1
|
Xu Z, Zhang Z, Zhou H, Lin S, Gong B, Li Z, Zhao S, Hou Y, Peng Y, Bian Y. Bazi Bushen attenuates osteoporosis in SAMP6 mice by regulating PI3K-AKT and apoptosis pathways. J Cell Mol Med 2024; 28:e70161. [PMID: 39469911 PMCID: PMC11519748 DOI: 10.1111/jcmm.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/14/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
Osteoporosis (OP), a systemic skeletal disease, is characterized by low bone mass, bone tissue degradation and bone microarchitecture disturbance. Bazi Bushen, a Chinese patented medicine, has been demonstrated to be effective in attenuating OP, but the pharmacological mechanism remains predominantly unclear. In this study, the senescence-accelerated mouse prone 6 (SAMP6) model was used to explore bone homeostasis and treated intragastrically for 9 weeks with Bazi Bushen. In vivo experiments showed that Bazi Bushen treatment not only upregulated the levels of bone mineral density and bone mineral content but also increased the content of RUNX2 and OSX. Furthermore, the primary culture of bone mesenchymal stem cells (BMSCs) in SAMP6 mice was used to verify the effects of Bazi Bushen on the balance of differentiation between osteoblasts and adipocytes, as well as ROS and aging levels. Finally, the pharmacological mechanism of Bazi Bushen in attenuating OP was investigated through network pharmacology and experimental verification, and we found that Bazi Bushen could significantly orchestrate bone homeostasis and attenuate the progression of OP by stimulating PI3K-Akt and inhibiting apoptosis. In summary, our work sheds light on the first evidence that Bazi Bushen attenuates OP by regulating PI3K-AKT and apoptosis pathways to orchestrate bone homeostasis.
Collapse
Affiliation(s)
- Zhe Xu
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Zeyu Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Huifang Zhou
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Shan Lin
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Boyang Gong
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Zhaodong Li
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Shuwu Zhao
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Yunlong Hou
- National Key laboratory of Luobing Research and Innovative Chinese MedicineShijiazhuangP.R. China
| | - Yanfei Peng
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Yuhong Bian
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
| |
Collapse
|
2
|
Elahmer NR, Wong SK, Mohamed N, Alias E, Chin KY, Muhammad N. Mechanistic Insights and Therapeutic Strategies in Osteoporosis: A Comprehensive Review. Biomedicines 2024; 12:1635. [PMID: 39200100 PMCID: PMC11351389 DOI: 10.3390/biomedicines12081635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Osteoporosis, a metabolic bone disorder characterized by decreased bone mass per unit volume, poses a significant global health burden due to its association with heightened fracture risk and adverse impacts on patients' quality of life. This review synthesizes the current understanding of the pathophysiological mechanisms underlying osteoporosis, with a focus on key regulatory pathways governing osteoblast and osteoclast activities. These pathways include RANK/RANKL/OPG, Wingless-int (Wnt)/β-catenin, and Jagged1/Notch1 signaling, alongside the involvement of parathyroid hormone (PTH) signaling, cytokine networks, and kynurenine in bone remodeling. Pharmacotherapeutic interventions targeting these pathways play a pivotal role in osteoporosis management. Anti-resorptive agents, such as bisphosphonates, estrogen replacement therapy/hormone replacement therapy (ERT/HRT), selective estrogen receptor modulators (SERMs), calcitonin, anti-RANKL antibodies, and cathepsin K inhibitors, aim to mitigate bone resorption. Conversely, anabolic agents, including PTH and anti-sclerostin drugs, stimulate bone formation. In addition to pharmacotherapy, nutritional supplementation with calcium, vitamin D, and vitamin K2 holds promise for osteoporosis prevention. However, despite the availability of therapeutic options, a substantial proportion of osteoporotic patients remain untreated, highlighting the need for improved clinical management strategies. This comprehensive review aims to provide clinicians and researchers with a mechanistic understanding of osteoporosis pathogenesis and the therapeutic mechanisms of existing medications. By elucidating these insights, this review seeks to inform evidence-based decision-making and optimize therapeutic outcomes for patients with osteoporosis.
Collapse
Affiliation(s)
- Nyruz Ramadan Elahmer
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.R.E.); (S.K.W.); (N.M.); (K.-Y.C.)
- Department of Pharmacology, Pharmacy Faculty, Elmergib University, Al Khums 40414, Libya
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.R.E.); (S.K.W.); (N.M.); (K.-Y.C.)
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.R.E.); (S.K.W.); (N.M.); (K.-Y.C.)
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.R.E.); (S.K.W.); (N.M.); (K.-Y.C.)
| | - Norliza Muhammad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.R.E.); (S.K.W.); (N.M.); (K.-Y.C.)
| |
Collapse
|
3
|
Li Y, Liu C, Han X, Sheng R, Bao L, Lei L, Wu Y, Li Q, Zhang Y, Zhang J, Wang W, Zhang Y, Li S, Wang C, Wei X, Wang J, Peng Z, Xu Y, Si S. The novel small molecule E0924G dually regulates bone formation and bone resorption through activating the PPARδ signaling pathway to prevent bone loss in ovariectomized rats and senile mice. Bioorg Chem 2024; 147:107364. [PMID: 38636434 DOI: 10.1016/j.bioorg.2024.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Osteoporosis is particularly prevalent among postmenopausal women and the elderly. In the present study, we investigated the effect of the novel small molecule E0924G (N-(4-methoxy-pyridine-2-yl)-5-methylfuran-2-formamide) on osteoporosis. E0924G significantly increased the protein expression levels of osteoprotegerin (OPG) and runt-related transcription factor 2 (RUNX2), and thus significantly promoted osteogenesis in MC3T3-E1 cells. E0924G also significantly decreased osteoclast differentiation and inhibited bone resorption and F-actin ring formation in receptor activator of NF-κB ligand (RANKL)-induced osteoclasts from RAW264.7 macrophages. Importantly, oral administration of E0924G in both ovariectomized (OVX) rats and SAMP6 senile mice significantly increased bone mineral density and decreased bone loss compared to OVX controls or SAMR1 mice. Further mechanistic studies showed that E0924G could bind to and then activate peroxisome proliferator-activated receptor delta (PPARδ), and the pro-osteoblast effect and the inhibition of osteoclast differentiation induced by E0924G were significantly abolished when PPARδ was knocked down or inhibited. In conclusion, these data strongly suggest that E0924G has the potential to prevent OVX-induced and age-related osteoporosis by dual regulation of bone formation and bone resorption through activation of the PPARδ signaling pathway.
Collapse
Affiliation(s)
- Yining Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Xiaowan Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Ren Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Li Bao
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijuan Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yexiang Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Quanjie Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yuyan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Weizhi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yuhao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Shunwang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Chenyin Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Xinwei Wei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Jingrui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Zonggen Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China.
| | - Yanni Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China.
| | - Shuyi Si
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China.
| |
Collapse
|
4
|
An F, Song J, Chang W, Zhang J, Gao P, Wang Y, Xiao Z, Yan C. Research Progress on the Mechanism of the SFRP-Mediated Wnt Signalling Pathway Involved in Bone Metabolism in Osteoporosis. Mol Biotechnol 2024; 66:975-990. [PMID: 38194214 DOI: 10.1007/s12033-023-01018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
Osteoporosis (OP) is a metabolic bone disease linked to an elevated fracture risk, primarily stemming from disruptions in bone metabolism. Present clinical treatments for OP merely alleviate symptoms. Hence, there exists a pressing need to identify novel targets for the clinical treatment of OP. Research indicates that the Wnt signalling pathway is modulated by serum-secreted frizzled-related protein 5 (SFRP5), potentially serving as a pivotal regulator in bone metabolism disorders. Moreover, studies confirm elevated SFRP5 expression in OP, with SFRP5 overexpression leading to the downregulation of Wnt and β-catenin proteins in the Wnt signalling pathway, as well as the expression of osteogenesis-related marker molecules such as RUNX2, ALP, and OPN. Conversely, the opposite has been reported when SFRP5 is knocked out, suggesting that SFRP5 may be a key factor involved in the regulation of bone metabolism via the Wnt signalling axis. However, the molecular mechanisms underlying the action of SFRP5-induced OP have yet to be comprehensively elucidated. This review focusses on the molecular structure and function of SFRP5 and the potential molecular mechanisms of the SFRP5-mediated Wnt signalling pathway involved in bone metabolism in OP, providing reasonable evidence for the targeted therapy of SFRP5 for the prevention and treatment of OP.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Yujie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Zhipan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
5
|
Liu LL, Liu ZR, Cao LJ, Wang J, Huang SM, Hu SG, Yang YZ, Li DS, Cao WW, Zeng QB, Huang S, Wu Q, Xiao JH, Liu WY, Xiao YS. Iron accumulation induced by hepcidin1 knockout accelerates the progression of aging osteoporosis. J Orthop Surg Res 2024; 19:59. [PMID: 38216929 PMCID: PMC10785403 DOI: 10.1186/s13018-024-04535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
OBJECTIVE Iron accumulation is associated with osteoporosis. This study aims to explore the effect of chronic iron accumulation induced by hepcidin1 deficiency on aging osteoporosis. METHODS Iron accumulation in hepcidin1 knockout aging mice was assessed by atomic absorption spectroscopy and Perl's staining. Bone microarchitecture was observed using Micro-CT. Hepcidin, ferritin, oxidative stress, and markers of bone turnover in serum were detected by enzyme-linked immunosorbent assay. Bone formation and resorption markers were measured by real-time quantitative PCR. Cell aging was induced by D-galactose treatment. CCK-8, flow cytometry, EdU assays, and Alizarin red staining were performed to reveal the role of hepcidin1 knockout in cell model. Iron Colorimetric Assay Kit and western blot were applied to detect iron and ferritin levels in cells, respectively. RESULTS In hepcidin1-knockout mice, the ferritin and iron contents in liver and tibia were significantly increased. Iron accumulation induced by hepcidin1 knockout caused a phenotype of low bone mass and deteriorated bone microarchitecture. Osteogenic marker was decreased and osteoclast marker was increased in mice, accompanied by increased oxidative stress level. The mRNA expression levels of osteoclast differentiation markers (RANKL, Mmp9, OPG, Trap, and CTSK) were up-regulated, while bone formation markers (OCN, ALP, Runx2, SP7, and Col-1) were down-regulated in model group, compared to wild type mice. In vitro, hepcidin1 knockdown inhibited proliferation and osteogenic differentiation, while promoted apoptosis, with increased levels of iron and ferritin. CONCLUSION Iron accumulation induced by hepcidin1 deficiency aggravates the progression of aging osteoporosis via inhibiting osteogenesis and promoting osteoclast genesis.
Collapse
Affiliation(s)
- Lu-Lin Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, No. 128, Jinling Road, Ganzhou, 341000, Jiangxi, China
- Ganzhou Key Laboratory of Osteoporosis Research, No. 23, Qingnian Road, Ganzhou, 341000, Jiangxi, China
| | - Zhong-Rui Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, No. 128, Jinling Road, Ganzhou, 341000, Jiangxi, China
- Ganzhou Key Laboratory of Osteoporosis Research, No. 23, Qingnian Road, Ganzhou, 341000, Jiangxi, China
| | - Lu-Jun Cao
- Department of Orthopedics, The People's Hospital of Ningdu County, No. 109, Zhongshan South Road, Ningdu County, Ganzhou, 342800, Jiangxi, China
| | - Jun Wang
- Department of Orthopedics, The People's Hospital of Ningdu County, No. 109, Zhongshan South Road, Ningdu County, Ganzhou, 342800, Jiangxi, China
| | - San-Ming Huang
- Department of Orthopedics, The People's Hospital of Ningdu County, No. 109, Zhongshan South Road, Ningdu County, Ganzhou, 342800, Jiangxi, China
| | - Shui-Gen Hu
- Department of Orthopedics, The People's Hospital of Ningdu County, No. 109, Zhongshan South Road, Ningdu County, Ganzhou, 342800, Jiangxi, China
| | - Yi-Zhong Yang
- Department of Orthopedics, The People's Hospital of Ningdu County, No. 109, Zhongshan South Road, Ningdu County, Ganzhou, 342800, Jiangxi, China
| | - Dong-Sheng Li
- Department of Orthopedics, The People's Hospital of Ningdu County, No. 109, Zhongshan South Road, Ningdu County, Ganzhou, 342800, Jiangxi, China
| | - Wei-Wei Cao
- Department of Orthopedics, The People's Hospital of Ningdu County, No. 109, Zhongshan South Road, Ningdu County, Ganzhou, 342800, Jiangxi, China
| | - Qing-Bao Zeng
- Department of Orthopedics, The People's Hospital of Ningdu County, No. 109, Zhongshan South Road, Ningdu County, Ganzhou, 342800, Jiangxi, China
| | - Sheng Huang
- Department of Orthopedics, The People's Hospital of Ningdu County, No. 109, Zhongshan South Road, Ningdu County, Ganzhou, 342800, Jiangxi, China
| | - Qiong Wu
- Department of Orthopedics, The People's Hospital of Ningdu County, No. 109, Zhongshan South Road, Ningdu County, Ganzhou, 342800, Jiangxi, China
| | - Jian-Hua Xiao
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, No. 128, Jinling Road, Ganzhou, 341000, Jiangxi, China
- Ganzhou Key Laboratory of Osteoporosis Research, No. 23, Qingnian Road, Ganzhou, 341000, Jiangxi, China
| | - Wu-Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, No. 128, Jinling Road, Ganzhou, 341000, Jiangxi, China
- Ganzhou Key Laboratory of Osteoporosis Research, No. 23, Qingnian Road, Ganzhou, 341000, Jiangxi, China
| | - Yao-Sheng Xiao
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, No. 128, Jinling Road, Ganzhou, 341000, Jiangxi, China.
- Ganzhou Key Laboratory of Osteoporosis Research, No. 23, Qingnian Road, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
6
|
Xu Z, Man SS, Gong BY, Li ZD, Zhou HF, Peng YF, Zhao SW, Hou YL, Wang L, Bian YH. Bazi Bushen maintains intestinal homeostasis through inhibiting TLR4/NFκB signaling pathway and regulating gut microbiota in SAMP6 mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7273-7283. [PMID: 37450639 DOI: 10.1002/jsfa.12812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Bazi Bushen is a Chinese patented medicine with multiple health benefits and geroprotective effects, yet, no research has explored its effects on intestinal homeostasis. In this study, we aimed to investigate the effect of Bazi Bushen on intestinal inflammation and the potential mechanism of gut microbiota dysbiosis and intestinal homeostasis in senescence-accelerated mouse prone 6 (SAMP6). The hematoxylin and eosin (H&E) staining and immunohistochemistry were performed to assess the function of the intestinal mucosal barrier. The enzyme-linked immunosorbent assay (ELISA) and Western blotting were used to determine the level of intestinal inflammation. The aging-related β-galactosidase (SA-β-gal) staining and Western blotting were used to measure the extent of intestinal aging. The 16S ribosomal RNA (16S rRNA) was performed to analyze the change in gut microbiota composition and distribution. RESULTS Bazi Bushen exerted remarkable protective effects in SAMP6, showing a regulated mucosal barrier and increased barrier integrity. It also suppressed intestinal inflammation through down-regulating pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) and inhibiting TLR4/NFκB signaling pathway (MYD88, p-p65, and TLR4). Bazi Bushen improved intestinal aging by reducing the area of SA-β-gal-positive cells and the expression of senescence markers p16, p21, and p53. In addition, Bazi Bushen effectively rebuilt the gut microbiota ecosystem by decreasing the abundance of Bacteroides and Klebsiella, whiles increasing the ratio of Lactobacillus/Bacteroides and the abundance of Akkermansia. CONCLUSION Our study shows that Bazi Bushen could serve as a potential therapy for maintaining intestinal homeostasis. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhe Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan-Shan Man
- Pharmaceutical Department, Tianjin Second People's Hospital, Tianjin, China
| | - Bo-Yang Gong
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhao-Dong Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui-Fang Zhou
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan-Fei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shu-Wu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun-Long Hou
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Hebei, China
| | - Li Wang
- Pharmaceutical Department, Tianjin Second People's Hospital, Tianjin, China
| | - Yu-Hong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Weiwei, Wang S, Hou D, Zhan L. Methods and research progress in the construction of animal models of osteosarcopenia: a scoping review. Front Endocrinol (Lausanne) 2023; 14:1228937. [PMID: 37964970 PMCID: PMC10641866 DOI: 10.3389/fendo.2023.1228937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Background Osteosarcopenia(OS) is a significant health concern resulting from the ageing process. Currently, as the population grows older, the prevalence of OS, a disease that entails the synchronous degeneration of muscles and bones, is mounting. This poses a serious threat to the health of the elderly while placing an enormous burden on social care. In order to comprehend the pathological mechanism of OS and develop clinical drugs, it is pertinent to construct an efficient animal model of OS. To investigate the modeling techniques of diverse experimental models of OS and elucidate their respective benefits and drawbacks, with the purpose of furnishing a theoretical foundation to advance experimental research on OS. Methods We searched PubMed, Embase database, China Knowledge Network, Wanfang data platform and Vipshop journal platform databases from 2000 through to September 1, 2023. We included animal studies on sarcopenia or osteoporosis or osteosarcopenia or sarcopenia-osteoporosis, modeling methods for osteosarcopenia. Two independently screened study abstracts and full reports and complete data extraction. Results Eventually, Of 112, 106 citations screened. 4938 underwent full-text review and 38 met the inclusion criteria. we reviewed and analyzed the literature and categorized the animal models of OS into the following five categories: Aging OS models; Hormonal deficiency model of OS;Chemical injection to induce OS;Disuse OS models and Genetic engineering OS models. Conclusion This review outlines animal modeling approaches for OS, providing a comprehensive summary of their advantages and disadvantages. The different models were evaluated and selected based on their respective strengths and weaknesses to enable higher quality research outcomes in various research directions. The most widely used and established approach is considered to be the ageing and chemical injection OS model, which has the advantages of excellent reproducibility and low cost. The translational potential of this article To gain a profound comprehension of the pathological mechanism of OS and to devise efficacious clinical treatments, it is imperative to establish a viable laboratory animal model of OS. This article surveys various modeling techniques assessing their benefits, drawbacks and areas of applicability while predominantly employing mice as the primary model animal. Additionally, the evaluation indicators of OS models are briefly described.
Collapse
Affiliation(s)
- Weiwei
- The Second Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Shixuan Wang
- The Second Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Decai Hou
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Libin Zhan
- Liaoning University of Traditional Chinese Medicine, Experimental Platform, Shenyang, China
| |
Collapse
|
8
|
Kim M, Kim JH, Hong S, Lee S, Lee SH, Choi JW, Jung HS, Sohn Y. Dolichos Lablab Linné Inhibits Bone Density Loss and Promotes Bone Union in Senile Osteoporosis through Osteogenesis. Pharmaceuticals (Basel) 2023; 16:1350. [PMID: 37895821 PMCID: PMC10609789 DOI: 10.3390/ph16101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
As populations continue to age, osteoporosis has emerged as an increasingly critical concern. Most advancements in osteoporosis treatment are predominantly directed toward addressing abnormal osteoclast activity associated with menopause, with limited progress in developing therapies that enhance osteoblast activity, particularly in the context of aging and fractures, and serious side effects associated with existing treatments have highlighted the necessity for natural-product-based treatments targeting senile osteoporosis and fractures. Dolichos lablab Linné (DL) is a natural product traditionally used for gastrointestinal disorders, and its potential role in addressing bone diseases has not been extensively studied. In this research, we investigated the anti-osteoporosis and bone-union-stimulating effects of DL using the SAMP6 model, a naturally aged mouse model. Additionally, we employed MC3T3-E1 cells to validate DL's osteoblast-promoting effect and to assess the involvement of core mechanisms such as the BMP-2/Smad and Wnt/β-catenin pathways. The experimental results revealed that DL promoted the formation of osteoblasts and calcified nodules by upregulating both the BMP-2/Smad and Wnt/β-catenin mechanisms. Based on its observed effects, DL demonstrated the potential to enhance bone mineral density in aged osteoporotic mice and promote bone union in fractured mice. These findings indicate the promising therapeutic potential of DL for the treatment of osteoporosis and bone-related conditions, thus warranting further investigation and potential clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, KyungHee University, Seoul 02-447, Republic of Korea; (M.K.); (J.-H.K.); (S.H.); (S.L.); (S.H.L.); (J.W.C.)
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, KyungHee University, Seoul 02-447, Republic of Korea; (M.K.); (J.-H.K.); (S.H.); (S.L.); (S.H.L.); (J.W.C.)
| |
Collapse
|
9
|
Xu Z, Gong B, Li Z, Wang Y, Zhao Z, Xie L, Peng Y, Zhao S, Zhou H, Bian Y. Bazi Bushen alleviates skin senescence by orchestrating skin homeostasis in SAMP6 mice. J Cell Mol Med 2023; 27:2651-2660. [PMID: 37614114 PMCID: PMC10494291 DOI: 10.1111/jcmm.17833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 06/24/2023] [Indexed: 08/25/2023] Open
Abstract
Bazi Bushen, a Chinese-patented drug with the function of relieving fatigue and delaying ageing, has been proven effective for extenuating skin senescence. To investigate the potential mechanism, senescence-accelerated mouse prone 6 (SAMP6) was intragastrically administered with Bazi Bushen for 9 weeks to induce skin homeostasis. Skin homeostasis is important in mitigating skin senescence, and it is related to many factors such as oxidative stress, SASP, apoptosis, autophagy and stem cell. In our study, skin damage in SAMP6 mice was observed using HE, Masson and SA-β-gal staining. The content of hydroxyproline and the activities of SOD, MDA, GSH-PX and T-AOC in the skin were measured using commercial assay kits. The level of SASP factors (IL-6, IL-1β, TNF-α, MMP2 and MMP9) in skin were measured using ELISA kits. The protein expressions of p16, p21, p53, Bax, Bcl-2, Cleaved caspase-3, LC3, p62, Beclin1, OCT4, SOX2 and NANOG were measured by western blotting. The expression of ITGA6 and COL17A1 was measured by immunofluorescence staining and western blotting. Our findings demonstrated that Bazi Bushen alleviated skin senescence by orchestrating skin homeostasis, reducing the level of oxidative stress and the expression of SASP, regulating the balance of apoptosis and autophagy and enhancing the protein expressions of ITGA6 and COL17A1 to improve skin structure in SAMP6 mice. This study indicated that Bazi Bushen could serve as a potential therapy for alleviating skin senescence.
Collapse
Affiliation(s)
- Zhe Xu
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Boyang Gong
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhaodong Li
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ying Wang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zeyu Zhao
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Lulu Xie
- School of MedicineNankai UniversityTianjinChina
| | - Yanfei Peng
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shuwu Zhao
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Huifang Zhou
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yuhong Bian
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
10
|
Butylina M, Föger-Samwald U, Gamsjaeger S, Wahl-Figlash K, Kothmayer M, Paschalis EP, Pusch O, Pietschmann P. Nothobranchius furzeri, the Turquoise Killifish: A Model of Age-Related Osteoporosis? Gerontology 2022; 68:1415-1427. [PMID: 35472763 PMCID: PMC9838087 DOI: 10.1159/000524300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 03/16/2022] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Osteoporosis is a frequent age-related disease, which affects millions of people worldwide. Despite significant progress in the treatment of the disease, a high number of patients still are underdiagnosed and undertreated. Therefore, novel animal models for the investigation of the disease are necessary. Nothobranchius furzeri is the shortest-lived vertebrate (with a lifespan of 3-7 months) that can be kept in captivity. Although it is an established model for aging research, studies on bone are lacking. The aim of this study was therefore to characterize N. furzeri as a potential model for age-related osteoporosis. MATERIALS AND METHODS Bone properties of aging N. furzeri were investigated in male and female fish of the Gona Re Zhou strain, which were between 8 and 20 weeks old. Micro-computed tomography (Scanco Medical µCT35) was performed to determine the bone properties of the vertebral bodies. Bone structure and remodeling were investigated by different histological staining techniques and histomorphometry. The chemical composition of fish vertebrae and intervertebral discs was analyzed by Raman microspectroscopy. RESULTS Osteoblasts, mono- and multinucleated osteoclasts but no osteocytes could be observed in the vertebral area of N. furzeri. Histomorphometric evaluations revealed a significant decrease of the number of osteoblasts/bone perimeter and for osteoid volume/bone volume (BV) a trend toward a decrease in old male N. furzeri. Comparing male and female fish, males showed higher BV densities and cortical thickness. The relative values of the bone volume density of 20-week-old male N. furzeri were significantly lower than 10-week-old ones. The mineral to matrix ratio increased with age in male and female fish. In the intervertebral discs, proteoglycans in relation to the organic matrix were significantly lower in older female fish. CONCLUSION Our finding of a lack of osteocytes is in agreement with the fact that N. furzeri belongs to the evolutionarily advanced teleost fish. Furthermore, not only age-specific but also sex-specific differences were visible in the bone properties of N. furzeri, which can be taken into consideration for the study of gender aspects of age-related musculoskeletal diseases.
Collapse
Affiliation(s)
- Maria Butylina
- Institute for Pathophysiology and Allergy Research (IPA), Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ursula Föger-Samwald
- Institute for Pathophysiology and Allergy Research (IPA), Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria,*Ursula Föger-Samwald,
| | - Sonja Gamsjaeger
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, Hanusch Hospital, Vienna, Austria
| | - Katharina Wahl-Figlash
- Institute for Pathophysiology and Allergy Research (IPA), Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Kothmayer
- Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Eleftherios P. Paschalis
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, Hanusch Hospital, Vienna, Austria
| | - Oliver Pusch
- Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Peter Pietschmann
- Institute for Pathophysiology and Allergy Research (IPA), Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Nursing Effect of Health Monitoring System on Elderly Patients with Osteoporosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1447388. [PMID: 36158890 PMCID: PMC9499779 DOI: 10.1155/2022/1447388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Health monitoring can provide scientific and reasonable care for elderly users, professionally monitor the health parameters of the human body, and timely understand the user’s own physical condition. By installing sensors with different functions in the rooms where the elderly often move and by installing vital signs sensors on their bodies, the data detected by the sensors are collected and analyzed in real time. Nursing refers to the fact that nursing staff must strictly follow the nursing system and operating procedures in the nursing work, accurately implement the doctor’s orders, implement the nursing plan, and ensure that the patient is physically and mentally safe during treatment and recovery. Osteoporosis is a systemic bone disease in which bone density and bone quality are decreased due to various reasons, and the microstructure of bone is destroyed, resulting in increased bone fragility, which is prone to fractures. Osteoporosis is divided into two main categories: primary and secondary. Primary osteoporosis is divided into postmenopausal osteoporosis (Type I), senile osteoporosis (Type II), and idiopathic osteoporosis (including adolescent forms). This paper aims to study the healthcare effect of health monitoring system on elderly patients with osteoporosis, expecting to use the health monitoring system to provide more scientific care for the elderly and reduce the pain caused by osteoporosis. This paper proposes a study from the users of the elderly health monitoring products and the elderly home health products and analyzes the influencing factors of the usability design of the elderly home health monitoring system. This paper designs the overall framework of the elderly health monitoring system and designs the main components and application functions of the system. The experimental results in this paper show that there are 20 patients with osteoporosis due to lack of light, accounting for 16%. There are 10 patients with osteoporosis due to excessive coffee intake, accounting for 8%. There are 90 people who normally eat eggs, accounting for 75%, and 66 people who eat meat normally, accounting for 55%. According to the data, the health monitoring system can effectively control the diet of patients with osteoporosis.
Collapse
|
12
|
Cheng J, Zhai J, Zhong W, Zhao J, Zhou L, Wang B. Lactobacillus rhamnosus GG Promotes Intestinal Vitamin D Absorption by Upregulating Vitamin D Transporters in Senile Osteoporosis. Calcif Tissue Int 2022; 111:162-170. [PMID: 35616697 DOI: 10.1007/s00223-022-00975-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
Abstract
Intestinal absorption of vitamin D is an important way to improve the vitamin D level in senile osteoporosis (SOP). There is a link between oral probiotics and vitamin D, but the mechanism is still unclear. We aimed to evaluate whether Lactobacillus rhamnosus GG culture supernatant (LCS) can affect cholecalciferol absorption, transport, and hydroxylation in SOP, and explore underlying mechanisms. In the study, specific-pathogen-free SAMP6 mice were randomly divided into an experimental group administered undiluted LCS and a control group administered normal drinking water. Furthermore, levels of cholecalciferol absorption were compared between Caco-2 cells cultured with varying concentrations of cholecalciferol and stimulated with LCS or de Man, Rogosa, and Sharpe (MRS) broth (control). Similarly, LCS-stimulated HepG2 cells were compared with MRS-stimulated HepG2 cells. Finally, protein levels of VD transporters in small intestine tissues and Caco-2 cells, as well as vitamin D-binding protein and 25-hydroxylase in liver tissues and HepG2 cells, were detected by western blot. The results showed that plasma concentrations of cholecalciferol and 25OHD3 were higher in mice of the LCS group compared with the control group, and these values were positively correlated. With the addition of LCS, cholecalciferol uptake was increased with 0.5 μM or 10 μM cholecalciferol in the medium. Protein levels of CD36 and NPC1L1 were higher in the LCS group compared with the control group, while SR-BI protein was decreased, both in vitro and in vivo. In conclusion, LCS can promotes intestinal absorption cholecalciferol by affecting protein levels of VD transporters and improves 25OHD3 levels in SOP.
Collapse
Affiliation(s)
- Jing Cheng
- Gastroenterology Department, Tianjin Medical University General Hospital, Tianjin, China
- Department of Orthointernal, Tianjin Hospital, Tianjin, China
| | - Jianhua Zhai
- Gastroenterology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Weilong Zhong
- Gastroenterology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingwen Zhao
- Gastroenterology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Zhou
- Gastroenterology Department, Tianjin Medical University General Hospital, Tianjin, China.
| | - Bangmao Wang
- Gastroenterology Department, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
13
|
Orcinol Glucoside Improves Senile Osteoporosis through Attenuating Oxidative Stress and Autophagy of Osteoclast via Activating Nrf2/Keap1 and mTOR Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5410377. [PMID: 35585885 PMCID: PMC9110208 DOI: 10.1155/2022/5410377] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022]
Abstract
Oxidative stress and autophagy play essential roles in the development of senile osteoporosis which is characterized by disrupted osteoclastic bone resorption and osteoblastic bone formation. Orcinol glucoside (OG), a phenolic glycoside isolated from Curculigo orchioides Gaertn, possesses antiosteoporotic properties. This study examined the protective effects of OG on bone loss in SAMP6 mice and explored the underlying mechanisms. The osteoporotic SAMP6 mice were treated with OG oral administration. RAW264.7 cells were induced to differentiate into osteoclast by RANKL and H2O2 in vitro and received OG treatment. The results demonstrated that OG attenuated bone loss in SAMP6 mice and inhibited the formation and bone resorption activities of osteoclast and reduced levels of oxidative stress in bone tissue of SAMP6 mice and osteoclast. Furthermore, OG activated Nrf2/Keap1 signaling pathway and enhanced the phosphorylation of mTOR and p70S6K which are consequently suppressing autophagy. Of note, the effect of OG on Nrf2/Keap1 signaling was neutralized by the mTOR inhibitor rapamycin. Meanwhile, the inhibitory effect of OG on autophagy was reversed by the Nrf2 inhibitor ML385.Conclusively, OG attenuated bone loss by inhibiting formation, differentiation, and bone resorption activities of osteoclast. Regulation of Nrf2/Keap1 and mTOR signals is a possible mechanism by which OG suppressed oxidative and autophagy of osteoclasts. Thus, OG prevented senile osteoporosis through attenuating oxidative stress and autophagy of osteoclast via activating Nrf2/Keap1 and mTOR signaling pathway.
Collapse
|
14
|
Lee S, Kim M, Hong S, Kim EJ, Kim JH, Sohn Y, Jung HS. Effects of Sparganii Rhizoma on Osteoclast Formation and Osteoblast Differentiation and on an OVX-Induced Bone Loss Model. Front Pharmacol 2022; 12:797892. [PMID: 35058781 PMCID: PMC8764242 DOI: 10.3389/fphar.2021.797892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
Postmenopausal osteoporosis is caused by an imbalance between osteoclasts and osteoblasts and causes severe bone loss. Osteoporotic medicines are classified into bone resorption inhibitors and bone formation promoters according to the mechanism of action. Long-term use of bisphosphonate and selective estrogen receptor modulators (SERMs) can cause severe side effects in postmenopausal osteoporosis patients. Therefore, it is important to find alternative natural products that reduce osteoclast activity and increase osteoblast formation. Sparganii Rhizoma (SR) is the dried tuberous rhizome of Sparganium stoloniferum Buchanan-Hamilton and is called “samreung” in Korea. However, to date, the effect of SR on osteoclast differentiation and the ovariectomized (OVX)-induced bone loss model has not been reported. In vitro, tartrate-resistant acid phosphatase (TRAP) staining, western blots, RT-PCR and other methods were used to examine the effect of SR on osteoclast differentiation and osteoblasts. In vivo, we confirmed the effect of SR in a model of OVX-induced postmenopausal osteoporosis. SR inhibited osteoclast differentiation and decreased the expression of TNF receptor-associated factor 6 (TRAF6), nuclear factor of activated T cells 1 (NFATc1) and c-Fos pathway. In addition, SR stimulates osteoblast differentiation and increased protein expression of the bone morphogenetic protein 2 (BMP-2)/SMAD signaling pathway. Moreover, SR protected against bone loss in OVX-induced rats. Our results appear to advance our knowledge of SR and successfully demonstrate its potential role as a osteoclastogenesis-inhibiting and osteogenesis-promoting herbal medicine for the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Sungyub Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Minsun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sooyeon Hong
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eom Ji Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
15
|
Ye R, Wang HL, Zeng DW, Chen T, Sun JJ, Xi QY, Zhang YL. GHRH expression plasmid improves osteoporosis and skin damage in aged mice. Growth Horm IGF Res 2021; 60-61:101429. [PMID: 34507253 DOI: 10.1016/j.ghir.2021.101429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022]
Abstract
The hormone secretion of GHRH-GH-IGF-1 axis in animals was decreased as aging. These hormones play an important role in maintaining bone mass and bone structure, and also affect the normal structure and function of the skin. We used plasmid-based technology to deliver growth hormone releasing hormone (GHRH) to elderly mice. In the current study, 80 and 120 μg/kg pVAX-GHRH plasmid expression plasmid were injected into old mice, the serum GHRH and insulin-like growth factor-1(IGF-1) content were increased within three weeks (P < 0.05). In the groups of 80 and 120 μg/kg plasmid, the content of procollagen type I N-terminal pro-peptide (PINP) in the serum was increased(P < 0.05), and the content of C-terminal telopeptides of type I collagen (CTX-1) in the serum was reduced significantly (P < 0.05). Furthermore, the expression of osteoprotegerin (OPG) and osteocalcin (OCN) in the femur also was increased(P < 0.05). The bone mineral density(BMD)、trabecular bone volume (BV/TV) and trabecular number(Tb.N) of mouse femur were increased significantly (P < 0.05) and trabecular separation(Tb.Sp) was decreased(P < 0.05). There were more trabecular bones in the bone marrow cavity and the trabecular bones are thicker in the groups of 80 and 120 μg/kg plasmid relative to control. The superoxide dismutase (SOD) content in the skin was increased(P < 0.05), and the malondialdehyde (MDA) content was reduced significantly (P < 0.05). Meanwhile, the skin moisture content also increased significantly(P < 0.05). Moreover, the expression of matrix metalloproteinase 3(MMP3) and matrix metalloproteinase 9(MMP9) was decreased in the skin(P < 0.05). The thickness of the dermis and epidermis of the skin had increased significantly(P < 0.05). Skin structure is more dense and complete in the two groups. These results indicate that 80 and 120 μg/kg plasmid-mediated GHRH supplementation can improve osteoporosis and skin aging in aged mice.
Collapse
Affiliation(s)
- Rui Ye
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Hai-Long Wang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - De-Wei Zeng
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Ting Chen
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Jia-Jie Sun
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Qian-Yun Xi
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Yong-Liang Zhang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
16
|
Zhang L, Yang Y, Geng D, Wu Y. Identification of Potential Therapeutic Targets and Molecular Regulatory Mechanisms for Osteoporosis by Bioinformatics Methods. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8851421. [PMID: 33778083 PMCID: PMC7969088 DOI: 10.1155/2021/8851421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Osteoporosis is characterized by low bone mass, deterioration of bone tissue structure, and susceptibility to fracture. New and more suitable therapeutic targets need to be discovered. METHODS We collected osteoporosis-related datasets (GSE56815, GSE99624, and GSE63446). The methylation markers were obtained by differential analysis. Degree, DMNC, MCC, and MNC plug-ins were used to screen the important methylation markers in PPI network, then enrichment analysis was performed. ROC curve was used to evaluate the diagnostic effect of osteoporosis. In addition, we evaluated the difference in immune cell infiltration between osteoporotic patients and control by ssGSEA. Finally, differential miRNAs in osteoporosis were used to predict the regulators of key methylation markers. RESULTS A total of 2351 differentially expressed genes and 5246 differentially methylated positions were obtained between osteoporotic patients and controls. We identified 19 methylation markers by PPI network. They were mainly involved in biological functions and signaling pathways such as apoptosis and immune inflammation. HIST1H3G, MAP3K5, NOP2, OXA1L, and ZFPM2 with higher AUC values were considered key methylation markers. There were significant differences in immune cell infiltration between osteoporotic patients and controls, especially dendritic cells and natural killer cells. The correlation between MAP3K5 and immune cells was high, and its differential expression was also validated by other two datasets. In addition, NOP2 was predicted to be regulated by differentially expressed hsa-miR-3130-5p. CONCLUSION Our efforts aim to provide new methylation markers as therapeutic targets for osteoporosis to better treat osteoporosis in the future.
Collapse
Affiliation(s)
- Li Zhang
- Department of Geriatrics, The Municipal Hospital of Suzhou, Jiangsu, China
| | - Yunlong Yang
- Department of Geriatrics, The Municipal Hospital of Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Yonghua Wu
- Department of Geriatrics, The Municipal Hospital of Suzhou, Jiangsu, China
| |
Collapse
|
17
|
Chen LR, Ko NY, Chen KH. Medical Treatment for Osteoporosis: From Molecular to Clinical Opinions. Int J Mol Sci 2019; 20:ijms20092213. [PMID: 31064048 PMCID: PMC6540613 DOI: 10.3390/ijms20092213] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/27/2019] [Accepted: 05/04/2019] [Indexed: 01/02/2023] Open
Abstract
Osteoporosis is a major concern all over the world. With aging, a gradual loss of bone mass results in osteopenia and osteoporosis. Heritable factors account for 60–80% of optimal bone mineralization. Modifiable factors, such as weight-bearing exercise, nutrition, body mass, and hormonal milieu, play an important role in the development of osteopenia and osteoporosis in adulthood. Currently, anti-resorptive agents, including estrogen, bisphosphonates, and selective estrogen receptor modulators (SERMs), are the drugs of choice for osteoporosis. Other treatments include parathyroid hormone (PTH) as well as the nutritional support of calcium and vitamin D. New treatments such as tissue-selective estrogen receptor complexes (TSECs) are currently in use too. This review, which is based on a systematic appraisal of the current literature, provides current molecular and genetic opinions on osteoporosis and its medical treatment. It offers evidence-based information to help researchers and clinicians with osteoporosis assessment. However, many issues regarding osteoporosis and its treatment remain unknown or controversial and warrant future investigation.
Collapse
Affiliation(s)
- Li-Ru Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei 10449, Taiwan.
- Department of Mechanical Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan.
| | - Nai-Yu Ko
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei 10449, Taiwan.
| | - Kuo-Hu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei 23142, Taiwan.
- School of Medicine, Tzu-Chi University, Hualien 97004, Taiwan.
| |
Collapse
|
18
|
Macoska JA, Wang Z, Virta J, Zacharias N, Bjorling DE. Inhibition of the CXCL12/CXCR4 axis prevents periurethral collagen accumulation and lower urinary tract dysfunction in vivo. Prostate 2019; 79:757-767. [PMID: 30811623 PMCID: PMC7269149 DOI: 10.1002/pros.23781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Several studies show that prostatic fibrosis is associated with male lower urinary tract dysfunction (LUTD). Development of fibrosis is typically attributed to signaling through the transforming growth factor β (TGF-β) pathway, but our laboratory has demonstrated that in vitro treatment of human prostatic fibroblasts with the C-X-C motif chemokine ligand 12 (CXCL12) chemokine stimulates myofibroblast phenoconversion and that CXCL12 has the capacity to activate profibrotic pathways in these cells in a TGF-β-independent manner. We have previously reported that feeding mice high-fat diet (HFD) results in obesity, type II diabetes, increased prostatic fibrosis, and urinary voiding dysfunction. The purpose of this study was to test the hypothesis that in vivo blockade of the CXCL12/CXCR4 axis would inhibit the development of fibrosis-mediated LUTD in HFD-fed mice. METHODS Two-month-old male senescence-accelerated mouse prone-6 mice were fed either a HFD or low-fat diet (LFD) for 8 months. Half of each dietary group were given constant access to normal water or water that contained the C-X-C chemokine receptor type 4 (CXCR4; CXCL12 receptor) antagonist CXCR4AIII. At the conclusion of the study, mice were weighed, subjected to oral glucose tolerance testing and cystometry, and lower urinary tract tissues collected and assessed for collagen content. RESULTS HFD-fed mice became significantly obese, insulin resistant, and hyperglycemic, consistent with acquisition of metabolic syndrome, compared with LFD-fed mice. Anesthetized cystometry demonstrated that HFD-fed mice experienced significantly longer intercontractile intervals and greater functional bladder capacity than LFD-fed mice. Immunohistochemistry demonstrated high levels of CXCR4 and CXCR7 staining in mouse prostate epithelial and stromal cells. Picrosirius red staining indicated significantly greater periurethral collagen deposition in the prostates of HFD than LFD-fed mice. Treatment with the CXCR4 antagonist CXCR4AIII did not affect acquisition of metabolic syndrome but did reduce both urinary voiding dysfunction and periurethral prostate collagen accumulation. CONCLUSIONS This is the first study to report that obesity-induced lower urinary tract fibrosis and voiding dysfunction can be repressed by antagonizing the activity of the CXCR4 chemokine receptor in vivo. These data suggest that targeting the CXCL12/CXCR4 signaling pathway may be a clinical option for the prevention or treatment of human male LUTD.
Collapse
Affiliation(s)
- Jill A. Macoska
- Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Boston, Massachusetts
- Department of Urology, George M. O’Brien Center for Urologic Research, Madison, Wisconsin
| | - Zunyi Wang
- Department of Urology, George M. O’Brien Center for Urologic Research, Madison, Wisconsin
- School of Veterinary Medicine, The University of Wisconsin Madison, Madison, Wisconsin
| | - Johanna Virta
- Department of Urology, George M. O’Brien Center for Urologic Research, Madison, Wisconsin
- School of Veterinary Medicine, The University of Wisconsin Madison, Madison, Wisconsin
| | - Nicholas Zacharias
- Department of Urology, George M. O’Brien Center for Urologic Research, Madison, Wisconsin
- School of Veterinary Medicine, The University of Wisconsin Madison, Madison, Wisconsin
| | - Dale E. Bjorling
- Department of Urology, George M. O’Brien Center for Urologic Research, Madison, Wisconsin
- School of Veterinary Medicine, The University of Wisconsin Madison, Madison, Wisconsin
| |
Collapse
|
19
|
Mori M, Higuchi K. [The senescence-accelerated mouse as a model for geriatrics and aging biology]. Nihon Yakurigaku Zasshi 2019; 153:179-185. [PMID: 30971658 DOI: 10.1254/fpj.153.179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rapid expansion of aged population is predicted worldwide. To cope with problems expected from this situation and extend the period of active and healthy life of people as much as possible, it is important to elucidate not only the biological mechanisms of "aging", but also the etiology of various "age-related diseases". To attain this goal, extensive studies using excellent animal models are indispensable. Senescence-accelerated mouse (SAM) is a series of inbred mouse strains that includes SAMP1, SAMP6, SAMP8, SAMP10, and SAMR1. SAMP strains exhibit accelerated senescence and short lifespan. In addition, each strain shows specific age-related disease phenotypes which are similar to symptoms observed in humans, such as senile amyloidosis (SAMP1), senile osteoporosis (SAMP6), and age-dependent deficits in learning and memory (SAMP8), making SAM mice useful for an aging research. In this review, we introduce the characteristics and application of SAM in geriatrics and aging biology.
Collapse
Affiliation(s)
- Masayuki Mori
- Department of Advanced Medicine for Health Promotion, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University
| | - Keiichi Higuchi
- Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University
| |
Collapse
|
20
|
Almanza D, Gharaee-Kermani M, Zhilin-Roth A, Rodriguez-Nieves JA, Colaneri C, Riley T, Macoska JA. Nonalcoholic Fatty Liver Disease Demonstrates a Pre-fibrotic and Premalignant Molecular Signature. Dig Dis Sci 2019; 64:1257-1269. [PMID: 30519850 PMCID: PMC6512804 DOI: 10.1007/s10620-018-5398-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/27/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Metabolic syndrome contributing to nonalcoholic fatty liver disease (NAFLD) can lead to hepatic dysfunction, steatohepatitis, cirrhosis, and hepatocellular carcinoma. AIMS In this study, we tested whether diet-induced fatty liver in a mouse model physiologically mimicked human NAFLD, and whether transcriptional alterations in mouse fatty liver signified risk for the development of hepatitis, cirrhosis, and/or hepatocellular carcinoma. METHODS SAMP6 strain mice were fed a low-fat diet or high-fat diet (HFD) for 6 months. Mouse livers were isolated and subjected to histology, immunohistochemistry, and whole transcriptome RNA sequencing. Sequences were aligned to the mouse reference genome, and gene expression signatures were analyzed using bioinformatics tools including Cufflinks, Pathview, Cytoscape, ClueGO, and GOstats. RESULTS Consistent with NAFLD, livers from HFD-fed mice demonstrated steatosis, high levels of inflammation, an up-regulation of genes encoding proteins associated with the complement pathway and immune responses, and down-regulation of those associated with metabolic processes. These livers also showed an up-regulation of genes associated with fibrosis and malignant transformation but no histological evidence of either pathobiology or DNA damage. CONCLUSIONS HFD-fed mice exhibited NAFLD that had incompletely transitioned from fatty liver to NASH. Importantly, bioinformatics approaches identified pre-fibrotic and premalignant signatures, suggesting that the pathogenesis of both fibrosis and cancer may initiate in fatty livers well before associated histological changes are evident.
Collapse
Affiliation(s)
- Diego Almanza
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA ,0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| | - Mehrnaz Gharaee-Kermani
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA ,0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| | - Alisa Zhilin-Roth
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA ,0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| | - Jose A. Rodriguez-Nieves
- 0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| | - Cory Colaneri
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA
| | - Todd Riley
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA ,0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| | - Jill A. Macoska
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA ,0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| |
Collapse
|