1
|
Yaman D, Averhoff B. Identification of subcomplexes and protein-protein interactions in the DNA transporter of Thermus thermophilus HB27. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184363. [PMID: 38909880 DOI: 10.1016/j.bbamem.2024.184363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024]
Abstract
The natural transformation system of the thermophilic bacterium Thermus thermophilus comprises at least 16 competence proteins. Recently we found that the outer membrane (OM) competence protein PilW interacts with the secretin channel, which guides type IV pili (T4P) and potential DNA transporter pseudopili through the OM. Here we have used biochemical techniques to study the interactions of cytoplasmic, inner membrane (IM) and OM components of the DNA transporter in T. thermophilus. We report that PilW is part of a heteropolymeric complex comprising of the cytoplasmic PilM protein, IM proteins PilN, PilO, PilC and the secretin PilQ. Co-purification studies revealed that PilO directly interacts with PilW. In vitro affinity co-purification studies using His-tagged PilC led to the detection of PilC-, PilW-, PilN- and PilO-containing complexes. PilO was identified as direct interaction partner of the polytopic IM protein PilC. PilC was also found to directly interact with the cytoplasmic T4P disassembly ATPase PilT1 thereby triggering PilT1 ATPase activity. This, together with the detection of heteropolymeric PilC complexes which contain PilT1 and the pilins PilA2, PilA4 and PilA5 is in line with the hypothesis that PilC connects the depolymerization ATPase to the base of the pili possibly allowing energy transduction for disassembly of the pilins.
Collapse
Affiliation(s)
- Deniz Yaman
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
2
|
Fonseca DR, Day LA, Crone KK, Costa KC. An Extracellular, Ca 2+-Activated Nuclease (EcnA) Mediates Transformation in a Naturally Competent Archaeon. Mol Microbiol 2024; 122:477-490. [PMID: 39214865 DOI: 10.1111/mmi.15311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Transformation, the uptake of DNA directly from the environment, is a major driver of gene flow in microbial populations. In bacteria, DNA uptake requires a nuclease that processes dsDNA to ssDNA, which is subsequently transferred into the cell and incorporated into the genome. However, the process of DNA uptake in archaea is still unknown. Previously, we cataloged genes essential to natural transformation in Methanococcus maripaludis, but few homologs of bacterial transformation-associated genes were identified. Here, we characterize one gene, MMJJ_16440 (named here as ecnA), to be an extracellular nuclease. We show that EcnA is Ca2+-activated, present on the cell surface, and essential for transformation. While EcnA can degrade several forms of DNA, the highest activity was observed with ssDNA as a substrate. Activity was also observed with circular dsDNA, suggesting that EcnA is an endonuclease. This is the first biochemical characterization of a transformation-associated protein in a member of the archaeal domain and suggests that both archaeal and bacterial transformation initiate in an analogous fashion.
Collapse
Affiliation(s)
- Dallas R Fonseca
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Leslie A Day
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Kathryn K Crone
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, Minnesota, USA
| | - Kyle C Costa
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
3
|
Blesa A, Sánchez-Costa M, Berenguer J. The PulE ATPase is required for twitching motility and DNA donation during Thermus thermophilus transjugation. Int Microbiol 2024:10.1007/s10123-024-00598-4. [PMID: 39325340 DOI: 10.1007/s10123-024-00598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Thermus thermophilus can acquire DNA through natural competence and through transjugation, a mechanism that involves a two-step process of DNA secretion (push) and DNA internalization (pull) between mating cells of related species. The natural competence apparatus (NCA) is required in the recipient mate for the pull step. However, how the DNA exits of the donor cell is only partially known. The putative DNA translocase TdtA, encoded in mobile genetic element ICETh1 of T. thermophilus HB27, was shown to be required for DNA donation as reported by (Blesa et al. 2017a). This ring-shaped hexameric ATPase binds to the membrane and likely interacts with yet unknown secretory components that allow the extrusion of DNA through the membrane; thus, a genetic screening to identify additional putative secretory components was performed. Here, we describe that mutants in gene TT_C1844, which encodes a putative AAA-ATPase named PulE, do not synthesize the recently described "narrow" type 4 pili required for twitching motility and made up of the major PilA5 pilin. Concomitantly, pulE mutants also exhibited DNA donation defects during transjugation, suggesting a role of narrow pili in the donation process. However, single pilA5 null mutants still function as DNA donors in transjugation experiments, so we conclude that the need for PulE in transjugation is independent of its role in narrow pili synthesis and twitching motility.
Collapse
Affiliation(s)
- Alba Blesa
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal S/N, 28040, Madrid, Spain.
| | - Mercedes Sánchez-Costa
- Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Nicolás Cabrera 1, 28049, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - José Berenguer
- Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Nicolás Cabrera 1, 28049, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
4
|
Yilmaz I, Ozbek T. Genome editing in Acinetobacter baumannii through enhanced natural transformation. J Basic Microbiol 2024; 64:e2300644. [PMID: 38412427 DOI: 10.1002/jobm.202300644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/29/2024]
Abstract
Acinetobacter baumannii, a multidrug-resistant bacterium has become a significant cause of life-threatening infections acquired in hospitals worldwide. The existing drugs used to treat A. baumannii infections are rapidly losing efficacy, and the increasing antimicrobial resistance, which is expected to turn into a global health crisis, underscores the urgency to develop novel prevention and treatment strategies. We reasoned that the discovery of novel virulence targets for vaccine and therapy interventions requires a more enhanced method for the introduction of multiple elements of foreign DNA for genome editing than the current methods of natural transformation techniques. Herein, we employed a novel and a much-improved enhanced technique for the natural transformation of elements of the genome editing system CRISPR-Cas9 to suppress specific genomic regions linked to selectively suppress bacterial virulence. We modified the genome of the laboratory-adapted strain of A. baumannii BAA-747 by targeting the AmpC, as a marker gene, for disruption by three different genomic manipulation strategies, and created mutant strains of A. baumannii that are, at least, fourfold susceptible to ampicillin. This work has established an optimized enhanced natural transformation system that enables efficient genome editing of pathogenic bacteria in a laboratory setting, providing a valuable future tool for exploring the function of unidentified virulence genes in bacterial genomes.
Collapse
Affiliation(s)
- Ilknur Yilmaz
- Department of Molecular Biology and Genetics, Graduate School of Science & Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Tulin Ozbek
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
5
|
Otero-Olarra JE, Díaz-Cárdenas G, Aguilera-Arreola MG, Curiel-Quesada E, Pérez-Valdespino A. Aeromonas trota Is Highly Refractory to Acquire Exogenous Genetic Material. Microorganisms 2024; 12:1091. [PMID: 38930473 PMCID: PMC11206119 DOI: 10.3390/microorganisms12061091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Aeromonas trota is sensitive to most antibiotics and the sole species of this genus susceptible to ampicillin. This susceptibility profile could be related to its inability to acquire exogenous DNA. In this study, A. trota isolates were analyzed to establish their capacity to incorporate foreign DNA. Fourteen strains were identified as A. trota by multilocus phylogenetic analysis (MLPA). Minimal inhibitory concentrations of antibiotics (MIC) were assessed, confirming the susceptibility to most antibiotics tested. To explore their capacity to be transformed, A. trota strains were used as recipients in different horizontal transfer assays. Results showed that around fifty percent of A. trota strains were able to incorporate pBAMD1-2 and pBBR1MCS-3 plasmids after conjugal transfer. In all instances, conjugation frequencies were very low. Interestingly, several isoforms of plasmid pBBR1MCS-3 were observed in transconjugants. Strains could not receive pAr-32, a native plasmid from A. salmonicida. A. trota strains were unable to receive DNA by means of electroporation, natural transformation or vesiduction. These results confirm that A. trota species are extremely refractory to horizontal gene transfer, which could be associated to plasmid instability resulting from oligomerization or to the presence of defense systems against exogenous genetic material in their genomes. To explain the poor results of horizontal gene transfer (HGT), selected genomes were sequenced and analyzed, revealing the presence of defense systems, which could prevent the stable incorporation of exogenous DNA in A. trota.
Collapse
Affiliation(s)
- Jorge Erick Otero-Olarra
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico; (J.E.O.-O.); (G.D.-C.)
| | - Gilda Díaz-Cárdenas
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico; (J.E.O.-O.); (G.D.-C.)
| | - Ma Guadalupe Aguilera-Arreola
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico;
| | - Everardo Curiel-Quesada
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico; (J.E.O.-O.); (G.D.-C.)
| | - Abigail Pérez-Valdespino
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico; (J.E.O.-O.); (G.D.-C.)
| |
Collapse
|
6
|
Cowan DA, Albers SV, Antranikian G, Atomi H, Averhoff B, Basen M, Driessen AJM, Jebbar M, Kelman Z, Kerou M, Littlechild J, Müller V, Schönheit P, Siebers B, Vorgias K. Extremophiles in a changing world. Extremophiles 2024; 28:26. [PMID: 38683238 PMCID: PMC11058618 DOI: 10.1007/s00792-024-01341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Extremophiles and their products have been a major focus of research interest for over 40 years. Through this period, studies of these organisms have contributed hugely to many aspects of the fundamental and applied sciences, and to wider and more philosophical issues such as the origins of life and astrobiology. Our understanding of the cellular adaptations to extreme conditions (such as acid, temperature, pressure and more), of the mechanisms underpinning the stability of macromolecules, and of the subtleties, complexities and limits of fundamental biochemical processes has been informed by research on extremophiles. Extremophiles have also contributed numerous products and processes to the many fields of biotechnology, from diagnostics to bioremediation. Yet, after 40 years of dedicated research, there remains much to be discovered in this field. Fortunately, extremophiles remain an active and vibrant area of research. In the third decade of the twenty-first century, with decreasing global resources and a steadily increasing human population, the world's attention has turned with increasing urgency to issues of sustainability. These global concerns were encapsulated and formalized by the United Nations with the adoption of the 2030 Agenda for Sustainable Development and the presentation of the seventeen Sustainable Development Goals (SDGs) in 2015. In the run-up to 2030, we consider the contributions that extremophiles have made, and will in the future make, to the SDGs.
Collapse
Affiliation(s)
- D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa.
| | - S V Albers
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - G Antranikian
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073, Hamburg, Germany
| | - H Atomi
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - B Averhoff
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - M Basen
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - A J M Driessen
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - M Jebbar
- Univ. Brest, CNRS, Ifremer, Laboratoire de Biologie Et d'Écologie Des Écosystèmes Marins Profonds (BEEP), IUEM, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Z Kelman
- Institute for Bioscience and Biotechnology Research and the National Institute of Standards and Technology, Rockville, MD, USA
| | - M Kerou
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - J Littlechild
- Henry Wellcome Building for Biocatalysis, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - V Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - P Schönheit
- Institute of General Microbiology, Christian Albrechts University, Kiel, Germany
| | - B Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, 45117, Essen, Germany
| | - K Vorgias
- Biology Department and RI-Bio3, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Bhattacharyya A, Banerjee G, Chattopadhyay P. Probable Role of Type IV Pili of Aeromonas hydrophila in Human Pathogenicity. Pathogens 2024; 13:365. [PMID: 38787217 PMCID: PMC11124393 DOI: 10.3390/pathogens13050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Aeromonas hydrophila is a widely recognized broad-spectrum pathogen that primarily targets the gastrointestinal tract. Type IV pili (T4P) are proteinaceous nano-machines located on the bacterial cell surface, playing a crucial role in host colonization and infection. Regrettably, the T4P systems of A. hydrophila remain largely underexplored. METHODS A. hydrophila genomes with complete genome assembly and annotation reports up to 31 March 2023, were obtained from the NCBI Genome database or KEGG genome database, followed by a global search for T4P secretion system genes. Protein sequences of these manually curetted genes were used as secondary quarry for Synteny analysis. Protein-protein interaction analysis was performed by string analysis and in silico study of genomic islands. RESULTS We identified 27 orthologs of type IV pili (T4P) nano-machine components in A. hydrophila. These orthologs are primarily distributed across three operons: pilABCD, pilMNOPQ, and pilVWXY. While the first two operons are commonly found in all experimental genomes, the presence of the pilVWXY operon, coding for 11 orthologs, is reported here for the first time in A. hydrophila. Notably, the complete pilVWXY operon is absent in nonvirulent strains. A genomic islands study between a nonvirulent and hypervirulent strain also confirms absence of most of the genes coded by pilVWXY in nonvirulent strain. Interestingly, among the 51 experimental genomes analyzed, the pilVWXY operon was completely absent in 10 strains, most of which are categorized as nonvirulent; Conclusions: The distribution of two major type IV pili (T4P) nano-machines, PilABCDMNOPQ and PilVWXY, is reported here for the first time in A. hydrophila. Additionally, this study suggests a potential role for the PilVWXY nano-machine in establishing human disease.
Collapse
Affiliation(s)
- Agradip Bhattacharyya
- Raja Rammohun Roy Mahavidyalaya, Radhanagar, Nangulpara, Hooghly, West Bengal 712406, India;
| | - Goutam Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
8
|
Iruegas R, Pfefferle K, Göttig S, Averhoff B, Ebersberger I. Feature architecture aware phylogenetic profiling indicates a functional diversification of type IVa pili in the nosocomial pathogen Acinetobacter baumannii. PLoS Genet 2023; 19:e1010646. [PMID: 37498819 PMCID: PMC10374093 DOI: 10.1371/journal.pgen.1010646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/06/2023] [Indexed: 07/29/2023] Open
Abstract
The Gram-negative bacterial pathogen Acinetobacter baumannii is a major cause of hospital-acquired opportunistic infections. The increasing spread of pan-drug resistant strains makes A. baumannii top-ranking among the ESKAPE pathogens for which novel routes of treatment are urgently needed. Comparative genomics approaches have successfully identified genetic changes coinciding with the emergence of pathogenicity in Acinetobacter. Genes that are prevalent both in pathogenic and a-pathogenic Acinetobacter species were not considered ignoring that virulence factors may emerge by the modification of evolutionarily old and widespread proteins. Here, we increased the resolution of comparative genomics analyses to also include lineage-specific changes in protein feature architectures. Using type IVa pili (T4aP) as an example, we show that three pilus components, among them the pilus tip adhesin ComC, vary in their Pfam domain annotation within the genus Acinetobacter. In most pathogenic Acinetobacter isolates, ComC displays a von Willebrand Factor type A domain harboring a finger-like protrusion, and we provide experimental evidence that this finger conveys virulence-related functions in A. baumannii. All three genes are part of an evolutionary cassette, which has been replaced at least twice during A. baumannii diversification. The resulting strain-specific differences in T4aP layout suggests differences in the way how individual strains interact with their host. Our study underpins the hypothesis that A. baumannii uses T4aP for host infection as it was shown previously for other pathogens. It also indicates that many more functional complexes may exist whose precise functions have been adjusted by modifying individual components on the domain level.
Collapse
Affiliation(s)
- Ruben Iruegas
- Applied Bioinformatics Group, Inst of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Katharina Pfefferle
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Inst of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIK-F), Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| |
Collapse
|
9
|
Michaelis C, Grohmann E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics (Basel) 2023; 12:antibiotics12020328. [PMID: 36830238 PMCID: PMC9952180 DOI: 10.3390/antibiotics12020328] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Most bacteria attach to biotic or abiotic surfaces and are embedded in a complex matrix which is known as biofilm. Biofilm formation is especially worrisome in clinical settings as it hinders the treatment of infections with antibiotics due to the facilitated acquisition of antibiotic resistance genes (ARGs). Environmental settings are now considered as pivotal for driving biofilm formation, biofilm-mediated antibiotic resistance development and dissemination. Several studies have demonstrated that environmental biofilms can be hotspots for the dissemination of ARGs. These genes can be encoded on mobile genetic elements (MGEs) such as conjugative and mobilizable plasmids or integrative and conjugative elements (ICEs). ARGs can be rapidly transferred through horizontal gene transfer (HGT) which has been shown to occur more frequently in biofilms than in planktonic cultures. Biofilm models are promising tools to mimic natural biofilms to study the dissemination of ARGs via HGT. This review summarizes the state-of-the-art of biofilm studies and the techniques that visualize the three main HGT mechanisms in biofilms: transformation, transduction, and conjugation.
Collapse
|
10
|
Khan MT, Mahmud A, Hasan M, Azim KF, Begum MK, Rolin MH, Akter A, Mondal SI. Proteome Exploration of Legionella pneumophila To Identify Novel Therapeutics: a Hierarchical Subtractive Genomics and Reverse Vaccinology Approach. Microbiol Spectr 2022; 10:e0037322. [PMID: 35863001 PMCID: PMC9430848 DOI: 10.1128/spectrum.00373-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is the causative agent of a severe type of pneumonia (lung infection) called Legionnaires' disease. It is emerging as an antibiotic-resistant strain day by day. Hence, identifying novel drug targets and vaccine candidates is essential to fight against this pathogen. Here, attempts were taken through a subtractive genomics approach on the complete proteome of L. pneumophila to address the challenges of multidrug resistance. A total of 2,930 proteins from L. pneumophila proteome were investigated through diverse subtractive proteomics approaches, e.g., identification of human nonhomologous and pathogen-specific essential proteins, druggability and "anti-target" analysis, subcellular localization prediction, human microbiome nonhomology screening, and protein-protein interaction studies to find out effective drug and vaccine targets. Only three fulfilled these criteria and were proposed as novel drug targets against L. pneumophila. Furthermore, outer membrane protein TolB was identified as a potential vaccine target with a better antigenicity score. Antigenicity and transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis, and a molecular docking approach were adopted to generate the most potent epitopes. The final vaccine was constructed by the combination of highly immunogenic epitopes, along with suitable adjuvant and linkers. The designed vaccine construct showed higher binding interaction with different major histocompatibility complex (MHC) molecules and human immune TLR-2 receptors with minimum deformability at the molecular level. The present study aids the development of novel therapeutics and vaccine candidates for efficient treatment and prevention of L. pneumophila infections. However, further wet-lab-based phenotypic and genomic investigations and in vivo trials are highly recommended to validate our prediction experimentally. IMPORTANCE Legionella pneumophila is a human pathogen distributed worldwide, causing Legionnaires' disease (LD), a severe form of pneumonia and respiratory tract infection. L. pneumophila is emerging as an antibiotic-resistant strain, and controlling LD is now difficult. Hence, developing novel drugs and vaccines against L. pneumophila is a major research priority. Here, the complete proteome of L. pneumophila was considered for subtractive genomics approaches to address the challenge of antimicrobial resistance. Our subtractive proteomics approach identified three potential drug targets that are promising for future application. Furthermore, a possible vaccine candidate, "outer membrane protein TolB," was proposed using reverse vaccinology analysis. The constructed vaccine candidate showed higher binding interaction with MHC molecules and human immune TLR-2 receptors at the molecular level. Overall, the present study aids in developing novel therapeutics and vaccine candidates for efficient treatment of the infections caused by L. pneumophila.
Collapse
Affiliation(s)
- Md Tahsin Khan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Araf Mahmud
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Musammat Kulsuma Begum
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mohimenul Haque Rolin
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Arzuba Akter
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Shakhinur Islam Mondal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|