangi AK, Shukla P. Engineering Thermostable Microbial Xylanases Toward its Industrial Applications. Mol Biotechnol 2018; 60:226-235. [DOI: 10.1007/s12033-018-0059-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
21
|
Basit A, Liu J, Rahim K, Jiang W, Lou H. Thermophilic xylanases: from bench to bottle. Crit Rev Biotechnol 2018; 38:989-1002. [DOI: 10.1080/07388551.2018.1425662] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Abdul Basit
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junquan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kashif Rahim
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wei Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiqiang Lou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
|
23
|
Quehenberger J, Shen L, Albers SV, Siebers B, Spadiut O. Sulfolobus - A Potential Key Organism in Future Biotechnology. Front Microbiol 2017; 8:2474. [PMID: 29312184 PMCID: PMC5733018 DOI: 10.3389/fmicb.2017.02474] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/28/2017] [Indexed: 11/13/2022] Open
Abstract
Extremophilic organisms represent a potentially valuable resource for the development of novel bioprocesses. They can act as a source for stable enzymes and unique biomaterials. Extremophiles are capable of carrying out microbial processes and biotransformations under extremely hostile conditions. Extreme thermoacidophilic members of the well-characterized genus Sulfolobus are outstanding in their ability to thrive at both high temperatures and low pH. This review gives an overview of the biological system Sulfolobus including its central carbon metabolism and the development of tools for its genetic manipulation. We highlight findings of commercial relevance and focus on potential industrial applications. Finally, the current state of bioreactor cultivations is summarized and we discuss the use of Sulfolobus species in biorefinery applications.
Collapse
Affiliation(s)
- Julian Quehenberger
- Research Division Biochemical Engineering, Faculty of Technical Chemistry, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Faculty of Chemistry – Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II-Microbiology, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Faculty of Chemistry – Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Oliver Spadiut
- Research Division Biochemical Engineering, Faculty of Technical Chemistry, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
24
|
Sueb MSM, Luo J, Meyer AS, Jørgensen H, Pinelo M. Impact of the fouling mechanism on enzymatic depolymerization of xylan in different configurations of membrane reactors. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Kumar S, Arumugam N, Permaul K, Singh S. Chapter 5 Thermostable Enzymes and Their Industrial Applications. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
26
|
Gavrilov SN, Stracke C, Jensen K, Menzel P, Kallnik V, Slesarev A, Sokolova T, Zayulina K, Bräsen C, Bonch-Osmolovskaya EA, Peng X, Kublanov IV, Siebers B. Isolation and Characterization of the First Xylanolytic Hyperthermophilic Euryarchaeon Thermococcus sp. Strain 2319x1 and Its Unusual Multidomain Glycosidase. Front Microbiol 2016; 7:552. [PMID: 27199905 PMCID: PMC4853606 DOI: 10.3389/fmicb.2016.00552] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 04/04/2016] [Indexed: 12/12/2022] Open
Abstract
Enzymes from (hyper)thermophiles “Thermozymes” offer a great potential for biotechnological applications. Thermophilic adaptation does not only provide stability toward high temperature but is also often accompanied by a higher resistance to other harsh physicochemical conditions, which are also frequently employed in industrial processes, such as the presence of, e.g., denaturing agents as well as low or high pH of the medium. In order to find new thermostable, xylan degrading hydrolases with potential for biotechnological application we used an in situ enrichment strategy incubating Hungate tubes with xylan as the energy substrate in a hot vent located in the tidal zone of Kunashir Island (Kuril archipelago). Using this approach a hyperthermophilic euryarchaeon, designated Thermococcus sp. strain 2319x1, growing on xylan as sole energy and carbon source was isolated. The organism grows optimally at 85°C and pH 7.0 on a variety of natural polysaccharides including xylan, carboxymethyl cellulose (CMC), amorphous cellulose (AMC), xyloglucan, and chitin. The protein fraction extracted from the cells surface with Tween 80 exhibited endoxylanase, endoglucanase and xyloglucanase activities. The genome of Thermococcus sp. strain 2319x1 was sequenced and assembled into one circular chromosome. Within the newly sequenced genome, a gene, encoding a novel type of glycosidase (143 kDa) with a unique five-domain structure, was identified. It consists of three glycoside hydrolase (GH) domains and two carbohydrate-binding modules (CBM) with the domain order GH5-12-12-CBM2-2 (N- to C-terminal direction). The full length protein, as well as truncated versions, were heterologously expressed in Escherichia coli and their activity was analyzed. The full length multidomain glycosidase (MDG) was able to hydrolyze various polysaccharides, with the highest activity for barley β-glucan (β- 1,3/1,4-glucoside), followed by that for CMC (β-1,4-glucoside), cellooligosaccharides and galactomannan. The results reported here indicate that the modular MDG structure with multiple glycosidase and carbohydrate-binding domains not only extends the substrate spectrum, but also seems to allow the degradation of partially soluble and insoluble polymers in a processive manner. This report highlights the great potential in a multi-pronged approach consisting of a combined in situ enrichment, (comparative) genomics, and biochemistry strategy for the screening for novel enzymes of biotechnological relevance.
Collapse
Affiliation(s)
- Sergey N Gavrilov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences Moscow, Russia
| | - Christina Stracke
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Centre for Water and Environmental Research, University Duisburg-Essen Essen, Germany
| | | | - Peter Menzel
- Department of Biology, University of Copenhagen Copenhagen, Denmark
| | - Verena Kallnik
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Centre for Water and Environmental Research, University Duisburg-Essen Essen, Germany
| | - Alexei Slesarev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of SciencesMoscow, Russia; Fidelity Systems, Inc., GaithersburgMD, USA
| | - Tatyana Sokolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences Moscow, Russia
| | - Kseniya Zayulina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences Moscow, Russia
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Centre for Water and Environmental Research, University Duisburg-Essen Essen, Germany
| | | | - Xu Peng
- Department of Biology, University of Copenhagen Copenhagen, Denmark
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences Moscow, Russia
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Centre for Water and Environmental Research, University Duisburg-Essen Essen, Germany
| |
Collapse
|
27
|
Kumar V, Marín-Navarro J, Shukla P. Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives. World J Microbiol Biotechnol 2016; 32:34. [PMID: 26754672 DOI: 10.1007/s11274-015-2005-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
Xylanases are enzymes with biotechnological relevance in a number of fields, including food, feed, biofuel, and textile industries. Their most significant application is in the paper and pulp industry, where they are used as a biobleaching agent, showing clear economic and environmental advantages over chemical alternatives. Since this process requires high temperatures and alkali media, the identification of thermostable and alkali stable xylanases represents a major biotechnological goal in this field. Moreover, thermostability is a desirable property for many other applications of xylanases. The review makes an overview of xylanase producing microorganisms and their current implementation in paper biobleaching. Future perspectives are analyzed focusing in the efforts carried out to generate thermostable enzymes by means of modern biotechnological tools, including metagenomic analysis, enzyme molecular engineering and nanotechnology. Furthermore, structural and mutagenesis studies have revealed critical sites for stability of xylanases from glycoside hydrolase families GH10 and GH11, which constitute the main classes of these enzymes. The overall conclusions of these works are summarized here and provide relevant information about putative weak spots within xylanase structures to be targeted in future protein engineering approaches.
Collapse
Affiliation(s)
- Vishal Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Julia Marín-Navarro
- Instituto de Agroquímica y Tecnología de Alimentos, C.S.I.C., Av. Catedrático Agustín Escardino, 7, E6980, Paterna, Valencia, Spain
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
28
|
Gomes E, de Souza AR, Orjuela GL, Da Silva R, de Oliveira TB, Rodrigues A. Applications and Benefits of Thermophilic Microorganisms and Their Enzymes for Industrial Biotechnology. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_21] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Khare SK, Pandey A, Larroche C. Current perspectives in enzymatic saccharification of lignocellulosic biomass. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.02.033] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Gonçalves GA, Takasugi Y, Jia L, Mori Y, Noda S, Tanaka T, Ichinose H, Kamiya N. Synergistic effect and application of xylanases as accessory enzymes to enhance the hydrolysis of pretreated bagasse. Enzyme Microb Technol 2015; 72:16-24. [DOI: 10.1016/j.enzmictec.2015.01.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/16/2014] [Accepted: 01/19/2015] [Indexed: 11/30/2022]
|
31
|
Distinct roles for carbohydrate-binding modules of glycoside hydrolase 10 (GH10) and GH11 xylanases from Caldicellulosiruptor sp. strain F32 in thermostability and catalytic efficiency. Appl Environ Microbiol 2015; 81:2006-14. [PMID: 25576604 DOI: 10.1128/aem.03677-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xylanases are crucial for lignocellulosic biomass deconstruction and generally contain noncatalytic carbohydrate-binding modules (CBMs) accessing recalcitrant polymers. Understanding how multimodular enzymes assemble can benefit protein engineering by aiming at accommodating various environmental conditions. Two multimodular xylanases, XynA and XynB, which belong to glycoside hydrolase families 11 (GH11) and GH10, respectively, have been identified from Caldicellulosiruptor sp. strain F32. In this study, both xylanases and their truncated mutants were overexpressed in Escherichia coli, purified, and characterized. GH11 XynATM1 lacking CBM exhibited a considerable improvement in specific activity (215.8 U nmol(-1) versus 94.7 U nmol(-1)) and thermal stability (half-life of 48 h versus 5.5 h at 75°C) compared with those of XynA. However, GH10 XynB showed higher enzyme activity and thermostability than its truncated mutant without CBM. Site-directed mutagenesis of N-terminal amino acids resulted in a mutant, XynATM1-M, with 50% residual activity improvement at 75°C for 48 h, revealing that the disordered region influenced protein thermostability negatively. The thermal stability of both xylanases and their truncated mutants were consistent with their melting temperature (Tm), which was determined by using differential scanning calorimetry. Through homology modeling and cross-linking analysis, we demonstrated that for XynB, the resistance against thermoinactivation generally was enhanced through improving both domain properties and interdomain interactions, whereas for XynA, no interdomain interactions were observed. Optimized intramolecular interactions can accelerate thermostability, which provided microbes a powerful evolutionary strategy to assemble catalysts that are adapted to various ecological conditions.
Collapse
|
32
|
Partial Characterization of Xylanase Produced by Caldicoprobacter algeriensis, a New Thermophilic Anaerobic Bacterium Isolated from an Algerian Hot Spring. Appl Biochem Biotechnol 2014; 174:1969-81. [DOI: 10.1007/s12010-014-1153-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/15/2014] [Indexed: 11/25/2022]
|
33
|
Discovery and characterization of endo-xylanase and β-xylosidase from a highly xylanolytic bacterium in the hindgut of Holotrichia parallela larvae. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Ying Y, Meng D, Chen X, Li F. An extremely thermophilic anaerobic bacterium Caldicellulosiruptor sp. F32 exhibits distinctive properties in growth and xylanases during xylan hydrolysis. Enzyme Microb Technol 2013; 53:194-9. [DOI: 10.1016/j.enzmictec.2013.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/12/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
|
35
|
Bhardwaj A, Mahanta P, Ramakumar S, Ghosh A, Leelavathi S, Reddy VS. Emerging role of N- and C-terminal interactions in stabilizing (β/α)8 fold with special emphasis on Family 10 xylanases. Comput Struct Biotechnol J 2012; 2:e201209014. [PMID: 24688655 PMCID: PMC3962208 DOI: 10.5936/csbj.201209014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/24/2012] [Accepted: 10/24/2012] [Indexed: 11/22/2022] Open
Abstract
Xylanases belong to an important class of industrial enzymes. Various xylanases have been purified and characterized from a plethora of organisms including bacteria, marine algae, plants, protozoans, insects, snails and crustaceans. Depending on the source, the enzymatic activity of xylanases varies considerably under various physico-chemical conditions such as temperature, pH, high salt and in the presence of proteases. Family 10 or glycosyl hydrolase 10 (GH10) xylanases are one of the well characterized and thoroughly studied classes of industrial enzymes. The TIM-barrel fold structure which is ubiquitous in nature is one of the characteristics of family 10 xylanases. Family 10 xylanases have been used as a “model system” due to their TIM-barrel fold to dissect and understand protein stability under various conditions. A better understanding of structure-stability-function relationships of family 10 xylanases allows one to apply these governing molecular rules to engineer other TIM-barrel fold proteins to improve their stability and retain function(s) under adverse conditions. In this review, we discuss the implications of N-and C-terminal interactions, observed in family 10 xylanases on protein stability under extreme conditions. The role of metal binding and aromatic clusters in protein stability is also discussed. Studying and understanding family 10 xylanase structure and function, can contribute to our protein engineering knowledge.
Collapse
Affiliation(s)
- Amit Bhardwaj
- Molecular Pathology Lab, International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, 34149, Trieste, Italy
| | - Pranjal Mahanta
- Department of Physics, Indian Institute of Science, Bangalore, India
| | | | - Amit Ghosh
- National Institute of Cholera and Enteric diseases, Kolkata, India
| | - Sadhu Leelavathi
- Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi - 110067, India
| | - Vanga Siva Reddy
- Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi - 110067, India
| |
Collapse
|
36
|
Carbohydrate hydrolysis and transport in the extreme thermoacidophile Sulfolobus solfataricus. Appl Environ Microbiol 2012; 78:7931-8. [PMID: 22941087 DOI: 10.1128/aem.01758-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extremely thermoacidophilic microbes, such as Sulfolobus solfataricus, are strict chemoheterotrophs despite their geologic niche. To clarify their ecophysiology, the overlapping roles of endoglucanases and carbohydrate transporters were examined during growth on soluble cellodextrins as the sole carbon and energy source. Strain-specific differences in genome structure implied a unique role for one of three endogenous endoglucanases. Plasmid-based endoglucanase expression promoted the consumption of oligosaccharides, including cellohexaose (G6) through cellonanaose (G9). Protein transporters required for cellodextrin uptake were identified through mutagenesis and complementation of an ABC transporter cassette, including a putative oligosaccharide binding protein. In addition, ablation of the binding protein compromised growth on glucose and alpha-linked oligosaccharides while inactivation of a previously described glucose transporter had no apparent impact. These data demonstrate that S. solfataricus employs a redundant mechanism for soluble cellodextrin catabolism having both substrate uptake and extracytoplasmic hydrolytic components.
Collapse
|
37
|
Cellulose degradation by Sulfolobus solfataricus requires a cell-anchored endo-β-1-4-glucanase. J Bacteriol 2012; 194:5091-100. [PMID: 22821975 DOI: 10.1128/jb.00672-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A sequence encoding a putative extracellular endoglucanase (sso1354) was identified in the complete genome sequence of Sulfolobus solfataricus. The encoded protein shares signature motifs with members of glycoside hydrolases family 12. After an unsuccessful first attempt at cloning the full-length coding sequences in Escherichia coli, an active but unstable recombinant enzyme lacking a 27-residue N-terminal sequence was generated. This 27-amino-acid sequence shows significant similarity with corresponding regions in the sugar binding proteins AraS, GlcS, and TreS of S. solfataricus that are responsible for anchoring them to the plasma membrane. A strategy based on an effective vector/host genetic system for Sulfolobus and on expression control by the promoter of the S. solfataricus gene which encodes the glucose binding protein allowed production of the enzyme in sufficient quantities for study. In fact, the enzyme expressed in S. solfataricus was stable and highly thermoresistant and showed optimal activity at low pH and high temperature. The protein was detected mainly in the plasma membrane fraction, confirming the structural similarity to the sugar binding proteins. The results of the protein expression in the two different hosts showed that the SSO1354 enzyme is endowed with an endo-β-1-4-glucanase activity and specifically hydrolyzes cellulose. Moreover, it also shows significant but distinguishable specificity toward several other sugar polymers, such as lichenan, xylan, debranched arabinan, pachyman, and curdlan.
Collapse
|
38
|
Peng F, Peng P, Xu F, Sun RC. Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv 2012; 30:879-903. [PMID: 22306329 DOI: 10.1016/j.biotechadv.2012.01.018] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
39
|
High-level expression of a hyperthermostable Thermotoga maritima xylanase in Pichia pastoris by codon optimization. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Xia Y, Lundbäck AK, Sahaf N, Nordlund G, Brzezinski P, Eshaghi S. Co2+ selectivity of Thermotoga maritima CorA and its inability to regulate Mg2+ homeostasis present a new class of CorA proteins. J Biol Chem 2011; 286:16525-32. [PMID: 21454699 PMCID: PMC3091257 DOI: 10.1074/jbc.m111.222166] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/19/2011] [Indexed: 01/12/2023] Open
Abstract
CorA is a family of divalent cation transporters ubiquitously present in bacteria and archaea. Although CorA can transport both Mg(2+) and Co(2+) almost equally well, its main role has been suggested to be that of primary Mg(2+) transporter of prokaryotes and hence the regulator of Mg(2+) homeostasis. The reason is that the affinity of CorA for Co(2+) is relatively low and thus considered non-physiological. Here, we show that Thermotoga maritima CorA (TmCorA) is incapable of regulating the Mg(2+) homeostasis and therefore cannot be the primary Mg(2+) transporter of T. maritima. Further, our in vivo experiments confirm that TmCorA is a highly selective Co(2+) transporter, as it selects Co(2+) over Mg(2+) at >100 times lower concentrations. In addition, we present data that show TmCorA to be extremely thermostable in the presence of Co(2+). Mg(2+) could not stabilize the protein to the same extent, even at high concentrations. We also show that addition of Co(2+), but not Mg(2+), specifically induces structural changes to the protein. Altogether, these data show that TmCorA has the role of being the transporter of Co(2+) but not Mg(2+). The physiological relevance and requirements of Co(2+) in T. maritima is discussed and highlighted. We suggest that CorA may have different roles in different organisms. Such functional diversity is presumably a reflection of minor, but important structural differences within the CorA family that regulate the gating, substrate selection, and transport.
Collapse
Affiliation(s)
- Yu Xia
- From the Biomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore 138673, Singapore and
| | - Anna-Karin Lundbäck
- From the Biomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore 138673, Singapore and
| | - Newsha Sahaf
- From the Biomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore 138673, Singapore and
| | - Gustav Nordlund
- the Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Peter Brzezinski
- the Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Said Eshaghi
- From the Biomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore 138673, Singapore and
| |
Collapse
|
41
|
Kumar L, Awasthi G, Singh B. Extremophiles: A Novel Source of Industrially Important Enzymes. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/biotech.2011.121.135] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Characterisation of the multi-enzyme complex xylanase activity from Bacillus licheniformis SVD1. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2010.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Miller PS, Blum PH. Extremophile-inspired strategies for enzymatic biomass saccharification. ENVIRONMENTAL TECHNOLOGY 2010; 31:1005-1015. [PMID: 20662388 DOI: 10.1080/09593330903536113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Domestic ethanol production in the USA relies on starch feedstocks using a first generation bioprocess. Enzymes that contribute to this industry remain of critical value in new and established markets as commodity additives and for in planta production. A transition to non-food feedstocks is both desirable and essential to enable larger scale production. This objective would relieve dependence on foreign oil and strengthen the national economy. Feedstocks derived from corn stover, wheat straw, perennial grasses and timber require pretreatment to increase the accessibility of the cellulosic and hemicellulosic substrates to commodity enzymes for saccharification, which is followed by fermentation-based conversion of monosaccharides to ethanol. Hot acid pretreatment is the industrial standard method used to achieve deconstruction of lignocellulosic biomass. Therefore, enzymes that tolerate both acid and heat may contribute toward the improvement of lignocellulosic biomass processing. These enzymes are produced naturally by extremely thermophilic microbes, sometimes called extremophiles. This review summarizes information on enzymes from selected (acido)thermophiles that mediate saccharification of alpha- and beta-linked carbohydrates of relevance to biomass processing.
Collapse
Affiliation(s)
- P S Miller
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | |
Collapse
|
44
|
Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IKO. Thermostable enzymes as biocatalysts in the biofuel industry. ADVANCES IN APPLIED MICROBIOLOGY 2010; 70:1-55. [PMID: 20359453 DOI: 10.1016/s0065-2164(10)70001-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Lignocellulose is the most abundant carbohydrate source in nature and represents an ideal renewable energy source. Thermostable enzymes that hydrolyze lignocellulose to its component sugars have significant advantages for improving the conversion rate of biomass over their mesophilic counterparts. We review here the recent literature on the development and use of thermostable enzymes for the depolymerization of lignocellulosic feedstocks for biofuel production. Furthermore, we discuss the protein structure, mechanisms of thermostability, and specific strategies that can be used to improve the thermal stability of lignocellulosic biocatalysts.
Collapse
Affiliation(s)
- Carl J Yeoman
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| | | | | | | | | | | |
Collapse
|
45
|
Evidence that the xylanase activity from Sulfolobus solfataricus Oα is encoded by the endoglucanase precursor gene (sso1354) and characterization of the associated cellulase activity. Extremophiles 2008; 12:689-700. [DOI: 10.1007/s00792-008-0175-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 05/26/2008] [Indexed: 10/22/2022]
|
46
|
Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 2008; 19:210-7. [PMID: 18524567 DOI: 10.1016/j.copbio.2008.04.007] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 11/19/2022]
Abstract
Many microorganisms that grow at elevated temperatures are able to utilize a variety of carbohydrates pertinent to the conversion of lignocellulosic biomass to bioenergy. The range of substrates utilized depends on growth temperature optimum and biotope. Hyperthermophilic marine archaea (T(opt)>or=80 degrees C) utilize alpha- and beta-linked glucans, such as starch, barley glucan, laminarin, and chitin, while hyperthermophilic marine bacteria (T(opt)>or=80 degrees C) utilize the same glucans as well as hemicellulose, such as xylans and mannans. However, none of these organisms are able to efficiently utilize crystalline cellulose. Among the thermophiles, this ability is limited to a few terrestrial bacteria with upper temperature limits for growth near 75 degrees C. Deconstruction of crystalline cellulose by these extreme thermophiles is achieved by 'free' primary cellulases, which are distinct from those typically associated with large multi-enzyme complexes known as cellulosomes. These primary cellulases also differ from the endoglucanases (referred to here as 'secondary cellulases') reported from marine hyperthermophiles that show only weak activity toward cellulose. Many extremely thermophilic enzymes implicated in the deconstruction of lignocellulose can be identified in genome sequences, and many more promising biocatalysts probably remain annotated as 'hypothetical proteins'. Characterization of these enzymes will require intensive effort but is likely to generate new opportunities for the use of renewable resources as biofuels.
Collapse
Affiliation(s)
- Sara E Blumer-Schuette
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, United States
| | | | | | | | | |
Collapse
|
47
|
Kambourova M, Mandeva R, Fiume I, Maurelli L, Rossi M, Morana A. Hydrolysis of xylan at high temperature by co-action of the xylanase from Anoxybacillus flavithermus BC and the beta-xylosidase/alpha-arabinosidase from Sulfolobus solfataricus Oalpha. J Appl Microbiol 2007; 102:1586-93. [PMID: 17578424 DOI: 10.1111/j.1365-2672.2006.03197.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS It is evaluated the effectiveness of the combined action of two highly thermostable enzymes for the hydrolysis of xylans at high temperature in order to produce D-xylose. METHODS AND RESULTS Xylans from different sources were hydrolyzed at high degree at 70 degrees C by co-action of a xylanase from the thermophilic bacterium Anoxybacillus flavithermus BC and the novel beta-xylosidase/alpha-arabinosidase from the hyperthermophilic crenarchaeon Sulfolobus solfataricus Oalpha. Beechwood xylan was the best substrate among the xylans tested giving, by incubation only with xylanase, 32.8 % hydrolysis after 4 h. The addition of the beta-xylosidase/alpha-arabinosidase significantly improved the rate of hydrolysis, yielding 63.6% conversion after 4 h incubation, and the main sugar identified was xylose. CONCLUSIONS This study demonstrates that a significant degree of xylan degradation was reached at high temperature by co-action of the two enzymes. Xylose was obtained as a final product in considerable yield. SIGNIFICANCE AND IMPACT OF THE STUDY Although the xylan represents the second most abundant polysaccharide in nature, it still doesn't have significant utilization for the difficulties encountered in its hydrolysis. Its successful hydrolysis to xylose in only one stage process could make of it a cheap sugar source and could have an enormous economic potential for the conversion of plant biomass into fuels and chemicals.
Collapse
Affiliation(s)
- M Kambourova
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | | | | | |
Collapse
|
48
|
MERYANDINI ANJA. Characterization of Xylanase from Streptomyces spp. Strain C1-3. HAYATI JOURNAL OF BIOSCIENCES 2007. [DOI: 10.4308/hjb.14.3.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
49
|
Unsworth LD, van der Oost J, Koutsopoulos S. Hyperthermophilic enzymes − stability, activity and implementation strategies for high temperature applications. FEBS J 2007; 274:4044-56. [PMID: 17683334 DOI: 10.1111/j.1742-4658.2007.05954.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Current theories agree that there appears to be no unique feature responsible for the remarkable heat stability properties of hyperthermostable proteins. A concerted action of structural, dynamic and other physicochemical attributes are utilized to ensure the delicate balance between stability and functionality of proteins at high temperatures. We have thoroughly screened the literature for hyperthermostable enzymes with optimal temperatures exceeding 100 degrees C that can potentially be employed in multiple biotechnological and industrial applications and to substitute traditionally used, high-cost engineered mesophilic/thermophilic enzymes that operate at lower temperatures. Furthermore, we discuss general methods of enzyme immobilization and suggest specific strategies to improve thermal stability, activity and durability of hyperthermophilic enzymes.
Collapse
Affiliation(s)
- Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
50
|
|