1
|
Shi N, Li S, He L, Feng Y, Saeed M, Ma Y, Ni Z, Zhu D, Chen H. High-throughput screening and identification of lignin peroxidase based on spore surface display of Bacillus subtilis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39494743 DOI: 10.1002/jsfa.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Lignin peroxidase is closely related to agriculture and food as it improves the quality of feedstuffs, facilitates the degradation of lignin in agricultural wastes, and degrades azo dyes that have similar complex structures to lignin. However, the current status of homologous or heterologous expression of lignin peroxidase is unsatisfactory and needs to be modified with the help of immobilization and directed evolution to maximize its potential. Directed evolution technology is an effective strategy for designing and improving enzyme characteristics, and Bacillus subtilis spore surface display technology is an efficient method for preparing immobilized enzymes. RESULTS A colorimetric dye decolorization assay using Congo red as a substrate was developed and optimized for high-throughput screening of spore surface display in a 96-well plate. After two rounds of screening, a superior mutant strain was selected from 2700 mutants. Its highest catalytic activity was 196.36%. The amino acid substitution sites were identified as N120D and I242T. CONCLUSION The mechanism for the enhanced catalytic activity was explained using protein modeling and functional analysis software. This study provides insights into the rational design of lignin peroxidase and its application in food and agriculture. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Na Shi
- School of Life Sciences, Jiangsu University, Jiangsu, China
| | - Shouzhi Li
- School of Life Sciences, Jiangsu University, Jiangsu, China
| | - Lu He
- School of Life Sciences, Jiangsu University, Jiangsu, China
| | - Yong Feng
- School of Life Sciences, Jiangsu University, Jiangsu, China
| | - Muhammad Saeed
- School of Life Sciences, Jiangsu University, Jiangsu, China
- Department of Poultry Science, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Yi Ma
- School of Life Sciences, Jiangsu University, Jiangsu, China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Jiangsu, China
| | - Daochen Zhu
- School of Life Sciences, Jiangsu University, Jiangsu, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Jiangsu, China
| |
Collapse
|
2
|
Vojnovic S, Aleksic I, Ilic-Tomic T, Stevanovic M, Nikodinovic-Runic J. Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes. Appl Microbiol Biotechnol 2024; 108:185. [PMID: 38289383 PMCID: PMC10827964 DOI: 10.1007/s00253-023-12900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024]
Abstract
The application of enzymes is expanding across diverse industries due to their nontoxic and biodegradable characteristics. Another advantage is their cost-effectiveness, reflected in reduced processing time, water, and energy consumption. Although Gram-positive bacteria, Bacillus, and Streptomyces spp. are successfully used for production of industrially relevant enzymes, they still lag far behind Escherichia coli as hosts for recombinant protein production. Generally, proteins secreted by Bacillus and Streptomyces hosts are released into the culture medium; their native conformation is preserved and easier recovery process enabled. Given the resilience of both hosts in harsh environmental conditions and their spore-forming capability, a deeper understanding and broader use of Bacillus and Streptomyces as expression hosts could significantly enhance the robustness of industrial bioprocesses. This mini-review aims to compare two expression hosts, emphasizing their specific advantages in industrial surroundings such are chemical, detergent, textile, food, animal feed, leather, and paper industries. The homologous sources, heterologous hosts, and molecular tools used for the production of recombinant proteins in these hosts are discussed. The potential to use both hosts as biocatalysts is also evaluated. Undoubtedly, Bacillus and Streptomyces spp. as production hosts possess the potential to take on a more substantial role, providing superior (bio-based) process robustness and flexibility. KEY POINTS: • Bacillus and Streptomyces spp. as robust hosts for enzyme production. • Industrially relevant enzyme groups for production in alternative hosts highlighted. • Molecular biology techniques are enabling easier utilization of both hosts.
Collapse
Affiliation(s)
- Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| |
Collapse
|
3
|
Mahmoodi A, Farinas ET. Applications of Bacillus subtilis Protein Display for Medicine, Catalysis, Environmental Remediation, and Protein Engineering. Microorganisms 2024; 12:97. [PMID: 38257924 PMCID: PMC10821481 DOI: 10.3390/microorganisms12010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Bacillus subtilis spores offer several advantages that make them attractive for protein display. For example, protein folding issues associated with unfolded polypeptide chains crossing membranes are circumvented. In addition, they can withstand physical and chemical extremes such as heat, desiccation, radiation, ultraviolet light, and oxidizing agents. As a result, the sequence of the displayed protein can be easily obtained even under harsh screening conditions. Next, immobilized proteins have many economic and technological advantages. They can be easily separated from the reaction and the protein stability is increased in harsh environments. In traditional immobilization methods, proteins are expressed and purified and then they are attached to a matrix. In contrast, immobilization occurs naturally during the sporulation process. They can be easily separated from the reaction and the protein stability is increased in harsh environments. Spores are also amenable to high-throughput screening for protein engineering and optimization. Furthermore, they can be used in a wide array of biotechnological and industrial applications such as vaccines, bioabsorbants to remove toxic chemicals, whole-cell catalysts, bioremediation, and biosensors. Lastly, spores are easily produced in large quantities, have a good safety record, and can be used as additives in foods and drugs.
Collapse
|
4
|
Wang Z, Yan M, Saeed M, Li K, Chen Y, Okoye CO, Fang Z, Ni Z, Chen H. The flexible linker and CotG were more effective for the spore surface display of keratinase KERQ7. World J Microbiol Biotechnol 2023; 40:35. [PMID: 38057620 DOI: 10.1007/s11274-023-03854-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Feather, horn, hoof, and other keratin waste are protein-rich but limited by natural keratinase synthesis, activity, pH, and temperature stability. It is challenging to realize its large-scale application in industries. Bacillus subtilis spores are a safe, efficient, and highly resistant immobilized carrier, which can improve target proteins' resistance. In this research, KERQ7, the keratinase gene of Bacillus tequilensis strain Q7, was fused to the Bacillus subtilis genes coding for the coat proteins CotG and CotB, respectively, and displayed on the surface of B. subtilis spores. Compared with the free KERQ7, the immobilized KERQ7 showed a greater pH tolerance and heat resistance on the spore surface. The activity of CotG-KERQ7 is 1.25 times that of CotB-KERQ7, and CotG-KERQ7 is more stable. When the flexible linker peptide L3 was used to connect CotG and KERQ7, the activity was increased to 131.2 ± 3.4%, and the residual enzyme activity was still 62.5 ± 2.2% after being kept at 60 ℃ for 4 h. These findings indicate that the flexible linker and CotG were more effective for the spore surface display of keratinase to improve stress resistance and promote its wide application in feed, tanning, washing, and other industries.
Collapse
Affiliation(s)
- Zhen Wang
- School of the Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mingchen Yan
- School of the Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Muhammad Saeed
- School of the Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Keyi Li
- School of the Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yanzhen Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Zhen Fang
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Zhong Ni
- School of the Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Huayou Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China.
| |
Collapse
|
5
|
Dong H, Zhang W, Zhou S, Huang J, Wang P. Engineering bioscaffolds for enzyme assembly. Biotechnol Adv 2021; 53:107721. [PMID: 33631185 DOI: 10.1016/j.biotechadv.2021.107721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 12/27/2022]
Abstract
With the demand for green, safe, and continuous biocatalysis, bioscaffolds, compared with synthetic scaffolds, have become a desirable candidate for constructing enzyme assemblages because of their biocompatibility and regenerability. Biocompatibility makes bioscaffolds more suitable for safe and green production, especially in food processing, production of bioactive agents, and diagnosis. The regenerability can enable the engineered biocatalysts regenerate through simple self-proliferation without complex re-modification, which is attractive for continuous biocatalytic processes. In view of the unique biocompatibility and regenerability of bioscaffolds, they can be classified into non-living (polysaccharide, nucleic acid, and protein) and living (virus, bacteria, fungi, spore, and biofilm) bioscaffolds, which can fully satisfy these two unique properties, respectively. Enzymes assembled onto non-living bioscaffolds are based on single or complex components, while enzymes assembled onto living bioscaffolds are based on living bodies. In terms of their unique biocompatibility and regenerability, this review mainly covers the current advances in the research and application of non-living and living bioscaffolds with focus on engineering strategies for enzyme assembly. Finally, the future development of bioscaffolds for enzyme assembly is also discussed. Hopefully, this review will attract the interest of researchers in various fields and empower the development of biocatalysis, biomedicine, environmental remediation, therapy, and diagnosis.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxue Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaofang Huang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
6
|
Applications of Bacillus subtilis Spores in Biotechnology and Advanced Materials. Appl Environ Microbiol 2020; 86:AEM.01096-20. [PMID: 32631858 DOI: 10.1128/aem.01096-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The bacterium Bacillus subtilis has long been an important subject for basic studies. However, this organism has also had industrial applications due to its easy genetic manipulation, favorable culturing characteristics for large-scale fermentation, superior capacity for protein secretion, and generally recognized as safe (GRAS) status. In addition, as the metabolically dormant form of B. subtilis, its spores have attracted great interest due to their extreme resistance to many environmental stresses, which makes spores a novel platform for a variety of applications. In this review, we summarize both conventional and emerging applications of B. subtilis spores, with a focus on how their unique characteristics have led to innovative applications in many areas of technology, including generation of stable and recyclable enzymes, synthetic biology, drug delivery, and material sciences. Ultimately, this review hopes to inspire the scientific community to leverage interdisciplinary approaches using spores to address global concerns about food shortages, environmental protection, and health care.
Collapse
|
7
|
Progress in research and application development of surface display technology using Bacillus subtilis spores. Appl Microbiol Biotechnol 2020; 104:2319-2331. [PMID: 31989224 PMCID: PMC7223921 DOI: 10.1007/s00253-020-10348-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 02/02/2023]
Abstract
Bacillus subtilis is a widely distributed aerobic Gram-positive species of bacteria. As a tool in the lab, it has the advantages of nonpathogenicity and limited likelihood of becoming drug resistant. It is a probiotic strain that can be directly used in humans and animals. It can be induced to produce spores under nutrient deficiency or other adverse conditions. B. subtilis spores have unique physical, chemical, and biochemical characteristics. Expression of heterologous antigens or proteins on the surface of B. subtilis spores has been successfully performed for over a decade. As an update and supplement to previously published research, this paper reviews the latest research on spore surface display technology using B. subtilis. We have mainly focused on the regulation of spore coat protein expression, display and application of exogenous proteins, and identification of developing research areas of spore surface display technology.
Collapse
|
8
|
Cai D, Rao Y, Zhan Y, Wang Q, Chen S. EngineeringBacillusfor efficient production of heterologous protein: current progress, challenge and prospect. J Appl Microbiol 2019; 126:1632-1642. [DOI: 10.1111/jam.14192] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022]
Affiliation(s)
- D. Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Y. Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Y. Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Q. Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - S. Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| |
Collapse
|
9
|
Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World J Microbiol Biotechnol 2018; 34:145. [DOI: 10.1007/s11274-018-2531-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
|
10
|
Display of Escherichia coli Phytase on the Surface of Bacillus subtilis Spore Using CotG as an Anchor Protein. Appl Biochem Biotechnol 2018; 187:838-855. [PMID: 30088242 DOI: 10.1007/s12010-018-2855-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/31/2018] [Indexed: 01/21/2023]
Abstract
Escherichia coli phytase (AppA) has been widely used as an exogenous feed enzyme for monogastric animals; however, the production of this enzyme has been examined primarily in E. coli and yeast expression systems. As an alternative to production of soluble phytase, an enzyme immobilization method using the Bacillus subtilis spore outer-coat protein CotG as an anchoring motif for the display of the AppA was attempted. Using this motif, AppA was successfully produced on the spore surface of B. subtilis as verified by Western blot analysis and phytase activity measurements. Analysis of the pH stability indicated that more than 50% activity was retained after incubation at four different pH values (2.0, 4.0, 7.0, and 8.0) for up to 12 h, with maximum activity observed at pH 4.5. The highest enzyme activity seen at 55 °C and thermal stability measurements demonstrated that more than 30% activity remained after 30 min incubation at 60 °C. The spore surface-displayed AppA was resistant to pepsin, and more stable than phytase produced previously using a yeast expression system. Furthermore, we present data indicating that the use of peptide linkers may help improve the bioactivity of displayed enzymes on the spore surface of B. subtilis.
Collapse
|
11
|
Hu J, Cai W, Wang C, Du X, Lin J, Cai J. Purification and characterization of alkaline lipase production by Pseudomonas aeruginosa HFE733 and application for biodegradation in food wastewater treatment. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1446764] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Jun Hu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, PR China
| | - Wenhao Cai
- Laboratory of Polymer Chemistry, College of Chemistry, Beijing Normal University, Beijing, PR China
| | - Changgao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, PR China
| | - Xin Du
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, PR China
| | - Jianguo Lin
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, PR China
| | - Jun Cai
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, PR China
| |
Collapse
|
12
|
Guo Q, An Y, Yun J, Yang M, Magocha TA, Zhu J, Xue Y, Qi Y, Hossain Z, Sun W, Qi X. Enhanced d-tagatose production by spore surface-displayed l-arabinose isomerase from isolated Lactobacillus brevis PC16 and biotransformation. BIORESOURCE TECHNOLOGY 2018; 247:940-946. [PMID: 30060433 DOI: 10.1016/j.biortech.2017.09.187] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/19/2017] [Accepted: 09/23/2017] [Indexed: 06/08/2023]
Abstract
In the present study, a new strain of Lactobacillus brevis producing d-tagatose was isolated and identified. Then, the l-arabinose isomerase (L-AI) of this strain was displayed on the spore surface of Bacillus subtilis DB403 by using an anchoring protein CotG and a peptide linker (Gly-Gly-Gly-Gly-Ser). This displayed L-AI with high specific activity and stability was used as a novel immobilized biocatalyst for producing d-tagatose through batch and semi-continuous biotransformation. The conversion rate of d-tagatose from 125 g/L d-galactose was achieved 79.7% at 28 h, and the volumetric productivity reached 4.3 g/L/h at 20 h. Furthermore, the displayed L-AI showed a good performance on the reusability and remained 87% of the specific activity and 40.7% of the conversion rate after five recycles. A high efficient immobilized method for producing food-grade d-tagatose was established using spore surface-displayed L-AI.
Collapse
Affiliation(s)
- Qi Guo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110161, Liaoning, China
| | - Junhua Yun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Miaomiao Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Tinashe A Magocha
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jingfei Zhu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yanbo Xue
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yilin Qi
- College of Science and Technology, Agricultural University of Hebei, 1 Bohai Road, Cangzhou 061100, Hebei, China
| | - Zabed Hossain
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
13
|
Mattossovich R, Iacono R, Cangiano G, Cobucci-Ponzano B, Isticato R, Moracci M, Ricca E. Conversion of xylan by recyclable spores of Bacillus subtilis displaying thermophilic enzymes. Microb Cell Fact 2017; 16:218. [PMID: 29183330 PMCID: PMC5706412 DOI: 10.1186/s12934-017-0833-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/21/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The Bacillus subtilis spore has long been used to display antigens and enzymes. Spore display can be accomplished by a recombinant and a non-recombinant approach, with the latter proved more efficient than the recombinant one. We used the non-recombinant approach to independently adsorb two thermophilic enzymes, GH10-XA, an endo-1,4-β-xylanase (EC 3.2.1.8) from Alicyclobacillus acidocaldarius, and GH3-XT, a β-xylosidase (EC 3.2.1.37) from Thermotoga thermarum. These enzymes catalyze, respectively, the endohydrolysis of (1-4)-β-D-xylosidic linkages of xylans and the hydrolysis of (1-4)-β-D-xylans to remove successive D-xylose residues from the non-reducing termini. RESULTS We report that both purified enzymes were independently adsorbed on purified spores of B. subtilis. The adsorption was tight and both enzymes retained part of their specific activity. When spores displaying either GH10-XA or GH3-XT were mixed together, xylan was hydrolysed more efficiently than by a mixture of the two free, not spore-adsorbed, enzymes. The high total activity of the spore-bound enzymes is most likely due to a stabilization of the enzymes that, upon adsorption on the spore, remained active at the reaction conditions for longer than the free enzymes. Spore-adsorbed enzymes, collected after the two-step reaction and incubated with fresh substrate, were still active and able to continue xylan degradation. The recycling of the mixed spore-bound enzymes allowed a strong increase of xylan degradation. CONCLUSION Our results indicate that the two-step degradation of xylans can be accomplished by mixing spores displaying either one of two required enzymes. The two-step process occurs more efficiently than with the two un-adsorbed, free enzymes and adsorbed spores can be reused for at least one other reaction round. The efficiency of the process, the reusability of the adsorbed enzymes, and the well documented robustness of spores of B. subtilis indicate the spore as a suitable platform to display enzymes for single as well as multi-step reactions.
Collapse
Affiliation(s)
- Rosanna Mattossovich
- Department of Biology, Federico II University of Naples, Via Cinthia 4, 80126 Naples, MSA Italy
| | - Roberta Iacono
- Institute of Biosciences and BioResources, CNR, Naples, Italy
| | - Giuseppina Cangiano
- Department of Biology, Federico II University of Naples, Via Cinthia 4, 80126 Naples, MSA Italy
| | | | - Rachele Isticato
- Department of Biology, Federico II University of Naples, Via Cinthia 4, 80126 Naples, MSA Italy
| | - Marco Moracci
- Department of Biology, Federico II University of Naples, Via Cinthia 4, 80126 Naples, MSA Italy
- Institute of Biosciences and BioResources, CNR, Naples, Italy
| | - Ezio Ricca
- Department of Biology, Federico II University of Naples, Via Cinthia 4, 80126 Naples, MSA Italy
| |
Collapse
|
14
|
Redesigning of Microbial Cell Surface and Its Application to Whole-Cell Biocatalysis and Biosensors. Appl Biochem Biotechnol 2017; 185:396-418. [PMID: 29168153 DOI: 10.1007/s12010-017-2662-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Microbial cell surface display technology can redesign cell surfaces with functional proteins and peptides to endow cells some unique features. Foreign peptides or proteins are transported out of cells and immobilized on cell surface by fusing with anchoring proteins, which is an effective solution to avoid substance transfer limitation, enzyme purification, and enzyme instability. As the most frequently used prokaryotic and eukaryotic protein surface display system, bacterial and yeast surface display systems have been widely applied in vaccine, biocatalysis, biosensor, bioadsorption, and polypeptide library screening. In this review of bacterial and yeast surface display systems, different cell surface display mechanisms and their applications in biocatalysis as well as biosensors are described with their strengths and shortcomings. In addition to single enzyme display systems, multi-enzyme co-display systems are presented here. Finally, future developments based on our and other previous reports are discussed.
Collapse
|
15
|
Ullah J, Chen H, Vastermark A, Jia J, Wu B, Ni Z, Le Y, Wang H. Impact of orientation and flexibility of peptide linkers on T. maritima lipase Tm1350 displayed on Bacillus subtilis spores surface using CotB as fusion partner. World J Microbiol Biotechnol 2017; 33:166. [PMID: 28822027 DOI: 10.1007/s11274-017-2327-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/26/2017] [Indexed: 11/27/2022]
Abstract
Fusion protein construction often requires peptide linkers for prolonged conformation, extended stability and enzyme activity. In this study a series of fusion between Thermotoga maritima lipase Tm1350 and Bacillus subtillis coat protein CotB, comprising of several peptide linkers, with different length, flexibility and orientations were constructed. Effects of temperature, pH and chemicals were examined, on the activity of displayed enzyme. The fusion protein with longer flexible linkers L9 [(GGGGS)4] and L7 (GGGGS-GGGGS-EAAAK-EAAAK-GGGGS-GGGGS) possess 1.29 and 1.16-fold higher activity than the original, under optimum temperature and pH respectively. Moreover, spore surface displaying Tm1350 with L3 (EAAAK-GGGGS) and L9 ((GGGGS)4) showed extended thermostably, maintaining 1.40 and 1.35-fold higher activity than the original respectively, at 80 °C after 5 h of incubation. The enzyme activity of linkers with different orientation, including L5, L6 and L7 was determined, where L7 maintained 1.05 and 1.27-fold higher activity than L5 and L6. Effect of 0.1% proteinase K, bromelain, 20% ethanol and 30% methanol was investigated. Linkers with appropriate Glycine residues (flexible) showed higher activity than Alanine residues (rigid). The activity of the displayed enzyme can be improved by maintaining orientation and flexibility of peptide linkers, to evaluate high activity and stability in industrial processes.
Collapse
Affiliation(s)
- Jawad Ullah
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China
| | - Huayou Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China.
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
| | - Ake Vastermark
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA, 92093‑0116, USA
- Nitech, Showa-ku, Nagoya, 466-8555, Japan
| | - Jinru Jia
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China
| | - Bangguo Wu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China
| | - Zhong Ni
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China
| | - Yilin Le
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China
| | - Hongcheng Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China
| |
Collapse
|
16
|
Chen H, Ullah J, Jia J. Progress in Bacillus subtilis Spore Surface Display Technology towards Environment, Vaccine Development, and Biocatalysis. J Mol Microbiol Biotechnol 2017; 27:159-167. [DOI: 10.1159/000475177] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/30/2017] [Indexed: 11/19/2022] Open
Abstract
Spore surface display is the most desirable with enhanced effects, low cost, less time consuming and the most promising technology for environmental, medical, and industrial development. Spores have various applications in industry due to their ability to survive in harsh industrial processes including heat resistance, alkaline tolerance, chemical tolerance, easy recovery, and reusability. Yeast and bacteria, including gram-positive and -negative, are the most frequently used organisms for the display of various proteins (eukaryotic and prokaryotic), but unlike spores, they can rupture easily due to nutritive properties, susceptibility to heat, pH, and chemicals. Hence, spores are the best choice to avoid these problems, and they have various applications over nonspore formers due to amenability for laboratory purposes. Various strains of <i>Clostridium</i> and <i>Bacillus</i> are spore formers, but the most suitable choice for display is <i>Bacillus subtilis</i> because, according to the WHO, it is safe to humans and considered as “GRAS” (generally recognized as safe). This review focuses on the application of spore surface display towards industries, vaccine development, the environment, and peptide library construction, with cell surface display for enhanced protein expression and high enzymatic activity. Different vectors, coat proteins, and statistical analyses can be used for linker selection to obtain greater expression and high activity of the displayed protein.
Collapse
|
17
|
Chen H, Chen Z, Wu B, Ullah J, Zhang T, Jia J, Wang H, Tan T. Influences of Various Peptide Linkers on the Thermotoga maritima MSB8 Nitrilase Displayed on the Spore Surface of Bacillus subtilis. J Mol Microbiol Biotechnol 2017; 27:64-71. [PMID: 28103592 DOI: 10.1159/000454813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/25/2016] [Indexed: 11/19/2022] Open
Abstract
In the present study, fusion genes composed of Thermotoga maritima MSB8 nitrilase and Bacillus subtilis 168 outer coat protein CotG were constructed with various peptide linkers and displayed on B. subtilis DB 403 spores. The successful display of CotG-nit fusion proteins on the spore surface of B. subtilis was verified by Western blot analysis and activity measurement. It was demonstrated that the fusion with linker GGGGSEAAAKGGGGS presented the highest thermal and pH stability, which is 2.67- and 1.9-fold of the fusion without linker. In addition, fusion with flexible linker (GGGGS)3 demonstrated better thermal and pH stability than fusions with linkers GGGGS and (GGGGS)2. Fusion with rigid linker (EAAAK) demonstrated better thermal stability than fusions with linkers (EAAAK)2 and (EAAAK)3. Fusions with linker (EAAAK)2 demonstrated better pH stability than fusions with linkers (EAAAK) and (EAAAK)3. In the presence of 1 mM dithiothreitol, 1% (v/v) sodium dodecyl sulfate, and 20% (v/v) ethanol, the optimal linkers of the fusions were MGSSSN, GGGGSEAAAKGGGGS, and (GGGGS)3, respectively. In summary, our results showed that optimizing the peptide linkers with different type, length, and amino acid composition of the fusion proteins would be an efficient way to maintain the stability of fusion proteins and thus improve the nitrilase display efficiency, which could provide an effective method for rational design peptide linkers of displayed nitrilase on B. subtilis.
Collapse
Affiliation(s)
- Huayou Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, PR China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang H, Wang Y, Yang R. Recent progress in Bacillus subtilis spore-surface display: concept, progress, and future. Appl Microbiol Biotechnol 2017; 101:933-949. [PMID: 28062973 DOI: 10.1007/s00253-016-8080-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 12/16/2022]
Abstract
With the increased knowledge on spore structure and advances in biotechnology engineering, the newly developed spore-surface display system confers several inherent advantages over other microbial cell-surface display systems including enhanced stability and high safety. Bacillus subtilis is the most commonly used Bacillus species for spore-surface display. The expression of heterologous antigen or protein on the surface of B. subtilis spores has now been practiced for over a decade with noteworthy success. As an update and supplement to other previous reviews, we comprehensively summarize recent studies in the B. subtilis spore-surface display technique. We focus on its benefits as well as the critical factors affecting its display efficiency and offer suggestions for the future success of this field.
Collapse
Affiliation(s)
- He Wang
- Jiyang College, Zhejiang Agriculture and Forestry University, Zhuji, Zhejiang, 311800, China.
| | - Yunxiang Wang
- Jiyang College, Zhejiang Agriculture and Forestry University, Zhuji, Zhejiang, 311800, China
| | - Ruijin Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
19
|
Hosseini-Abari A, Kim BG, Lee SH, Emtiazi G, Kim W, Kim JH. Surface display of bacterial tyrosinase on spores ofBacillus subtilisusing CotE as an anchor protein. J Basic Microbiol 2016; 56:1331-1337. [DOI: 10.1002/jobm.201600203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/16/2016] [Indexed: 01/07/2023]
Affiliation(s)
| | - Byung-Gee Kim
- Interdisciplinary Program for Biochemical Engineering and Biotechnology; Institute of Molecular Biology and Genetics; Seoul National University; Seoul Korea
| | - Sang-Hyuk Lee
- Interdisciplinary Program for Biochemical Engineering and Biotechnology; Institute of Molecular Biology and Genetics; Seoul National University; Seoul Korea
| | - Giti Emtiazi
- Faculty of Sciences; Department of Biology; University of Isfahan; Isfahan Iran
| | - Wooil Kim
- Department of Chemical Engineering; College of Engineering; Dong-A University; Busan Korea
| | - June-Hyung Kim
- Department of Chemical Engineering; College of Engineering; Dong-A University; Busan Korea
| |
Collapse
|