1
|
di Stefano G, Battistuzzi M, La Rocca N, Selinger VM, Nürnberg DJ, Billi D. Far-red light photoacclimation in a desert Chroococcidiopsis strain with a reduced FaRLiP gene cluster and expression of its chlorophyll f synthase in space-resistant isolates. Front Microbiol 2024; 15:1450575. [PMID: 39328908 PMCID: PMC11424453 DOI: 10.3389/fmicb.2024.1450575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Some cyanobacteria can use far-red light (FRL) to drive oxygenic photosynthesis, a phenomenon known as Far-Red Light Photoacclimation (FaRLiP). It can expand photosynthetically active radiation beyond the visible light (VL) range. Therefore, it holds promise for biotechnological applications and may prove useful for the future human exploration of outer space. Typically, FaRLiP relies on a cluster of ~20 genes, encoding paralogs of the standard photosynthetic machinery. One of them, a highly divergent D1 gene known as chlF (or psbA4), is the synthase responsible for the formation of the FRL-absorbing chlorophyll f (Chl f) that is essential for FaRLiP. The minimum gene set required for this phenotype is unclear. The desert cyanobacterium Chroococcidiopsis sp. CCMEE 010 is unusual in being capable of FaRLiP with a reduced gene cluster (15 genes), and it lacks most of the genes encoding FR-Photosystem I. Methods Here we investigated whether the reduced gene cluster of Chroococcidiopsis sp. CCMEE 010 is transcriptionally regulated by FRL and characterized the spectral changes that occur during the FaRLiP response of Chroococcidiopsis sp. CCMEE 010. In addition, the heterologous expression of the Chl f synthase from CCMEE 010 was attempted in three closely related desert strains of Chroococcidiopsis. Results All 15 genes of the FaRLiP cluster were preferentially expressed under FRL, accompanied by a progressive red-shift of the photosynthetic absorption spectrum. The Chl f synthase from CCMEE 010 was successfully expressed in two desert strains of Chroococcidiopsis and transformants could be selected in both VL and FRL. Discussion In Chroococcidiopsis sp. CCME 010, all the far-red genes of the unusually reduced FaRLiP cluster, are transcriptionally regulated by FRL and two closely related desert strains heterologously expressing the chlF010 gene could grow in FRL. Since the transformation hosts had been reported to survive outer space conditions, such an achievement lays the foundation toward novel cyanobacteria-based technologies to support human space exploration.
Collapse
Affiliation(s)
- Giorgia di Stefano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Mariano Battistuzzi
- Department of Biology, University of Padua, Padua, Italy
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
- Giuseppe Colombo University Center for Studies and Activities, University of Padua, Padua, Italy
| | - Nicoletta La Rocca
- Department of Biology, University of Padua, Padua, Italy
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
| | - Vera M. Selinger
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Dennis J. Nürnberg
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
2
|
Pietrafesa D, Napoli A, Iacovelli F, Romeo A, Tucci FG, Billi D, Falconi M. Deciphering the Role of Trehalose in Chroococcidiopsis sp. 029's High-Desiccation Resistance: Sequence Determination, Structural Modelling and Simulative Analysis of the 30S Ribosomal Subunit. Molecules 2024; 29:3486. [PMID: 39124891 PMCID: PMC11314286 DOI: 10.3390/molecules29153486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Desert strains of the genus Chroococcidiopsis are among the most desiccation-resistant cyanobacteria capable of anhydrobiosis. The accumulation of two sugars, sucrose and trehalose, facilitates the entrance of anhydrobiotes into a reversible state of dormancy by stabilizing cellular components upon water removal. This study aimed to evaluate, at the atomistic level, the role of trehalose in desiccation resistance by using as a model system the 30S ribosomal subunit of the desert cyanobacterium Chroococcidiopsis sp. 029. Molecular dynamic simulations provided atomistic evidence regarding its protective role on the 30S molecular structure. Trehalose forms an enveloping shell around the ribosomal subunit and stabilizes the structures through a network of direct interactions. The simulation confirmed that trehalose actively interacts with the 30S ribosomal subunit and that, by replacing water molecules, it ensures ribosomal structural integrity during desiccation, thus enabling protein synthesis to be carried out upon rehydration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (D.P.); (A.N.); (F.I.); (A.R.); (F.G.T.); (D.B.)
| |
Collapse
|
3
|
Khan A, Liu G, Zhang G, Li X. Radiation-resistant bacteria in desiccated soil and their potentiality in applied sciences. Front Microbiol 2024; 15:1348758. [PMID: 38894973 PMCID: PMC11184166 DOI: 10.3389/fmicb.2024.1348758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
A rich diversity of radiation-resistant (Rr) and desiccation-resistant (Dr) bacteria has been found in arid habitats of the world. Evidence from scientific research has linked their origin to reactive oxygen species (ROS) intermediates. Rr and Dr. bacteria of arid regions have the potential to regulate imbalance radicals and evade a higher dose of radiation and oxidation than bacterial species of non-arid regions. Photochemical-activated ROS in Rr bacteria is run through photo-induction of electron transfer. A hypothetical model of the biogeochemical cycle based on solar radiation and desiccation. These selective stresses generate oxidative radicals for a short span with strong reactivity and toxic effects. Desert-inhibiting Rr bacteria efficiently evade ROS toxicity with an evolved antioxidant system and other defensive pathways. The imbalanced radicals in physiological disorders, cancer, and lung diseases could be neutralized by a self-sustaining evolved Rr bacteria antioxidant system. The direct link of evolved antioxidant system with intermediate ROS and indirect influence of radiation and desiccation provide useful insight into richness, ecological diversity, and origin of Rr bacteria capabilities. The distinguishing features of Rr bacteria in deserts present a fertile research area with promising applications in the pharmaceutical industry, genetic engineering, biological therapy, biological transformation, bioremediation, industrial biotechnology, and astrobiology.
Collapse
Affiliation(s)
- Asaf Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Antonaru LA, Selinger VM, Jung P, Di Stefano G, Sanderson ND, Barker L, Wilson DJ, Büdel B, Canniffe DP, Billi D, Nürnberg DJ. Common loss of far-red light photoacclimation in cyanobacteria from hot and cold deserts: a case study in the Chroococcidiopsidales. ISME COMMUNICATIONS 2023; 3:113. [PMID: 37857858 PMCID: PMC10587186 DOI: 10.1038/s43705-023-00319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Deserts represent an extreme challenge for photosynthetic life. Despite their aridity, they are often inhabited by diverse microscopic communities of cyanobacteria. These organisms are commonly found in lithic habitats, where they are partially sheltered from extremes of temperature and UV radiation. However, living under the rock surface imposes additional constraints, such as limited light availability, and enrichment of longer wavelengths than are typically usable for oxygenic photosynthesis. Some cyanobacteria from the genus Chroococcidiopsis can use this light to photosynthesize, in a process known as far-red light photoacclimation, or FaRLiP. This genus has commonly been reported from both hot and cold deserts. However, not all Chroococcidiopsis strains carry FaRLiP genes, thus motivating our study into the interplay between FaRLiP and extreme lithic environments. The abundance of sequence data and strains provided the necessary material for an in-depth phylogenetic study, involving spectroscopy, microscopy, and determination of pigment composition, as well as gene and genome analyses. Pigment analyses revealed the presence of red-shifted chlorophylls d and f in all FaRLiP strains tested. In addition, eight genus-level taxa were defined within the encompassing Chroococcidiopsidales, clarifying the phylogeny of this long-standing polyphyletic order. FaRLiP is near universally present in a generalist genus identified in a wide variety of environments, Chroococcidiopsis sensu stricto, while it is rare or absent in closely related, extremophile taxa, including those preferentially inhabiting deserts. This likely reflects the evolutionary process of gene loss in specialist lineages.
Collapse
Affiliation(s)
- Laura A Antonaru
- Institute for Experimental Physics, Freie Universität Berlin, Berlin, Germany.
- Department of Life Sciences, Imperial College London, London, UK.
| | - Vera M Selinger
- Institute for Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Patrick Jung
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Giorgia Di Stefano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Nicholas D Sanderson
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Leanne Barker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel J Wilson
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Burkhard Büdel
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Daniel P Canniffe
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Dennis J Nürnberg
- Institute for Experimental Physics, Freie Universität Berlin, Berlin, Germany.
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Butterworth SJ, Barton F, Lloyd JR. Extremophilic microbial metabolism and radioactive waste disposal. Extremophiles 2023; 27:27. [PMID: 37839067 PMCID: PMC10577106 DOI: 10.1007/s00792-023-01312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
Decades of nuclear activities have left a legacy of hazardous radioactive waste, which must be isolated from the biosphere for over 100,000 years. The preferred option for safe waste disposal is a deep subsurface geological disposal facility (GDF). Due to the very long geological timescales required, and the complexity of materials to be disposed of (including a wide range of nutrients and electron donors/acceptors) microbial activity will likely play a pivotal role in the safe operation of these mega-facilities. A GDF environment provides many metabolic challenges to microbes that may inhabit the facility, including high temperature, pressure, radiation, alkalinity, and salinity, depending on the specific disposal concept employed. However, as our understanding of the boundaries of life is continuously challenged and expanded by the discovery of novel extremophiles in Earth's most inhospitable environments, it is becoming clear that microorganisms must be considered in GDF safety cases to ensure accurate predictions of long-term performance. This review explores extremophilic adaptations and how this knowledge can be applied to challenge our current assumptions on microbial activity in GDF environments. We conclude that regardless of concept, a GDF will consist of multiple extremes and it is of high importance to understand the limits of polyextremophiles under realistic environmental conditions.
Collapse
Affiliation(s)
- Sarah Jane Butterworth
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK
| | - Franky Barton
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK.
| | - Jonathan Richard Lloyd
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Krings S, Chen Y, Keddie JL, Hingley-Wilson S. Oxygen evolution from extremophilic cyanobacteria confined in hard biocoatings. Microbiol Spectr 2023; 11:e0187023. [PMID: 37747195 PMCID: PMC10580922 DOI: 10.1128/spectrum.01870-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/04/2023] [Indexed: 09/26/2023] Open
Abstract
Biocoatings, in which viable bacteria are immobilized within a waterborne polymer coating for a wide range of potential applications, have garnered greater interest in recent years. In bioreactors, biocoatings can be ready-to-use alternatives for carbon capture or biofuel production that could be reused multiple times. Here, we have immobilized cyanobacteria in mechanically hard biocoatings, which were deposited from polymer colloids in water (i.e., latex). The biocoatings are formed upon heating to 37°C and fully dried before rehydrating. The viability and oxygen evolution of three cyanobacterial species within the biocoatings were compared. Synechococcus sp. PCC 7002 was non-viable inside the biocoatings immediately after drying, whereas Synechocystis sp. PCC 6803 survived the coating formation, as shown by an adenosine triphosphate (ATP) assay. Synechocystis sp. PCC 6803 consumed oxygen (by cell respiration) for up to 5 days, but was unable to perform photosynthesis, as indicated by a lack of oxygen evolution. However, Chroococcidiopsis cubana PCC 7433, a strain of desiccation-resistant extremophilic cyanobacteria, survived and performed photosynthesis and carbon capture within the biocoating, with specific rates of oxygen evolution up to 0.4 g of oxygen/g of biomass per day. Continuous measurements of dissolved oxygen were carried out over a month and showed no sign of decreasing activity. Extremophilic cyanobacteria are viable in a variety of environments, making them ideal candidates for use in biocoatings and other biotechnology. IMPORTANCE As water has become a precious resource, there is a growing need for less water-intensive use of microorganisms, while avoiding desiccation stress. Mechanically robust, ready-to-use biocoatings or "living paints" (a type of artificial biofilm consisting of a synthetic matrix containing functional bacteria) represent a novel way to address these issues. Here, we describe the revolutionary, first-ever use of an extremophilic cyanobacterium (Chroococcidiopsis cubana PCC 7433) in biocoatings, which were able to produce high levels of oxygen and carbon capture for at least 1 month despite complete desiccation and subsequent rehydration. Beyond culturing viable bacteria with reduced water resources, this pioneering use of extremophiles in biocoatings could be further developed for a variety of applications, including carbon capture, wastewater treatment and biofuel production.
Collapse
Affiliation(s)
- Simone Krings
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Yuxiu Chen
- School of Mathematics and Physics, University of Surrey, Guildford, Surrey, United Kingdom
| | - Joseph L. Keddie
- School of Mathematics and Physics, University of Surrey, Guildford, Surrey, United Kingdom
| | - Suzanne Hingley-Wilson
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| |
Collapse
|
7
|
Baldanta S, Arnal R, Blanco-Rivero A, Guevara G, Navarro Llorens JM. First characterization of cultivable extremophile Chroococcidiopsis isolates from a solar panel. Front Microbiol 2023; 14:982422. [PMID: 36876112 PMCID: PMC9982165 DOI: 10.3389/fmicb.2023.982422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction Microorganisms colonize a wide range of natural and artificial environments. Even though most of them are unculturable in laboratory conditions, some ecosystems are ideal niches for bioprospecting extremophiles with unique properties. Up today, there are few reports concerning microbial communities found on solar panels, a widespread, artificial, extreme habitat. Microorganisms found in this habitat belong to drought-, heat- and radiation-adapted genera, including fungi, bacteria, and cyanobacteria. Methods Here we isolated and identified several cyanobacteria from a solar panel. Then, some strains isolated were characterizated for their resistance to desiccation, UV-C exposition, and their growth on a range of temperature, pH, NaCl concentration or diverse carbon and nitrogen sources. Finally, gene transfer to these isolates was evaluated using several SEVA plasmids with different replicons to assess their potential in biotechnological applications. Results and discussion This study presents the first identification and characterization of cultivable extremophile cyanobacteria from a solar panel in Valencia, Spain. The isolates are members of the genera Chroococcidiopsis, Leptolyngbya, Myxacorys, and Oculatella all genera with species commonly isolated from deserts and arid regions. Four of the isolates were selected, all of them Chroococcidiopsis, and characterized. Our results showed that all Chroococcidiopsis isolates chosen were resistant up to a year of desiccation, viable after exposition to high doses of UV-C, and capable of being transformed. Our findings revealed that a solar panel is a useful ecological niche in searching for extremophilic cyanobacteria to further study the desiccation and UV-tolerance mechanisms. We conclude that these cyanobacteria can be modified and exploited as candidates for biotechnological purposes, including astrobiology applications.
Collapse
Affiliation(s)
- Sara Baldanta
- Metabolic Engineering Group, Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Raquel Arnal
- Metabolic Engineering Group, Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Amaya Blanco-Rivero
- Metabolic Engineering Group, Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Govinda Guevara
- Metabolic Engineering Group, Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Juana María Navarro Llorens
- Metabolic Engineering Group, Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Kimura S, Sato M, Fan X, Ohmori M, Ehira S. The two-component response regulator OrrA confers dehydration tolerance by regulating avaKa expression in the cyanobacterium Anabaena sp. strain PCC 7120. Environ Microbiol 2022; 24:5165-5173. [PMID: 36054741 PMCID: PMC9804601 DOI: 10.1111/1462-2920.16162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/06/2022] [Indexed: 01/05/2023]
Abstract
The cyanobacterium Anabaena sp. strain PCC 7120 exhibits dehydration tolerance. The regulation of gene expression in response to dehydration is crucial for the acquisition of dehydration tolerance, but the molecular mechanisms underlying dehydration responses remain unknown. In this study, the functions of the response regulator OrrA in the regulation of salt and dehydration responses were investigated. Disruption of orrA abolished or diminished the induction of hundreds of genes in response to salt stress and dehydration. Thus, OrrA is a principal regulator of both stress responses. In particular, OrrA plays a crucial role in dehydration tolerance because an orrA disruptant completely lost the ability to regrow after dehydration. Moreover, in the OrrA regulon, avaKa encoding a protein of unknown function was revealed to be indispensable for dehydration tolerance. OrrA and AvaK are conserved among the terrestrial cyanobacteria, suggesting their conserved functions in dehydration tolerance in cyanobacteria.
Collapse
Affiliation(s)
- Satoshi Kimura
- Department of Biochemistry and Molecular Biology, Faculty of ScienceSaitama UniversitySaitamaJapan
| | - Miho Sato
- Department of Biological Sciences, Graduate school of ScienceTokyo Metropolitan UniversityTokyoJapan
| | - Xingyan Fan
- Department of Biological Sciences, Graduate school of ScienceTokyo Metropolitan UniversityTokyoJapan
| | - Masayuki Ohmori
- Department of Biochemistry and Molecular Biology, Faculty of ScienceSaitama UniversitySaitamaJapan
| | - Shigeki Ehira
- Department of Biochemistry and Molecular Biology, Faculty of ScienceSaitama UniversitySaitamaJapan,Department of Biological Sciences, Graduate school of ScienceTokyo Metropolitan UniversityTokyoJapan
| |
Collapse
|
9
|
Billi D, Blanco Y, Ianneo A, Moreno-Paz M, Aguirre J, Baqué M, Moeller R, de Vera JP, Parro V. Mars-like UV Flux and Ionizing Radiation Differently Affect Biomarker Detectability in the Desert Cyanobacterium Chroococcidiopsis as Revealed by the Life Detector Chip Antibody Microarray. ASTROBIOLOGY 2022; 22:1199-1209. [PMID: 36194868 DOI: 10.1089/ast.2022.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The effect of a Mars-like UV flux and γ-radiation on the detectability of biomarkers in dried cells of Chroococcidiopsis sp. CCMEE 029 was investigated using a fluorescence sandwich microarray immunoassay. The production of anti-Chroococcidiopsis antibodies allowed the immunoidentification of a reduced, though still detectable, signal in dried cells mixed with phyllosilicatic and sulfatic Mars regolith simulants after exposure to 6.8 × 105 kJ/m2 of a Mars-like UV flux. No signal was detected in dried cells that were not mixed with minerals after 1.4 × 105 kJ/m2. For γ-radiation (60Co), no detectable variations of the fluorescence signal occurred in dried cells exposed to 113 kGy compared to non-irradiated dried cells. Our results suggest that immunoassay-based techniques could be used to detect life tracers eventually present in the martian subsurface in freshly excavated materials only if shielded from solar UV. The high structural integrity of biomarkers irradiated with γ-radiation that mimics a dose accumulated in 13 Myr at 2 m depth from the martian surface has implications for the potential detectability of similar organic molecules/compounds by future life-detection missions such as the ExoMars Rosalind Franklin rover.
Collapse
Affiliation(s)
- Daniela Billi
- University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Yolanda Blanco
- Centro de Astrobiología (CAB), CSIC-INTA, Department of Molecular Evolution, Torrejón de Ardoz, Madrid, Spain
| | - Andrea Ianneo
- University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Mercedes Moreno-Paz
- Centro de Astrobiología (CAB), CSIC-INTA, Department of Molecular Evolution, Torrejón de Ardoz, Madrid, Spain
| | - Jacobo Aguirre
- Centro de Astrobiología (CAB), CSIC-INTA, Department of Molecular Evolution, Torrejón de Ardoz, Madrid, Spain
| | - Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department, Berlin, Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Cologne, Germany
| | - Jean-Pierre de Vera
- German Aerospace Center (DLR), Space Operations and Astronaut Training, Microgravity User Support Center, Cologne, Germany
| | - Victor Parro
- Centro de Astrobiología (CAB), CSIC-INTA, Department of Molecular Evolution, Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
10
|
Rzymski P, Poniedziałek B, Hippmann N, Kaczmarek Ł. Screening the Survival of Cyanobacteria Under Perchlorate Stress. Potential Implications for Mars In Situ Resource Utilization. ASTROBIOLOGY 2022; 22:672-684. [PMID: 35196144 PMCID: PMC9233533 DOI: 10.1089/ast.2021.0100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are good candidates for various martian applications as a potential source of food, fertilizer, oxygen, and biofuels. However, the increased levels of highly toxic perchlorates may be a significant obstacle to their growth on Mars. Therefore, in the present study, 17 cyanobacteria strains that belong to Chroococcales, Chroococcidiopsidales, Nostocales, Oscillatoriales, Pleurocapsales, and Synechococcales were exposed to 0.25-1.0% magnesium perchlorate concentrations (1.5-6.0 mM ClO4- ions) for 14 days. The exposure to perchlorate induced at least partial inhibition of growth in all tested strains, although five of them were able to grow at the highest perchlorate concentration: Chroococcidiopsis thermalis, Leptolyngbya foveolarum, Arthronema africanum, Geitlerinema cf. acuminatum, and Cephalothrix komarekiana. Chroococcidiopsis sp. Chroococcidiopsis cubana demonstrated growth up to 0.5%. Strains that maintained growth displayed significantly increased malondialdehyde content, indicating perchlorate-induced oxidative stress, whereas the chlorophyll a/carotenoids ratio tended to be decreased. The results show that selected cyanobacteria from different orders can tolerate perchlorate concentrations typical for the martian regolith, indicating that they may be useful in Mars exploration. Further studies are required to elucidate the biochemical and molecular basis for the perchlorate tolerance in selected cyanobacteria.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Natalia Hippmann
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
11
|
Kotsyurbenko OR, Cordova JA, Belov AA, Cheptsov VS, Kölbl D, Khrunyk YY, Kryuchkova MO, Milojevic T, Mogul R, Sasaki S, Słowik GP, Snytnikov V, Vorobyova EA. Exobiology of the Venusian Clouds: New Insights into Habitability through Terrestrial Models and Methods of Detection. ASTROBIOLOGY 2021; 21:1186-1205. [PMID: 34255549 PMCID: PMC9545807 DOI: 10.1089/ast.2020.2296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
The search for life beyond Earth has focused on Mars and the icy moons Europa and Enceladus, all of which are considered a safe haven for life due to evidence of current or past water. The surface of Venus, on the other hand, has extreme conditions that make it a nonhabitable environment to life as we know it. This is in contrast, however, to its cloud layer, which, while still an extreme environment, may prove to be a safe haven for some extreme forms of life similar to extremophiles on Earth. We consider the venusian clouds a habitable environment based on the presence of (1) a solvent for biochemical reactions, (2) appropriate physicochemical conditions, (3) available energy, and (4) biologically relevant elements. The diversity of extreme microbial ecosystems on Earth has allowed us to identify terrestrial chemolithoautotrophic microorganisms that may be analogs to putative venusian organisms. Here, we hypothesize and describe biological processes that may be performed by such organisms in the venusian clouds. To detect putative venusian organisms, we describe potential biosignature detection methods, which include metal-microbial interactions and optical methods. Finally, we describe currently available technology that can potentially be used for modeling and simulation experiments.
Collapse
Affiliation(s)
- Oleg R. Kotsyurbenko
- Yugra State University, The Institute of Oil and Gas, School of Ecology, Khanty-Mansiysk, Russian Federation
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
| | - Jaime A. Cordova
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, USA
| | - Andrey A. Belov
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
| | - Vladimir S. Cheptsov
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
- Space Research Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | - Denise Kölbl
- Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Yuliya Y. Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, Ekaterinburg, Russian Federation
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation
| | - Margarita O. Kryuchkova
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
| | - Tetyana Milojevic
- Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Rakesh Mogul
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, California, USA
| | - Satoshi Sasaki
- School of Biosciences and Biotechnology/School of Health Sciences, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Grzegorz P. Słowik
- Institute of Materials and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Zielona Góra, Poland
| | - Valery Snytnikov
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Elena A. Vorobyova
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
| |
Collapse
|
12
|
Abstract
Rock varnish is a prominent feature of desert landscapes and the canvas for many prehistoric petroglyphs. How it forms—and, in particular, the basis for its extremely high manganese content—has been an enduring mystery. The work presented here establishes a biological mechanism for this manganese enrichment, underpinned by an apparent antioxidant strategy that enables microbes to survive in the harsh environments where varnish forms. The understanding that varnish is the residue of life using manganese to thrive in the desert illustrates that, even in extremely stark environments, the imprint of life is omnipresent on the landscape. Desert varnish is a dark rock coating that forms in arid environments worldwide. It is highly and selectively enriched in manganese, the mechanism for which has been a long-standing geological mystery. We collected varnish samples from diverse sites across the western United States, examined them in petrographic thin section using microscale chemical imaging techniques, and investigated the associated microbial communities using 16S amplicon and shotgun metagenomic DNA sequencing. Our analyses described a material governed by sunlight, water, and manganese redox cycling that hosts an unusually aerobic microbial ecosystem characterized by a remarkable abundance of photosynthetic Cyanobacteria in the genus Chroococcidiopsis as the major autotrophic constituent. We then showed that diverse Cyanobacteria, including the relevant Chroococcidiopsis taxon, accumulate extraordinary amounts of intracellular manganese—over two orders of magnitude higher manganese content than other cells. The speciation of this manganese determined by advanced paramagnetic resonance techniques suggested that the Cyanobacteria use it as a catalytic antioxidant—a valuable adaptation for coping with the substantial oxidative stress present in this environment. Taken together, these results indicated that the manganese enrichment in varnish is related to its specific uptake and use by likely founding members of varnish microbial communities.
Collapse
|
13
|
Napoli A, Iacovelli F, Fagliarone C, Pascarella G, Falconi M, Billi D. Genome-Wide Identification and Bioinformatics Characterization of Superoxide Dismutases in the Desiccation-Tolerant Cyanobacterium Chroococcidiopsis sp. CCMEE 029. Front Microbiol 2021; 12:660050. [PMID: 34122375 PMCID: PMC8193680 DOI: 10.3389/fmicb.2021.660050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
A genome-wide investigation of the anhydrobiotic cyanobacterium Chroococcidiopsis sp. CCMEE 029 identified three genes coding superoxide dismutases (SODs) annotated as MnSODs (SodA2.1 and SodA2.2) and Cu/ZnSOD (SodC) as suggested by the presence of metal-binding motifs and conserved sequences. Structural bioinformatics analysis of the retrieved sequences yielded modeled MnSODs and Cu/ZnSOD structures that were fully compatible with their functional role. A signal-peptide bioinformatics prediction identified a Tat signal peptide at the N-terminus of the SodA2.1 that highlighted its transport across the thylakoid/cytoplasmic membranes and release in the periplasm/thylakoid lumen. Homologs of the Tat transport system were identified in Chroococcidiopsis sp. CCMEE 029, and the molecular docking simulation confirmed the interaction between the signal peptide of the SodA2.1 and the modeled TatC receptor, thus supporting the SodA2.1 translocation across the thylakoid/cytoplasmic membranes. No signal peptide was predicted for the MnSOD (SodA2.2) and Cu/ZnSOD, thus suggesting their occurrence as cytoplasmic proteins. No FeSOD homologs were identified in Chroococcidiopsis sp. CCMEE 029, a feature that might contribute to its desiccation tolerance since iron produces hydroxyl radical via the Fenton reaction. The overall-overexpression in response to desiccation of the three identified SOD-coding genes highlighted the role of SODs in the antioxidant enzymatic defense of this anhydrobiotic cyanobacterium. The periplasmic MnSOD protected the cell envelope against oxidative damage, the MnSOD localized in the thylakoid lumen scavengered superoxide anion radical produced during the photosynthesis, while the cytoplasmic MnSOD and Cu/ZnSOD reinforced the defense against reactive oxygen species generated at the onset of desiccation. Results contribute to decipher the desiccation-tolerance mechanisms of this cyanobacterium and allow the investigation of its oxidative stress response during future space experiments in low Earth orbit and beyond.
Collapse
Affiliation(s)
| | | | | | | | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
14
|
Mosca C, Fagliarone C, Napoli A, Rabbow E, Rettberg P, Billi D. Revival of Anhydrobiotic Cyanobacterium Biofilms Exposed to Space Vacuum and Prolonged Dryness: Implications for Future Missions beyond Low Earth Orbit. ASTROBIOLOGY 2021; 21:541-550. [PMID: 33956489 DOI: 10.1089/ast.2020.2359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dried biofilms of Chroococcidiopsis sp. CCMEE 029 were revived after a 672-day exposure to space vacuum outside the International Space Station during the EXPOSE-R2 space mission. After retrieval, they were air-dried stored for 3.5 years. Space vacuum reduced cell viability and increased DNA damage compared to air-dried storage for 6 years under laboratory conditions. Long exposure times to space vacuum and extreme dryness decrease the changes of survival that ultimately depend on DNA damage repair upon rehydration, and hence, an in silico analysis of Chroococcidiopsis sp. CCMEE 029's genome was performed with a focus on DNA repair pathways. The analysis identified a high number of genes that encode proteins of the homologous recombination RecF pathway and base excision repair that were over-expressed during 1 and 6 h rehydration of space-vacuum exposed biofilms. This suggests that Chroococcidiopsis developed a survival strategy against desiccation, with DNA repair playing a key role, which allowed the revival of biofilms exposed to space vacuum. Unravelling how long anhydrobiotic cyanobacteria can persist under space vacuum followed by prolonged air-dried storage is relevant to future astrobiological experiments that use space platforms and might require prolonged air-dried storage of the exposed samples before retrieval to Earth.
Collapse
Affiliation(s)
- Claudia Mosca
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Elke Rabbow
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Petra Rettberg
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
15
|
Valdespino-Castillo PM, Bautista-García A, Favoretto F, Merino-Ibarra M, Alcántara-Hernández RJ, Pi-Puig T, Castillo FS, Espinosa-Matías S, Holman HY, Blanco-Jarvio A. Interplay of microbial communities with mineral environments in coralline algae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143877. [PMID: 33316514 DOI: 10.1016/j.scitotenv.2020.143877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Coralline algae are worldwide carbonate builders, considered to be foundational species and biodiversity hotspots. Coralline habitats face increasing pressure from human activities and effects related to Global Change, yet their ecological properties and adaptive responses remain poorly understood. The relationships of the algal microbiota with the mineral bioconstructions, as well as plasticity and resilience of coralline holobionts in a changing environment, are of particular interest. In the Gulf of California, Neogoniolithon trichotomum (Rhodophyta) is the main carbonate builder in tidal pools. We performed a multi-disciplinary assessment of the N. trichotomum microstructure using XRD, SEM microscopy and SR-FTIR spectromicroscopy. In the algal perithallus, magnesium-calcite and aragonite were spatially segregated and embedded in a polysaccharide matrix (rich in sulfated polysaccharides). Mg-calcites (18-19 mol% Mg) were the main mineral components of the thallus overall, followed by iron carbonates related to dolomite (ankerite) and siderite. Minerals of late evaporitic sequences (sylvite and bischofite) were also present, suggesting potential halophilic microenvironments within the algal thalli. The diverse set of abundant halophilic, halotolerant and oligotrophic taxa, whose abundance increase in the summer, further suggests this condition. We created an integrated model, based on environmental parameters and the microbiota distribution, that identified temperature and nutrient availability (particularly nitrate and silicate) as the main parameters related to specific taxa patterns. Among these, Hahella, Granulossicoccus, Ferrimonas, Spongiibacteraceae and cyanobacterial Xenococcaceae and Nostocaceae change significantly between seasons. These bacterial components might play relevant roles in algal plasticity and adaptive responses to a changing environment. This study contributes to the understanding of the interplay of the prokaryotic microbiota with the mineral microenvironments of coralline algae. Because of their carbonates with potential resistance to dissolution in a higher pCO2 world and their seasonally dynamic bacteria, coralline algae are relevant targets to study coastal resilience and carbonated systems responses to changing environments.
Collapse
Affiliation(s)
- Patricia M Valdespino-Castillo
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Andrea Bautista-García
- Laboratorio de Bioingeniería y Ciencias Ambientales (BICA), Departamento Académico de Ingeniería en Pesquerías, Universidad Autónoma de Baja California Sur, La Paz, BCS, Mexico
| | - Fabio Favoretto
- Laboratorio de Bioingeniería y Ciencias Ambientales (BICA), Departamento Académico de Ingeniería en Pesquerías, Universidad Autónoma de Baja California Sur, La Paz, BCS, Mexico; Gulf of California Marine Program, Scripps Institution of Oceanography, University of California San Diego, CA, United States
| | - Martín Merino-Ibarra
- Unidad Académica de Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Teresa Pi-Puig
- Instituto de Geología, Universidad Nacional Autónoma de México, Mexico City, Mexico; Laboratorio Nacional de Geoquímica y Mineralogía (LANGEM), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - F Sergio Castillo
- Unidad Académica de Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Silvia Espinosa-Matías
- Laboratorio de Microscopía Electrónica de Barrido, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hoi-Ying Holman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anidia Blanco-Jarvio
- Laboratorio de Bioingeniería y Ciencias Ambientales (BICA), Departamento Académico de Ingeniería en Pesquerías, Universidad Autónoma de Baja California Sur, La Paz, BCS, Mexico.
| |
Collapse
|
16
|
Zhou Y, Leung MHY, Tong X, Lai Y, Tong JCK, Ridley IA, Lee PKH. Profiling Airborne Microbiota in Mechanically Ventilated Buildings Across Seasons in Hong Kong Reveals Higher Metabolic Activity in Low-Abundance Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:249-259. [PMID: 33346641 DOI: 10.1021/acs.est.0c06201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Metabolically active bacteria within built environments are poorly understood. This study aims to investigate the active airborne bacterial microbiota and compare the total and active microbiota in eight mechanically ventilated buildings over four consecutive seasons using the 16S rRNA gene (rDNA) and the 16S rRNA (rRNA), respectively. The relative abundances of the taxa of presumptive occupants and environmental origins were significantly different between the active and total microbiota. The Sloan neutral model suggested that ecological drift and random dispersal played a smaller role in the assembly of the active microbiota than the total microbiota. The seasonal nature of the active microbiota was consistent with that of the total microbiota in both indoor and outdoor environments, while only the indoor environment was significantly affected by geography. The relative abundances of the active and total taxa were positively correlated, suggesting that the high-abundance members were also the greatest contributors to the community-level metabolic activity. Based on the rRNA/rDNA ratio, the low-abundance members consistently had a higher taxon-level metabolic activity than the high-abundance members over seasons, suggesting that the low-abundance members may have the ability to survive and thrive in the indoor environment and their impact on the health of occupants cannot be overlooked.
Collapse
Affiliation(s)
- You Zhou
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Marcus H Y Leung
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Yonghang Lai
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Jimmy C K Tong
- Building Sustainability Group, Arup, Hong Kong SAR, China
| | - Ian A Ridley
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
17
|
Baqué M, Napoli A, Claudia F, Moeller R, de Vera JP, Billi D. Carotenoid Raman Signatures Are Better Preserved in Dried Cells of the Desert Cyanobacterium Chroococcidiopsis than in Hydrated Counterparts after High-Dose Gamma Irradiation. Life (Basel) 2020; 10:E83. [PMID: 32521820 PMCID: PMC7345886 DOI: 10.3390/life10060083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 11/18/2022] Open
Abstract
Carotenoids are promising targets in our quest to search for life on Mars due to their biogenic origin and easy detection by Raman spectroscopy, especially with a 532 nm excitation thanks to resonance effects. Ionizing radiations reaching the surface and subsurface of Mars are however detrimental for the long-term preservation of biomolecules. We show here that desiccation can protect carotenoid Raman signatures in the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 even after high-dose gamma irradiation. Indeed, while the height of the carotenoids Raman peaks was considerably reduced in hydrated cells exposed to gamma irradiation, it remained stable in dried cells irradiated with the highest tested dose of 113 kGy of gamma rays, losing only 15-20% of its non-irradiated intensity. Interestingly, even though the carotenoid Raman signal of hydrated cells lost 90% of its non-irradiated intensity, it was still detectable after exposure to 113 kGy of gamma rays. These results add insights into the preservation potential and detectability limit of carotenoid-like molecules on Mars over a prolonged period of time and are crucial in supporting future missions carrying Raman spectrometers to Mars' surface.
Collapse
Affiliation(s)
- Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Department of Planetary Laboratories, Astrobiological Laboratories, 12489 Berlin, Germany; (M.B.); (J.-P.d.V.)
| | - Alessandro Napoli
- Department of Biology, Laboratory of Astrobiology and Molecular Biology of Cyanobacteria, University of Rome Tor Vergata, 00133 Rome, Italy; (A.N.); (C.F.)
| | - Fagliarone Claudia
- Department of Biology, Laboratory of Astrobiology and Molecular Biology of Cyanobacteria, University of Rome Tor Vergata, 00133 Rome, Italy; (A.N.); (C.F.)
| | - Ralf Moeller
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany;
| | - Jean-Pierre de Vera
- German Aerospace Center (DLR), Institute of Planetary Research, Department of Planetary Laboratories, Astrobiological Laboratories, 12489 Berlin, Germany; (M.B.); (J.-P.d.V.)
| | - Daniela Billi
- Department of Biology, Laboratory of Astrobiology and Molecular Biology of Cyanobacteria, University of Rome Tor Vergata, 00133 Rome, Italy; (A.N.); (C.F.)
| |
Collapse
|
18
|
Robescu MS, Niero M, Hall M, Cendron L, Bergantino E. Two new ene-reductases from photosynthetic extremophiles enlarge the panel of old yellow enzymes: CtOYE and GsOYE. Appl Microbiol Biotechnol 2020; 104:2051-2066. [PMID: 31930452 DOI: 10.1007/s00253-019-10287-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 01/25/2023]
Abstract
Looking for new ene-reductases with uncovered features beneficial for biotechnological applications, by mining genomes of photosynthetic extremophile organisms, we identified two new Old Yellow Enzyme homologues: CtOYE, deriving from the cyanobacterium Chroococcidiopsis thermalis, and GsOYE, from the alga Galdieria sulphuraria. Both enzymes were produced and purified with very good yields and displayed catalytic activity on a broad substrate spectrum by reducing α,β-unsaturated ketones, aldehydes, maleimides and nitroalkenes with good to excellent stereoselectivity. Both enzymes prefer NADPH but demonstrate a good acceptance of NADH as cofactor. CtOYE and GsOYE represent robust biocatalysts showing high thermostability, a wide range of pH optimum and good co-solvent tolerance. High resolution X-ray crystal structures of both enzymes have been determined, revealing conserved features of the classical OYE subfamily as well as unique properties, such as a very long loop entering the active site or an additional C-terminal alpha helix in GsOYE. Not surprisingly, the active site of CtOYE and GsOYE structures revealed high affinity toward anions caught from the mother liquor and trapped in the anion hole where electron-withdrawing groups such as carbonyl group are engaged. Ligands (para-hydroxybenzaldehyde and 2-methyl-cyclopenten-1-one) added on purpose to study complexes of GsOYE were detected in the enzyme catalytic cavity, stacking on top of the FMN cofactor, and support the key role of conserved residues and FMN cofactor in the catalysis.
Collapse
Affiliation(s)
- Marina Simona Robescu
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy
| | - Mattia Niero
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy
| | - Mélanie Hall
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Laura Cendron
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy.
| | - Elisabetta Bergantino
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy.
| |
Collapse
|
19
|
Mosca C, Rothschild LJ, Napoli A, Ferré F, Pietrosanto M, Fagliarone C, Baqué M, Rabbow E, Rettberg P, Billi D. Over-Expression of UV-Damage DNA Repair Genes and Ribonucleic Acid Persistence Contribute to the Resilience of Dried Biofilms of the Desert Cyanobacetrium Chroococcidiopsis Exposed to Mars-Like UV Flux and Long-Term Desiccation. Front Microbiol 2019; 10:2312. [PMID: 31681194 PMCID: PMC6798154 DOI: 10.3389/fmicb.2019.02312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
The survival limits of the desert cyanobacterium Chroococcidiopsis were challenged by rewetting dried biofilms and dried biofilms exposed to 1.5 × 103 kJ/m2 of a Mars-like UV, after 7 years of air-dried storage. PCR-stop assays revealed the presence of DNA lesions in dried biofilms and an increased accumulation in dried-UV-irradiated biofilms. Different types and/or amounts of DNA lesions were highlighted by a different expression of uvrA, uvrB, uvrC, phrA, and uvsE genes in dried-rewetted biofilms and dried-UV-irradiated-rewetted biofilms, after rehydration for 30 and 60 min. The up-regulation in dried-rewetted biofilms of uvsE gene encoding an UV damage endonuclease, suggested that UV-damage DNA repair contributed to the repair of desiccation-induced damage. While the phrA gene encoding a photolyase was up-regulated only in dried-UV-irradiated-rewetted biofilms. Nucleotide excision repair genes were over-expressed in dried-rewetted biofilms and dried-UV-irradiated-rewetted biofilms, with uvrC gene showing the highest increase in dried-UV-irradiated-rewetted biofilms. Dried biofilms preserved intact mRNAs (at least of the investigated genes) and 16S ribosomal RNA that the persistence of the ribosome machinery and mRNAs might have played a key role in the early phase recovery. Results have implications for the search of extra-terrestrial life by contributing to the definition of habitability of astrobiologically relevant targets such as Mars or planets orbiting around other stars.
Collapse
Affiliation(s)
- Claudia Mosca
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Lynn J Rothschild
- Earth Sciences Division, NASA Ames Research Center, Mountain View, CA, United States
| | | | - Fabrizio Ferré
- Department of Pharmacy and Biotechnology, University of Bologna Alma Mater, Bologna, Italy
| | | | | | - Mickael Baqué
- Astrobiological Laboratories Research Group, German Aerospace Center, Institute of Planetary Research, Management and Infrastructure, Berlin, Germany
| | - Elke Rabbow
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Petra Rettberg
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
20
|
Rettberg P, Antunes A, Brucato J, Cabezas P, Collins G, Haddaji A, Kminek G, Leuko S, McKenna-Lawlor S, Moissl-Eichinger C, Fellous JL, Olsson-Francis K, Pearce D, Rabbow E, Royle S, Saunders M, Sephton M, Spry A, Walter N, Wimmer Schweingruber R, Treuet JC. Biological Contamination Prevention for Outer Solar System Moons of Astrobiological Interest: What Do We Need to Know? ASTROBIOLOGY 2019; 19:951-974. [PMID: 30762429 PMCID: PMC6767865 DOI: 10.1089/ast.2018.1996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
To ensure that scientific investments in space exploration are not compromised by terrestrial contamination of celestial bodies, special care needs to be taken to preserve planetary conditions for future astrobiological exploration. Significant effort has been made and is being taken to address planetary protection in the context of inner Solar System exploration. In particular for missions to Mars, detailed internationally accepted guidelines have been established. For missions to the icy moons in the outer Solar System, Europa and Enceladus, the planetary protection requirements are so far based on a probabilistic approach and a conservative estimate of poorly known parameters. One objective of the European Commission-funded project, Planetary Protection of Outer Solar System, was to assess the existing planetary protection approach, to identify inherent knowledge gaps, and to recommend scientific investigations necessary to update the requirements for missions to the icy moons.
Collapse
Affiliation(s)
- Petra Rettberg
- Research Group Astrobiology, Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
- Address correspondence to: Petra Rettberg, German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Research Group Astrobiology, Linder Höhe, 51147 Köln, Germany
| | - André Antunes
- GEMM—Group for Extreme and Marine Microbiology, Department of Biology, Edge Hill University, Ormskirk, United Kingdom
| | - John Brucato
- Department of Physics and Astronomy, Astrophysical Observatory of Arcetri, National Institute for Astrophysics (INAF), Florence, Italy
| | - Patricia Cabezas
- Science Connect–European Science Foundation (ESF), Strasbourg, France
| | - Geoffrey Collins
- Department of Physics and Astronomy, Wheaton College, Massachusetts, Norton, Massachusetts
| | - Alissa Haddaji
- Committee on Space Research (COSPAR), Montpellier, France
| | - Gerhard Kminek
- Committee on Space Research (COSPAR), Montpellier, France
| | - Stefan Leuko
- Research Group Astrobiology, Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | | | | | - Jean-Louis Fellous
- Department of Physics and Astronomy, Wheaton College, Massachusetts, Norton, Massachusetts
| | - Karen Olsson-Francis
- Faculty of Science, Technology, Engineering & Mathematics, School of Environment, Earth & Ecosystem Sciences, The Open University, Milton Keynes, United Kingdom
| | - David Pearce
- Department of Applied Sciences, Northumbria University, Newcastle, United Kingdom
| | - Elke Rabbow
- Research Group Astrobiology, Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | - Samuel Royle
- Faculty of Engineering, Department of Earth Science & Engineering, Imperial College, London, United Kingdom
| | - Mark Saunders
- Independent Consultant for the US National Academies of Sciences (NAS), Washington, District of Columbia
| | - Mark Sephton
- Faculty of Engineering, Department of Earth Science & Engineering, Imperial College, London, United Kingdom
| | - Andy Spry
- Carl Sagan Center, SETI, Mountain View, California
| | - Nicolas Walter
- Science Connect–European Science Foundation (ESF), Strasbourg, France
| | - Robert Wimmer Schweingruber
- Institut für Experimentelle und Angewandte Physik, Abteilung Extraterrestrische Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | | |
Collapse
|
21
|
Patel HM, Rastogi RP, Trivedi U, Madamwar D. Cyanobacterial diversity in mat sample obtained from hypersaline desert, Rann of Kachchh. 3 Biotech 2019; 9:304. [PMID: 31355113 DOI: 10.1007/s13205-019-1837-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/15/2019] [Indexed: 01/18/2023] Open
Abstract
Rann of Kachchh (RoK) is a unique geoformation, which is exposed to dynamic environmental changes such as salinity, temperature, and nutrients throughout the year. In this study, the pooled mat sample was examined for the cyanobacterial community structure using culture-dependent and culture-independent approaches. Taxonomic profiling was studied using amplicon sequencing that revealed the enrichment of Pseudanabaenales and Oscillatoriales by QIIME and MG-RAST, respectively. Other abundant orders were represented by Chroococcales, Nostocales, and unclassified cyanobacteria by both approaches. Nine cyanobacterial cultures were isolated from mat samples showing 90-98% similarities with available sequences in GenBank. The culture-dependent study suggested that mat was dominated by cyanobacterial orders such as Oscillatoriales-filamentous and Chroococcales-unicellular. Our results from the culture-dependent approach also indicated that despite high similarities in gene sequences, six cyanobacteria fall into the separate clade in the phylogenetic analysis that could be signs of evolution due to an extreme environment. Cultured isolates are correlated well with abundant taxa from amplicon sequencing. Further, protein profiling was done specifically for phycobiliproteins which will be helpful to elucidate their roles in light harvesting and energy transfer mechanism in the unique environment of RoK.
Collapse
|
22
|
Billi D, Staibano C, Verseux C, Fagliarone C, Mosca C, Baqué M, Rabbow E, Rettberg P. Dried Biofilms of Desert Strains of Chroococcidiopsis Survived Prolonged Exposure to Space and Mars-like Conditions in Low Earth Orbit. ASTROBIOLOGY 2019; 19:1008-1017. [PMID: 30741568 DOI: 10.1089/ast.2018.1900] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dried biofilms and dried multilayered planktonic counterparts obtained from three desert strains of Chroococcidiopsis were exposed to low Earth conditions by using the EXPOSE-R2 facility outside the International Space Station. During the space mission, samples in Tray 1 (space vacuum and solar radiation, from λ ≈ 110 nm) and Tray 2 (Mars-like UV flux, λ > 200 nm and Mars-like atmosphere) received total UV (200-400 nm) fluences of about 4.58 × 102 kJ/m2 and 4.92 × 102 kJ/m2, respectively, and 0.5 Gy of cosmic ionizing radiation. Postflight analyses were performed on 2.5-year-old samples due to the space mission duration, from launch to sample return to the lab. The occurrence of survivors was determined by evaluating cell division upon rehydration and damage to the genome and photosynthetic apparatus by polymerase chain reaction-stop assays and confocal laser scanning microscopy. Biofilms recovered better than their planktonic counterparts, accumulating less damage not only when exposed to UV radiation under space and Mars-like conditions but also when exposed in dark conditions to low Earth conditions and laboratory control conditions. This suggests that, despite the shielding provided by top-cell layers being sufficient for a certain degree of survival of the multilayered planktonic samples, the enhanced survival of biofilms was due to the presence of abundant extracellular polymeric substances and to additional features acquired upon drying.
Collapse
Affiliation(s)
- Daniela Billi
- 1University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Clelia Staibano
- 1University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Cyprien Verseux
- 1University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | | | - Claudia Mosca
- 1University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Mickael Baqué
- 2German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Astrobiological Laboratories Research Group, Berlin, Germany
| | - Elke Rabbow
- 3German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Petra Rettberg
- 3German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| |
Collapse
|
23
|
Tanner K, Martorell P, Genovés S, Ramón D, Zacarías L, Rodrigo MJ, Peretó J, Porcar M. Bioprospecting the Solar Panel Microbiome: High-Throughput Screening for Antioxidant Bacteria in a Caenorhabditis elegans Model. Front Microbiol 2019; 10:986. [PMID: 31134025 PMCID: PMC6514134 DOI: 10.3389/fmicb.2019.00986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/18/2019] [Indexed: 01/11/2023] Open
Abstract
Microbial communities that are exposed to sunlight typically share a series of adaptations to deal with the radiation they are exposed to, including efficient DNA repair systems, pigment production and protection against oxidative stress, which makes these environments good candidates for the search of novel antioxidant microorganisms. In this research project, we isolated potential antioxidant pigmented bacteria from a dry and highly-irradiated extreme environment: solar panels. High-throughput in vivo assays using Caenorhabditis elegans as an experimental model demonstrated the high antioxidant and ultraviolet-protection properties of these bacterial isolates that proved to be rich in carotenoids. Our results suggest that solar panels harbor a microbial community that includes strains with potential applications as antioxidants.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Zacarías
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - María Jesús Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Juli Peretó
- Darwin Bioprospecting Excellence S.L., Paterna, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, Spain
| | - Manuel Porcar
- Darwin Bioprospecting Excellence S.L., Paterna, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain
| |
Collapse
|
24
|
Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample. GEOSCIENCES 2019. [DOI: 10.3390/geosciences9040166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The arid Mojave Desert is one of the most significant terrestrial analogue objects for astrobiological research due to its genesis, mineralogy, and climate. However, the knowledge of culturable bacterial communities found in this extreme ecotope’s soil is yet insufficient. Therefore, our research has been aimed to fulfil this lack of knowledge and improve the understanding of functioning of edaphic bacterial communities of the Central Mojave Desert soil. We characterized aerobic heterotrophic soil bacterial communities of the central region of the Mojave Desert. A high total number of prokaryotic cells and a high proportion of culturable forms in the soil studied were observed. Prevalence of Actinobacteria, Proteobacteria, and Firmicutes was discovered. The dominance of pigmented strains in culturable communities and high proportion of thermotolerant and pH-tolerant bacteria were detected. Resistance to a number of salts, including the ones found in Martian regolith, as well as antibiotic resistance, were also estimated.
Collapse
|
25
|
Billi D, Verseux C, Fagliarone C, Napoli A, Baqué M, de Vera JP. A Desert Cyanobacterium under Simulated Mars-like Conditions in Low Earth Orbit: Implications for the Habitability of Mars. ASTROBIOLOGY 2019; 19:158-169. [PMID: 30742497 DOI: 10.1089/ast.2017.1807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the ESA space experiment BIOMEX (BIOlogy and Mars EXperiment), dried Chroococcidiopsis cells were exposed to Mars-like conditions during the EXPOSE-R2 mission on the International Space Station. The samples were exposed to UV radiation for 469 days and to a Mars-like atmosphere for 722 days, approaching the conditions that could be faced on the surface of Mars. Once back on Earth, cell survival was tested by growth-dependent assays, while confocal laser scanning microscopy and PCR-based assay were used to analyze the accumulated damage in photosynthetic pigments (chlorophyll a and phycobiliproteins) and genomic DNA, respectively. Survival occurred only for dried cells (4-5 cell layers thick) mixed with the martian soil simulants P-MRS (phyllosilicatic martian regolith simulant) and S-MRS (sulfatic martian regolith simulant), and viability was only maintained for a few hours after space exposure to a total UV (wavelength from 200 to 400 nm) radiation dose of 492 MJ/m2 (attenuated by 0.1% neutral density filters) and 0.5 Gy of ionizing radiation. These results have implications for the hypothesis that, during Mars's climatic history, desiccation- and radiation-tolerant life-forms could have survived in habitable niches and protected niches while transported.
Collapse
Affiliation(s)
- Daniela Billi
- 1 University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Cyprien Verseux
- 1 University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | | | - Alessandro Napoli
- 1 University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Mickael Baqué
- 2 German Aerospace Center, Institute of Planetary Research, Management and Infrastructure, Astrobiological Laboratories, Berlin, Germany
| | - Jean-Pierre de Vera
- 2 German Aerospace Center, Institute of Planetary Research, Management and Infrastructure, Astrobiological Laboratories, Berlin, Germany
| |
Collapse
|
26
|
de Vera JP, Alawi M, Backhaus T, Baqué M, Billi D, Böttger U, Berger T, Bohmeier M, Cockell C, Demets R, de la Torre Noetzel R, Edwards H, Elsaesser A, Fagliarone C, Fiedler A, Foing B, Foucher F, Fritz J, Hanke F, Herzog T, Horneck G, Hübers HW, Huwe B, Joshi J, Kozyrovska N, Kruchten M, Lasch P, Lee N, Leuko S, Leya T, Lorek A, Martínez-Frías J, Meessen J, Moritz S, Moeller R, Olsson-Francis K, Onofri S, Ott S, Pacelli C, Podolich O, Rabbow E, Reitz G, Rettberg P, Reva O, Rothschild L, Sancho LG, Schulze-Makuch D, Selbmann L, Serrano P, Szewzyk U, Verseux C, Wadsworth J, Wagner D, Westall F, Wolter D, Zucconi L. Limits of Life and the Habitability of Mars: The ESA Space Experiment BIOMEX on the ISS. ASTROBIOLOGY 2019; 19:145-157. [PMID: 30742496 PMCID: PMC6383581 DOI: 10.1089/ast.2018.1897] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 01/07/2019] [Indexed: 06/01/2023]
Abstract
BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports-among others-the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit.
Collapse
Affiliation(s)
- Jean-Pierre de Vera
- German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Research Group Astrobiological Laboratories, Berlin, Germany
| | - Mashal Alawi
- GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, Potsdam, Germany
| | - Theresa Backhaus
- Institut für Botanik, Heinrich-Heine-Universität (HHU), Düsseldorf, Germany
| | - Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Research Group Astrobiological Laboratories, Berlin, Germany
| | - Daniela Billi
- University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Ute Böttger
- German Aerospace Center (DLR), Institute for Optical Sensor Systems, Berlin, Germany
| | - Thomas Berger
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Maria Bohmeier
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Charles Cockell
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - René Demets
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, the Netherlands
| | - Rosa de la Torre Noetzel
- Departamento de Observación de la Tierra, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - Howell Edwards
- Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, West Yorkshire, UK
| | - Andreas Elsaesser
- Institut für experimentelle Physik, Experimentelle Molekulare Biophysik, Frei Universität Berlin, Berlin, Germany
| | | | - Annelie Fiedler
- University of Potsdam, Biodiversity Research/Systematic Botany, Potsdam, Germany
| | - Bernard Foing
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, the Netherlands
| | - Frédéric Foucher
- CNRS, Centre de Biophysique Moléculaire, UPR 4301, Orléans, France
| | - Jörg Fritz
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Franziska Hanke
- German Aerospace Center (DLR), Institute for Optical Sensor Systems, Berlin, Germany
| | - Thomas Herzog
- TH Wildau (Technical University of Applied Sciences), Wildau, Germany
| | - Gerda Horneck
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Heinz-Wilhelm Hübers
- German Aerospace Center (DLR), Institute for Optical Sensor Systems, Berlin, Germany
| | - Björn Huwe
- University of Potsdam, Biodiversity Research/Systematic Botany, Potsdam, Germany
| | - Jasmin Joshi
- University of Potsdam, Biodiversity Research/Systematic Botany, Potsdam, Germany
- Hochschule für Technik HSR Rapperswil, Institute for Landscape and Open Space, Rapperswil, Switzerland
| | | | - Martha Kruchten
- Institut für Botanik, Heinrich-Heine-Universität (HHU), Düsseldorf, Germany
| | - Peter Lasch
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Berlin, Germany
| | - Natuschka Lee
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Stefan Leuko
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Thomas Leya
- Extremophile Research & Biobank CCCryo, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Andreas Lorek
- German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Research Group Astrobiological Laboratories, Berlin, Germany
| | | | - Joachim Meessen
- Institut für Botanik, Heinrich-Heine-Universität (HHU), Düsseldorf, Germany
| | - Sophie Moritz
- University of Potsdam, Biodiversity Research/Systematic Botany, Potsdam, Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Karen Olsson-Francis
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Sieglinde Ott
- Institut für Botanik, Heinrich-Heine-Universität (HHU), Düsseldorf, Germany
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Olga Podolich
- Institute of Molecular Biology & Genetics of NASU, Kyiv, Ukraine
| | - Elke Rabbow
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Günther Reitz
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Petra Rettberg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Oleg Reva
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | | | | | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Italian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy
| | - Paloma Serrano
- GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, Potsdam, Germany
- AWI, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Ulrich Szewzyk
- TU Berlin, Institute of Environmental Technology, Environmental Microbiology, Berlin, Germany
| | - Cyprien Verseux
- University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | | | - Dirk Wagner
- GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, Potsdam, Germany
- University of Potsdam, Institute of Earth and Environmental Sciences, Potsdam, Germany
| | - Frances Westall
- CNRS, Centre de Biophysique Moléculaire, UPR 4301, Orléans, France
| | - David Wolter
- German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Research Group Astrobiological Laboratories, Berlin, Germany
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
27
|
Shuryak I. Review of microbial resistance to chronic ionizing radiation exposure under environmental conditions. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 196:50-63. [PMID: 30388428 DOI: 10.1016/j.jenvrad.2018.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
Ionizing radiation (IR) produces multiple types of damage to nucleic acids, proteins and other crucial cellular components. Nevertheless, various microorganisms from phylogenetically distant taxa (bacteria, archaea, fungi) can resist IR levels many orders of magnitude above natural background. This intriguing phenomenon of radioresistance probably arose independently many times throughout evolution as a byproduct of selective pressures from other stresses (e.g. desiccation, UV radiation, chemical oxidants). Most of the literature on microbial radioresistance is based on acute γ-irradiation experiments performed in the laboratory, typically involving pure cultures grown under near-optimal conditions. There is much less information about the upper limits of radioresistance in the field, such as in radioactively-contaminated areas, where several radiation types (e.g. α and β, as well as γ) and other stressors (e.g. non-optimal temperature and nutrient levels, toxic chemicals, interspecific competition) act over multiple generations. Here we discuss several examples of radioresistant microbes isolated from extremely radioactive locations (e.g. Chernobyl and Mayak nuclear plant sites) and estimate the radiation dose rates they were able to tolerate. Some of these organisms (e.g. the fungus Cladosporium cladosporioides, the cyanobacterium Geitlerinema amphibium) are widely-distributed and colonize a variety of habitats. These examples suggest that resistance to chronic IR and chemical contamination is not limited to rare specialized strains from extreme environments, but can occur among common microbial taxa, perhaps due to overlap between mechanisms of resistance to IR and other stressors.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University, 630 West 168(th) street, VC-11-234/5, New York, NY, 10032, USA.
| |
Collapse
|
28
|
Belov AA, Cheptsov VS, Vorobyova EA. Soil bacterial communities of Sahara and Gibson deserts: Physiological and taxonomical characteristics. AIMS Microbiol 2018; 4:685-710. [PMID: 31294242 PMCID: PMC6613332 DOI: 10.3934/microbiol.2018.4.685] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/10/2018] [Indexed: 01/25/2023] Open
Abstract
The purpose of this research was to investigate the structure of soil bacteria communities present in the Gibson (Australia) and the Sahara (Egypt) deserts, as well as to estimate strain survivability under different environmental factors. It should be noticed that the screening of bacterial resistance to wide spectra of principally different stress conditions was performed for the first time. Experiments were conducted with culturable bacterial communities. Strains were identified using 16S rRNA sequencing, and stress-tolerance was estimated by growing strains in various nutrient media. In order to characterize the community the epifluorescent microscopy and multisubstrate testing were also performed. High bacterial abundance in the desert soils was detected, and there was seen a significant proportion of culturable cells. The close numbers of psychotropic and mesophilic bacteria in arid ecosystems were revealed. The representatives of the Actinobacteria phylum were dominant in the microbial communities, and Firmicutes, Proteobacteria, and Bacteroidetes phyla representatives were also identified. Tolerance of the axenic bacterial cultures, isolated from arid desert ecotopes, to temperature, pH, salts (KCl, NaCl, MgSO4, NaHCO3), strong oxidizers (Mg(ClO4)2), and antibiotics (ampicillin, cephalexin, chloramphenicol, tetracycline, doxycycline, kanamycin, rifampicin) was studied. The bacterial isolates were characterized by polyextremotolerance and by the ability to maintain metabolic activity in vitro while influenced by a wide range of physicochemical and biotic factors.
Collapse
Affiliation(s)
- Andrey A. Belov
- Soil Science Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir S. Cheptsov
- Soil Science Faculty, Lomonosov Moscow State University, Moscow, Russia
- Space Research Institute, Russian Academy of Sciences, Moscow, Russia
| | - Elena A. Vorobyova
- Soil Science Faculty, Lomonosov Moscow State University, Moscow, Russia
- Space Research Institute, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
29
|
Singh H. Desiccation and radiation stress tolerance in cyanobacteria. J Basic Microbiol 2018; 58:813-826. [PMID: 30080267 DOI: 10.1002/jobm.201800216] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 11/10/2022]
Abstract
Cyanobacteria are among the oldest living organisms on this planet, existing since more than 3 billion years. They are ideal organisms for investigating biological processes such as photosynthesis, respiration, circadian rhythm, photoregulation of gene expression, developmental gene rearrangements, and specialized cell differentiation. They are nearly ubiquitous in distribution, have colonized a wide range of ecosystems including soil, air, dry rock, and aquatic systems, and even occupy extreme niches that are inaccessible to other organisms. Such wide ecological distribution reflects their capacity to acclimate to extreme environments. They show great adaptive abilities and have survived various adverse physiological growth conditions like desiccation, high temperatures, extreme pH, cold, osmosis, salt, light, nitrogen, and high salinity. Their ancient origin and surviving through numerous stresses during evolution indicates their remarkable capabilities to survive and prevail under different environmental and man-made stresses. It has been hypothesized that similar and overlap stress response mechanisms help them to survive different stresses. It has been stated that responses against stresses like radiation has been accidental-exhibited because of similar response against desiccation stress, which has prevailed more during evolution. These overlaps and similarities in stress responses have been instrumental in making these organisms a large class of biological entities today. Present review discuss about stress tolerance in cyanobacteria against two extreme stresses - desiccation and gamma radiation. It also discuss the commonality and underlying molecular mechanisms in these two stress responses.
Collapse
Affiliation(s)
- Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Vile Parle (W), Mumbai, India
| |
Collapse
|