1
|
Lewis AM, Recalde A, Bräsen C, Counts JA, Nussbaum P, Bost J, Schocke L, Shen L, Willard DJ, Quax TEF, Peeters E, Siebers B, Albers SV, Kelly RM. The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol Rev 2021; 45:fuaa063. [PMID: 33476388 PMCID: PMC8557808 DOI: 10.1093/femsre/fuaa063] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered >50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further probe novel features of these microbes but also paved the way for their potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes.
Collapse
Affiliation(s)
- April M Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Alejandra Recalde
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher Bräsen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Phillip Nussbaum
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Jan Bost
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Schocke
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Tessa E F Quax
- Archaeal Virus–Host Interactions, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sonja-Verena Albers
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Esser D, Hoffmann L, Pham TK, Bräsen C, Qiu W, Wright PC, Albers SV, Siebers B. Protein phosphorylation and its role in archaeal signal transduction. FEMS Microbiol Rev 2016; 40:625-47. [PMID: 27476079 PMCID: PMC5007285 DOI: 10.1093/femsre/fuw020] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2016] [Indexed: 12/23/2022] Open
Abstract
Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. The authors review the current knowledge about protein phosphorylation in Archaea and its impact on signaling in this organism group.
Collapse
Affiliation(s)
- Dominik Esser
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Lena Hoffmann
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Trong Khoa Pham
- ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Wen Qiu
- ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Phillip C Wright
- ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK School of Chemical Engineering and Advanced Materials, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
3
|
Abstract
The third domain of life, the Archaea (formerly Archaebacteria), is populated by a physiologically diverse set of microorganisms, many of which reside at the ecological extremes of our global environment. Although ostensibly prokaryotic in morphology, the Archaea share much closer evolutionary ties with the Eukarya than with the superficially more similar Bacteria. Initial genomic, proteomic, and biochemical analyses have revealed the presence of "eukaryotic" protein kinases and phosphatases and an intriguing set of serine-, threonine-, and tyrosine-phosphorylated proteins in the Archaea that may offer new insights into this important regulatory mechanism.
Collapse
Affiliation(s)
- Peter J Kennelly
- From the Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| |
Collapse
|
4
|
Reimann J, Esser D, Orell A, Amman F, Pham TK, Noirel J, Lindås AC, Bernander R, Wright PC, Siebers B, Albers SV. Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius. Mol Cell Proteomics 2013; 12:3908-23. [PMID: 24078887 PMCID: PMC3861733 DOI: 10.1074/mcp.m113.027375] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study, the in vitro and in vivo functions of the only two identified protein phosphatases, Saci-PTP and Saci-PP2A, in the crenarchaeal model organism Sulfolobus acidocaldarius were investigated. Biochemical characterization revealed that Saci-PTP is a dual-specific phosphatase (against pSer/pThr and pTyr), whereas Saci-PP2A exhibited specific pSer/pThr activity and inhibition by okadaic acid. Deletion of saci_pp2a resulted in pronounced alterations in growth, cell shape and cell size, which could be partially complemented. Transcriptome analysis of the three strains (Δsaci_ptp, Δsaci_pp2a and the MW001 parental strain) revealed 155 genes that were differentially expressed in the deletion mutants, and showed significant changes in expression of genes encoding the archaella (archaeal motility structure), components of the respiratory chain and transcriptional regulators. Phosphoproteome studies revealed 801 unique phosphoproteins in total, with an increase in identified phosphopeptides in the deletion mutants. Proteins from most functional categories were affected by phosphorylation, including components of the motility system, the respiratory chain, and regulatory proteins. In the saci_pp2a deletion mutant the up-regulation at the transcript level, as well as the observed phosphorylation pattern, resembled starvation stress responses. Hypermotility was also observed in the saci_pp2a deletion mutant. The results highlight the importance of protein phosphorylation in regulating essential cellular processes in the crenarchaeon S. acidocaldarius.
Collapse
Affiliation(s)
- Julia Reimann
- Molecular Biology of Archaea, Max Planck Institute for terrestrial Microbiology, Karl-von-Frisch Straβe 10, 35043 Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Esser D, Pham TK, Reimann J, Albers SV, Siebers B, Wright PC. Change of carbon source causes dramatic effects in the phospho-proteome of the archaeon Sulfolobus solfataricus. J Proteome Res 2012; 11:4823-33. [PMID: 22639831 DOI: 10.1021/pr300190k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein phosphorylation is known to occur in Archaea. However, knowledge of phosphorylation in the third domain of life is rather scarce. Homology-based searches of archaeal genome sequences reveals the absence of two-component systems in crenarchaeal genomes but the presence of eukaryotic-like protein kinases and protein phosphatases. Here, the influence of the offered carbon source (glucose versus tryptone) on the phospho-proteome of Sulfolobus solfataricus P2 was studied by precursor acquisition independent from ion count (PAcIFIC). In comparison to previous phospho-proteome studies, a high number of phosphorylation sites (1318) located on 690 phospho-peptides from 540 unique phospho-proteins were detected, thus increasing the number of currently known archaeal phospho-proteins from 80 to 621. Furthermore, a 25.8/20.6/53.6 Ser/Thr/Tyr percentage ratio with an unexpectedly high predominance of tyrosine phosphorylation was detected. Phospho-proteins in most functional classes (21 out of 26 arCOGs) were identified, suggesting an important regulatory role in S. solfataricus. Focusing on the central carbohydrate metabolism in response to the offered carbon source, significant changes were observed. The observed complex phosphorylation pattern hints at an important physiological function of protein phosphorylation in control of the central carbohydrate metabolism, which might particularly operate in channeling carbon flux into the respective metabolic pathways.
Collapse
Affiliation(s)
- D Esser
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Sajid A, Arora G, Gupta M, Upadhyay S, Nandicoori VK, Singh Y. Phosphorylation of Mycobacterium tuberculosis Ser/Thr phosphatase by PknA and PknB. PLoS One 2011; 6:e17871. [PMID: 21423706 PMCID: PMC3052367 DOI: 10.1371/journal.pone.0017871] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 02/11/2011] [Indexed: 11/30/2022] Open
Abstract
Background The integrated functions of 11 Ser/Thr protein kinases (STPKs) and one
phosphatase manipulate the phosphorylation levels of critical proteins in
Mycobacterium tuberculosis. In this study, we show that
the lone Ser/Thr phosphatase (PstP) is regulated through phosphorylation by
STPKs. Principal Findings PstP is phosphorylated by PknA and PknB and phosphorylation is influenced by
the presence of Zn2+-ions and inorganic phosphate (Pi). PstP
is differentially phosphorylated on the cytosolic domain with
Thr137, Thr141, Thr174 and
Thr290 being the target residues of PknB while
Thr137 and Thr174 are phosphorylated by PknA. The
Mn2+-ion binding residues Asp38 and
Asp229 are critical for the optimal activity of PstP and
substitution of these residues affects its phosphorylation status. Native
PstP and its phosphatase deficient mutant PstPcD38G
are phosphorylated by PknA and PknB in E. coli and addition
of Zn2+/Pi in the culture conditions affect the
phosphorylation level of PstP. Interestingly, the phosphorylated phosphatase
is more active than its unphosphorylated equivalent. Conclusions and Significance This study establishes the novel mechanisms for regulation of mycobacterial
Ser/Thr phosphatase. The results indicate that STPKs and PstP may regulate
the signaling through mutually dependent mechanisms. Consequently, PstP
phosphorylation may play a critical role in regulating its own activity.
Since, the equilibrium between phosphorylated and non-phosphorylated states
of mycobacterial proteins is still unexplained, understanding the regulation
of PstP may help in deciphering the signal transduction pathways mediated by
STPKs and the reversibility of the phenomena.
Collapse
Affiliation(s)
- Andaleeb Sajid
- Institute of Genomics and Integrative Biology
(CSIR), Delhi, India
| | - Gunjan Arora
- Institute of Genomics and Integrative Biology
(CSIR), Delhi, India
| | - Meetu Gupta
- Institute of Genomics and Integrative Biology
(CSIR), Delhi, India
| | - Sandeep Upadhyay
- National Institute of Immunology, Aruna Asaf
Ali Marg, New Delhi, India
| | | | - Yogendra Singh
- Institute of Genomics and Integrative Biology
(CSIR), Delhi, India
- * E-mail:
| |
Collapse
|