1
|
Saura MLP, Cajachagua CL, Balan A, General IJ. Phosphate uptake in PhoX: Molecular mechanisms. Int J Biol Macromol 2024; 269:131993. [PMID: 38705335 DOI: 10.1016/j.ijbiomac.2024.131993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
PhoX is a high-affinity phosphate binding protein, present in Xanthomonas citri, a phytopathogen responsible for the citrus canker disease. Performing molecular dynamics simulations and different types of computational analyses, we study the molecular mechanisms at play in relation to phosphate binding, revealing the global functioning of the protein: PhoX naturally oscillates along its global normal modes, which allow it to explore both bound and unbound conformations, eventually attracting a nearby negative phosphate ion to the highly positive electrostatic potential on its surface, particularly close to the binding pocket. There, several hydrogen bonds are formed with the two main domains of the structure. Phosphate creates, in this way, a strong bridge that connects the domains, keeping itself between them, in a tight closed conformation, explaining its high binding affinity.
Collapse
Affiliation(s)
- María Luz Perez Saura
- School of Science and Technology, Universidad Nacional de San Martin, 25 de Mayo y Francia, San Martín 1650, Buenos Aires, Argentina
| | - Cindy Lee Cajachagua
- Universidade de São Paulo (USP), Instituto de Ciências Biomédicas II (ICBII), São Paulo,São Paulo, Brazil
| | - Andrea Balan
- Universidade de São Paulo (USP), Instituto de Ciências Biomédicas II (ICBII), São Paulo,São Paulo, Brazil
| | - Ignacio J General
- School of Science and Technology, Universidad Nacional de San Martin, ICIFI and CONICET, 25 de Mayo y Francia, San Martín 1650, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Buyan A, Allender DW, Corry B, Schick M. Lipid redistribution in the highly curved footprint of Piezo1. Biophys J 2022:S0006-3495(22)00595-1. [PMID: 35927961 DOI: 10.1016/j.bpj.2022.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/06/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
We investigate the effects on the distribution of lipids in the plasma membrane that are caused by the insertion of a protein, Piezo1, that significantly distorts the membrane toward the cytosol. From coarse-grained molecular dynamics simulations, we find that the major effects occur in the outer, extracellular, leaflet. The mol fraction of cholesterol increases significantly in the curved region of the membrane close to Piezo1, while those of phosphatidylcholine and of sphingomyelin decrease. In the inner leaflet, mol fractions of cholesterol and of phosphatidylethanolamine decrease slightly as the protein is approached, while that of phosphatidylserine increases slightly. The mol fraction of phosphatidylcholine decreases markedly as the protein is approached. Most of these results are understood in the context of a theoretical model that utilizes two elements; (i) a coupling between the leaflets' actual curvatures and their compositionally-dependent spontaneous curvatures and, (ii) the dependence of the spontaneous curvatures not only on the mol fractions of the phospholipids, but also on the effect that cholesterol has on the spontaneous curvatures of the phospholipids.
Collapse
Affiliation(s)
- Amanda Buyan
- Research School of Biology, The Australian National University, Acton, Australia
| | - D W Allender
- Department of Physics, University of Washington, Seattle WA; Department of Physics, Kent State University, Kent OH
| | - Ben Corry
- Research School of Biology, The Australian National University, Acton, Australia
| | - M Schick
- Department of Physics, University of Washington, Seattle WA
| |
Collapse
|
3
|
Barbera N, Granados ST, Vanoye CG, Abramova TV, Kulbak D, Ahn SJ, George AL, Akpa BS, Levitan I. Cholesterol-induced suppression of Kir2 channels is mediated by decoupling at the inter-subunit interfaces. iScience 2022; 25:104329. [PMID: 35602957 PMCID: PMC9120057 DOI: 10.1016/j.isci.2022.104329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/29/2022] Open
Abstract
Cholesterol is a major regulator of multiple types of ion channels. Although there is increasing information about cholesterol binding sites, the molecular mechanisms through which cholesterol binding alters channel function are virtually unknown. In this study, we used a combination of Martini coarse-grained simulations, a network theory-based analysis, and electrophysiology to determine the effect of cholesterol on the dynamic structure of the Kir2.2 channel. We found that increasing membrane cholesterol reduced the likelihood of contact between specific regions of the cytoplasmic and transmembrane domains of the channel, most prominently at the subunit-subunit interfaces of the cytosolic domains. This decrease in contact was mediated by pairwise interactions of specific residues and correlated to the stoichiometry of cholesterol binding events. The predictions of the model were tested by site-directed mutagenesis of two identified residues-V265 and H222-and high throughput electrophysiology.
Collapse
Affiliation(s)
- Nicolas Barbera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Sara T. Granados
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Carlos Guillermo Vanoye
- Department of Pharmacology; Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tatiana V. Abramova
- Department of Pharmacology; Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Danielle Kulbak
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Sang Joon Ahn
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Alfred L. George
- Department of Pharmacology; Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Belinda S. Akpa
- Division of Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
- Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Irena Levitan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Santhakumar V, Manuel Mascarenhas N. The role of C-terminal helix in the conformational transition of an arginine binding protein. J Struct Biol X 2022; 6:100071. [PMID: 36035778 PMCID: PMC9402392 DOI: 10.1016/j.yjsbx.2022.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022] Open
Abstract
Probe the role of C-ter. helix (CTH) in conformational transition of TmArgBP. Presence of CTH almost doubles the barrier to access the closed-state. In the absence of CTH, the protein can fluctuate between the two conformations. CTH not only constraints the open-state conformation but also guides in accessing it.
The thermotoga maritima arginine binding protein (TmArgBP) is a periplasmic binding protein that has a short helix at the C-terminal end (CTH), which is swapped between the two chains. We apply a coarse-grained structure-based model (SBM) and all-atom MD simulation on this protein to understand the mechanism and the role of CTH in the conformational transition. When the results of SBM simulations of TmArgBP in the presence and absence of CTH are compared, we find that CTH is strategically located at the back of the binding pocket restraining the open-state conformation thereby disengaging access to the closed-state. We also ran all-atom MD simulations of open-state TmArgBP with and without CTH and discovered that in the absence of CTH the protein could reach the closed-state within 250 ns, while in its presence, the protein remained predominantly in its open-state conformation. In the simulation started from unliganded closed-state conformation without CTH, the protein exhibited multiple transitions between the two states, suggesting CTH as an essential structural element to stabilize the open-state conformation. In another simulation that began with an unliganded closed-state conformation with CTH, the protein was able to access the open-state. In this simulation the CTH was observed to reorient itself to interact with the protein emphasizing its role in assisting the conformational change. Based on our findings, we believe that CTH not only acts as a structural element that constraints the protein in its open-state but it may also guide the protein back to its open-state conformation upon ligand unbinding.
Collapse
|
5
|
Buyan A, Cox CD, Barnoud J, Li J, Chan HSM, Martinac B, Marrink SJ, Corry B. Piezo1 Forms Specific, Functionally Important Interactions with Phosphoinositides and Cholesterol. Biophys J 2020; 119:1683-1697. [PMID: 32949489 PMCID: PMC7642233 DOI: 10.1016/j.bpj.2020.07.043] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Accepted: 07/15/2020] [Indexed: 10/25/2022] Open
Abstract
Touch, hearing, and blood pressure regulation require mechanically gated ion channels that convert mechanical stimuli into electrical currents. One such channel is Piezo1, which plays a key role in the transduction of mechanical stimuli in humans and is implicated in diseases, such as xerocytosis and lymphatic dysplasia. There is building evidence that suggests Piezo1 can be regulated by the membrane environment, with the activity of the channel determined by the local concentration of lipids, such as cholesterol and phosphoinositides. To better understand the interaction of Piezo1 with its environment, we conduct simulations of the protein in a complex mammalian bilayer containing more than 60 different lipid types together with electrophysiology and mutagenesis experiments. We find that the protein alters its local membrane composition, enriching specific lipids and forming essential binding sites for phosphoinositides and cholesterol that are functionally relevant and often related to Piezo1-mediated pathologies. We also identify a number of key structural connections between the propeller and pore domains located close to lipid-binding sites.
Collapse
Affiliation(s)
- Amanda Buyan
- Research School of Biology, Australian National University, Acton, Canberra, Australia
| | - Charles D Cox
- Victor Chang Cardiac Research Institute, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| | - Jonathan Barnoud
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Jinyuan Li
- Victor Chang Cardiac Research Institute, New South Wales, Australia
| | - Hannah S M Chan
- Research School of Biology, Australian National University, Acton, Canberra, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Ben Corry
- Research School of Biology, Australian National University, Acton, Canberra, Australia.
| |
Collapse
|
6
|
Brault ML, Petit JD, Immel F, Nicolas WJ, Glavier M, Brocard L, Gaston A, Fouché M, Hawkins TJ, Crowet J, Grison MS, Germain V, Rocher M, Kraner M, Alva V, Claverol S, Paterlini A, Helariutta Y, Deleu M, Lins L, Tilsner J, Bayer EM. Multiple C2 domains and transmembrane region proteins (MCTPs) tether membranes at plasmodesmata. EMBO Rep 2019; 20:e47182. [PMID: 31286648 PMCID: PMC6680132 DOI: 10.15252/embr.201847182] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
In eukaryotes, membrane contact sites (MCS) allow direct communication between organelles. Plants have evolved a unique type of MCS, inside intercellular pores, the plasmodesmata, where endoplasmic reticulum (ER)-plasma membrane (PM) contacts coincide with regulation of cell-to-cell signalling. The molecular mechanism and function of membrane tethering within plasmodesmata remain unknown. Here, we show that the multiple C2 domains and transmembrane region protein (MCTP) family, key regulators of cell-to-cell signalling in plants, act as ER-PM tethers specifically at plasmodesmata. We report that MCTPs are plasmodesmata proteins that insert into the ER via their transmembrane region while their C2 domains dock to the PM through interaction with anionic phospholipids. A Atmctp3/Atmctp4 loss of function mutant induces plant developmental defects, impaired plasmodesmata function and composition, while MCTP4 expression in a yeast Δtether mutant partially restores ER-PM tethering. Our data suggest that MCTPs are unique membrane tethers controlling both ER-PM contacts and cell-to-cell signalling.
Collapse
Affiliation(s)
- Marie L Brault
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
| | - Jules D Petit
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
- Laboratoire de Biophysique Moléculaire aux InterfacesTERRA Research Centre, GX ABTUniversité de LiègeGemblouxBelgium
| | - Françoise Immel
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
| | - William J Nicolas
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
- Present address:
Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Marie Glavier
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
| | - Lysiane Brocard
- Bordeaux Imaging CentrePlant Imaging PlatformUMS 3420, INRA‐CNRS‐INSERM‐University of BordeauxVillenave‐d'OrnonFrance
| | - Amèlia Gaston
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
- Present address:
UMR 1332 BFPINRAUniversity of BordeauxBordeauxFrance
| | - Mathieu Fouché
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
- Present address:
UMR 1332 BFPINRAUniversity of BordeauxBordeauxFrance
| | | | - Jean‐Marc Crowet
- Laboratoire de Biophysique Moléculaire aux InterfacesTERRA Research Centre, GX ABTUniversité de LiègeGemblouxBelgium
- Present address:
Matrice Extracellulaire et Dynamique Cellulaire MEDyCUMR7369, CNRSUniversité de Reims‐Champagne‐ArdenneReimsFrance
| | - Magali S Grison
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
| | - Véronique Germain
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
| | - Marion Rocher
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
| | - Max Kraner
- Division of BiochemistryDepartment of BiologyFriedrich‐Alexander University Erlangen‐NurembergErlangenGermany
| | - Vikram Alva
- Department of Protein EvolutionMax Planck Institute for Developmental BiologyTübingenGermany
| | - Stéphane Claverol
- Proteome PlatformFunctional Genomic Center of BordeauxUniversity of BordeauxBordeaux CedexFrance
| | | | - Ykä Helariutta
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux InterfacesTERRA Research Centre, GX ABTUniversité de LiègeGemblouxBelgium
| | - Laurence Lins
- Laboratoire de Biophysique Moléculaire aux InterfacesTERRA Research Centre, GX ABTUniversité de LiègeGemblouxBelgium
| | - Jens Tilsner
- Biomedical Sciences Research ComplexUniversity of St AndrewsFifeUK
- Cell and Molecular SciencesThe James Hutton InstituteDundeeUK
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
| |
Collapse
|
7
|
Li S, Wu B, Han W. Parametrization of MARTINI for Modeling Hinging Motions in Membrane Proteins. J Phys Chem B 2019; 123:2254-2269. [DOI: 10.1021/acs.jpcb.8b11244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Shu Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bohua Wu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
8
|
Abstract
Martini is a coarse-grained (CG) force field suitable for molecular dynamics (MD) simulations of (bio)molecular systems. It is based on mapping of two to four heavy atoms to one CG particle. The effective interactions between the CG particles are parametrized to reproduce partitioning free energies of small chemical compounds between polar and apolar phases. In this chapter, a summary of the key elements of this CG force field is presented, followed by an example of practical application: a lipoplex-membrane fusion experiment. Formulated as hands-on practice, this chapter contains guidelines to build CG models of important biological systems, such as asymmetric bilayers and double-stranded DNA. Finally, a series of notes containing useful information, limitations, and tips are described in the last section.
Collapse
Affiliation(s)
- Bart M H Bruininks
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Paulo C T Souza
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
9
|
Barbera N, Ayee MAA, Akpa BS, Levitan I. Molecular Dynamics Simulations of Kir2.2 Interactions with an Ensemble of Cholesterol Molecules. Biophys J 2018; 115:1264-1280. [PMID: 30205899 PMCID: PMC6170799 DOI: 10.1016/j.bpj.2018.07.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/12/2018] [Accepted: 07/31/2018] [Indexed: 11/16/2022] Open
Abstract
Cholesterol is a major regulator of multiple types of ion channels, but the specific mechanisms and the dynamics of its interactions with the channels are not well understood. Kir2 channels were shown to be sensitive to cholesterol through direct interactions with "cholesterol-sensitive" regions on the channel protein. In this work, we used Martini coarse-grained simulations to analyze the long (μs) timescale dynamics of cholesterol with Kir2.2 channels embedded into a model membrane containing POPC phospholipid with 30 mol% cholesterol. This approach allows us to simulate the dynamic, unbiased migration of cholesterol molecules from the lipid membrane environment to the protein surface of Kir2.2 and explore the favorability of cholesterol interactions at both surface sites and recessed pockets of the channel. We found that the cholesterol environment surrounding Kir channels forms a complex milieu of different short- and long-term interactions, with multiple cholesterol molecules concurrently interacting with the channel. Furthermore, utilizing principles from network theory, we identified four discrete cholesterol-binding sites within the previously identified cholesterol-sensitive region that exist depending on the conformational state of the channel-open or closed. We also discovered that a twofold decrease in the cholesterol level of the membrane, which we found earlier to increase Kir2 activity, results in a site-specific decrease of cholesterol occupancy at these sites in both the open and closed states: cholesterol molecules at the deepest of these discrete sites shows no change in occupancy at different cholesterol levels, whereas the remaining sites showed a marked decrease in occupancy.
Collapse
Affiliation(s)
- Nicolas Barbera
- Department of Chemical Engineering; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manuela A A Ayee
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Belinda S Akpa
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina.
| | - Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
10
|
Poma AB, Cieplak M, Theodorakis PE. Combining the MARTINI and Structure-Based Coarse-Grained Approaches for the Molecular Dynamics Studies of Conformational Transitions in Proteins. J Chem Theory Comput 2017; 13:1366-1374. [PMID: 28195464 DOI: 10.1021/acs.jctc.6b00986] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The application of coarse-grained (CG) models in biology is essential to access large length and time scales required for the description of many biological processes. The ELNEDIN protein model is based on the well-known MARTINI CG force-field and incorporates additionally harmonic bonds of a certain spring constant within a defined cutoff distance between pairs of residues, in order to preserve the native structure of the protein. In this case, the use of unbreakable harmonic bonds hinders the study of unfolding and folding processes. To overcome this barrier we have replaced the harmonic bonds with Lennard-Jones interactions based on the contact map of the native protein structure as is done in Go̅-like models. This model exhibits very good agreement with all-atom simulations and the ELNEDIN. Moreover, it can capture the structural motion linked to particular catalytic activity in the Man5B protein, in agreement with all-atom simulations. In addition, our model is based on the van der Waals radii, instead of a cutoff distance, which results in a smaller contact map. In conclusion, we anticipate that our model will provide further possibilities for studying biological systems based on the MARTINI CG force-field by using advanced-sampling methods, such as parallel tempering and metadynamics.
Collapse
Affiliation(s)
- Adolfo B Poma
- Institute of Physics, Polish Academy of Sciences , Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences , Al. Lotników 32/46, 02-668 Warsaw, Poland
| | | |
Collapse
|
11
|
Periole X. Interplay of G Protein-Coupled Receptors with the Membrane: Insights from Supra-Atomic Coarse Grain Molecular Dynamics Simulations. Chem Rev 2016; 117:156-185. [PMID: 28073248 DOI: 10.1021/acs.chemrev.6b00344] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
G protein-coupled receptors (GPCRs) are central to many fundamental cellular signaling pathways. They transduce signals from the outside to the inside of cells in physiological processes ranging from vision to immune response. It is extremely challenging to look at them individually using conventional experimental techniques. Recently, a pseudo atomistic molecular model has emerged as a valuable tool to access information on GPCRs, more specifically on their interactions with their environment in their native cell membrane and the consequences on their supramolecular organization. This approach uses the Martini coarse grain (CG) model to describe the receptors, lipids, and solvent in molecular dynamics (MD) simulations and in enough detail to allow conserving the chemical specificity of the different molecules. The elimination of unnecessary degrees of freedom has opened up large-scale simulations of the lipid-mediated supramolecular organization of GPCRs. Here, after introducing the Martini CGMD method, we review these studies carried out on various members of the GPCR family, including rhodopsin (visual receptor), opioid receptors, adrenergic receptors, adenosine receptors, dopamine receptor, and sphingosine 1-phosphate receptor. These studies have brought to light an interesting set of novel biophysical principles. The insights range from revealing localized and heterogeneous deformations of the membrane bilayer at the surface of the protein, specific interactions of lipid molecules with individual GPCRs, to the effect of the membrane matrix on global GPCR self-assembly. The review ends with an overview of the lessons learned from the use of the CGMD method, the biophysical-chemical findings on lipid-protein interplay.
Collapse
Affiliation(s)
- Xavier Periole
- Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|
12
|
Molecular characterization of a family 5 glycoside hydrolase suggests an induced-fit enzymatic mechanism. Sci Rep 2016; 6:23473. [PMID: 27032335 PMCID: PMC4817029 DOI: 10.1038/srep23473] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/25/2016] [Indexed: 11/25/2022] Open
Abstract
Glycoside hydrolases (GHs) play fundamental roles in the decomposition of lignocellulosic biomaterials. Here, we report the full-length structure of a cellulase from Bacillus licheniformis (BlCel5B), a member of the GH5 subfamily 4 that is entirely dependent on its two ancillary modules (Ig-like module and CBM46) for catalytic activity. Using X-ray crystallography, small-angle X-ray scattering and molecular dynamics simulations, we propose that the C-terminal CBM46 caps the distal N-terminal catalytic domain (CD) to establish a fully functional active site via a combination of large-scale multidomain conformational selection and induced-fit mechanisms. The Ig-like module is pivoting the packing and unpacking motions of CBM46 relative to CD in the assembly of the binding subsite. This is the first example of a multidomain GH relying on large amplitude motions of the CBM46 for assembly of the catalytically competent form of the enzyme.
Collapse
|
13
|
Affiliation(s)
- Iwona Siuda
- Department of Biological
Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| | - D. Peter Tieleman
- Department of Biological
Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
14
|
Abstract
![]()
To
characterize the conformational dynamics of sarcoplasmic reticulum
(SR) calcium pump (SERCA) we performed molecular dynamics simulations
beginning with several different high-resolution structures. We quantified
differences in structural disorder and dynamics for an open conformation
of SERCA versus closed structures and observed that dynamic motions
of SERCA cytoplasmic domains decreased with decreasing domain–domain
separation distance. The results are useful for interpretation of
recent intramolecular Förster resonance energy transfer (FRET)
distance measurements obtained for SERCA fused to fluorescent protein
tags. Those previous physical measurements revealed several discrete
structural substates and suggested open conformations of SERCA are
more dynamic than compact conformations. The present simulations support
this hypothesis and provide additional details of SERCA molecular
mechanisms. Specifically, all-atoms simulations revealed large-scale
translational and rotational motions of the SERCA N-domain relative
to the A- and P-domains during the transition from an open to a closed
headpiece conformation over the course of a 400 ns trajectory. The
open-to-closed structural transition was accompanied by a disorder-to-order
transition mediated by an initial interaction of an N-domain loop
(Nβ5-β6, residues 426–436) with residues 133–139
of the A-domain. Mutation of three negatively charged N-domain loop
residues abolished the disorder-to-order transition and prevented
the initial domain–domain interaction and subsequent closure
of the cytoplasmic headpiece. Coarse-grained molecular dynamics simulations
were in harmony with all-atoms simulations and physical measurements
and revealed a close communication between fluorescent protein tags
and the domain to which they were fused. The data indicate that previous
intramolecular FRET distance measurements report SERCA structure changes
with high fidelity and suggest a structural mechanism that facilitates
the closure of the SERCA cytoplasmic headpiece.
Collapse
Affiliation(s)
- Nikolai Smolin
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago , Maywood, Illinois 60153, United States
| | | |
Collapse
|
15
|
Exploring the dynamics and interaction of a full ErbB2 receptor and Trastuzumab-Fab antibody in a lipid bilayer model using Martini coarse-grained force field. J Comput Aided Mol Des 2014; 28:1093-107. [DOI: 10.1007/s10822-014-9787-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 08/07/2014] [Indexed: 02/01/2023]
|
16
|
Takahashi K, Oda T, Naruse K. Coarse-grained molecular dynamics simulations of biomolecules. AIMS BIOPHYSICS 2014. [DOI: 10.3934/biophy.2014.1.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|