1
|
Wanjari VP, Kumar P, Duttagupta SP, Singh SP. Adsorption-Enhanced Sensitivity for Electrochemical Sensing of Diclofenac by Poly(ether sulfone)-Based Laser-Induced Graphene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:152-161. [PMID: 39714345 DOI: 10.1021/acs.langmuir.4c03229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Emerging contaminants are a matter of growing concern for environmental and human health and safety, requiring efficient and affordable sensing platforms. Laser-induced graphene (LIG) is a novel material with a 3D porous graphene structure that can be fabricated in a simple one-step fabrication process. However, most LIG-based works in electrochemical sensors are limited to polyimide (PI)-based platforms, thus limiting the purview of properties of LIG dependent on the substrate-laser interaction. Diclofenac (DCF), a nonsteroidal anti-inflammatory drug, is an emerging contaminant in water and wastewater that threatens aquatic and terrestrial life. Furthermore, LIG-based sensors have not been used to sense DCF. In this work, we demonstrate the spontaneous adsorption behavior of LIG toward DCF without applying any external potential. This spontaneous adsorption phenomenon can enhance the sensitivity per the characteristics of the tested water samples and permissible standards to be followed. Poly(ether sulfone)-based LIG (PES-LIG) is found to be more responsive to laser irradiation than PI-LIG due to its highly porous surface and fibrous nature, imparting more electrochemical sites and adsorption area for DCF. These characteristics lead to a higher sensitivity of 0.2774 μA μM-1 toward DCF sensing for PES-LIG with a limit of detection of 0.1 μM. The sensors were applied for DCF measurement in wastewater and tap water samples with appreciable selectivity. The specific adsorption behavior of LIG toward DCF could pave the way for new pathways in emerging contaminant sensing and removal as well as for other applications.
Collapse
Affiliation(s)
- Vikram P Wanjari
- Centre for Research in Nanotechnology and Science, Indian Insitute of Technology Bombay, Mumbai 400076, India
| | - Pawan Kumar
- Environmental Science and Engineering Department, Indian Insitute of Technology Bombay, Mumbai 400076, India
| | - Siddhartha P Duttagupta
- Centre for Research in Nanotechnology and Science, Indian Insitute of Technology Bombay, Mumbai 400076, India
- Department of Electrical Engineering, Indian Insitute of Technology Bombay, Mumbai 400076, India
| | - Swatantra P Singh
- Centre for Research in Nanotechnology and Science, Indian Insitute of Technology Bombay, Mumbai 400076, India
- Environmental Science and Engineering Department, Indian Insitute of Technology Bombay, Mumbai 400076, India
- Interdisciplinary Program in Climate Studies, Indian Insitute of Technology Bombay, Mumbai 400076, India
- Center of Excellence on Membrane Technologies in Desalination, Brine Management and Water Recycling, Indian Insitute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
2
|
Megale JD, De Souza D. New approaches in antibiotics detection: The use of square wave voltammetry. J Pharm Biomed Anal 2023; 234:115526. [PMID: 37385092 DOI: 10.1016/j.jpba.2023.115526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/27/2023] [Accepted: 06/10/2023] [Indexed: 07/01/2023]
Abstract
Antibiotics belongs to a class of pharmaceutical compounds widely used due to their effectiveness against bacterial infections. However, if consumed or inappropriately disposed of in the environment can results in environmental and public health problems, because they are considered emerging contaminants and their residues represent damage, whether in the long or short term, to different terrestrial ecosystems, in addition to bringing potential risks to agricultural sectors, such as livestock and fish farming. For this, the development of analytical methods for low-concentration detection and identification of antibiotics in natural waters, wastewaters, soil, foods, and biological fluids is necessary. This review shows the applicability of square wave voltammetry for the analytical determination of antibiotics from different chemical classes and covers a variety of samples and working electrodes that are used as voltammetric sensors. The review involved the analysis of scientific publications from the Science Direct® and Scopus® databases, with scientific manuscripts covering the period between January 2012 and May 2023. Various manuscripts were discussed indicating the applicability of square wave voltammetry in antibiotics detection in urine, blood, natural waters, milk, among other complex samples.
Collapse
Affiliation(s)
- Júlia Duarte Megale
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo street, 566, Patos de Minas, MG 38700-002, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo street, 566, Patos de Minas, MG 38700-002, Brazil.
| |
Collapse
|
3
|
Krishnan RR, Prasad E, K H P. Integrating thermodynamics towards bulk level synthesis of nano Ni catalysts: a green mediated sol–gel auto combustion method. NEW J CHEM 2023. [DOI: 10.1039/d2nj05391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Novel strategy for the environmentally benign bulk level synthesis of nickel nanoparticles.
Collapse
Affiliation(s)
- Raji R. Krishnan
- Post Graduate Department of Chemistry and Research Centre, Sanatana Dharma College, University of Kerala, Alappuzha, Kerala, India, 688003
- Research Centre, University of Kerala, Thiruvananthapuram, Kerala, India, 695034
| | - E. Prasad
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Prema K H
- Post Graduate Department of Chemistry and Research Centre, Sanatana Dharma College, University of Kerala, Alappuzha, Kerala, India, 688003
- Research Centre, University of Kerala, Thiruvananthapuram, Kerala, India, 695034
| |
Collapse
|
4
|
Fang Y, Chang H, Li J, Li Z, Zhang D. Recent Advances in Metal Nanocomposite-Based Electrochemical (Bio)Sensors for Pharmaceutical Analysis. Crit Rev Anal Chem 2022; 54:1680-1706. [PMID: 36201181 DOI: 10.1080/10408347.2022.2128633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Rising rates of drug abuse and pharmaceutical pollution throughout the world as a consequence of increased drug production and utilization pose a serious risk to public health and to environmental integrity. It is thus critical that reliable analytical approaches to detecting drugs and their metabolites in a range of sample matrices be developed. Recent advances in the design of nanomaterial-based electrochemical sensors and biosensors have enabled promising new approaches to pharmaceutical analysis. In particular, the development of a range of novel metal nanocomposites with enhanced catalytic properties has provided a wealth of opportunities for the design of rapid and reliable platforms for the detection of specific pharmaceutical compounds. The present review provides a comprehensive overview of representative metal nanocomposites with synergistic properties and their recent (2017-2022) application in the context of electrochemical sensing as a means of detecting specific antibiotic, tuberculostatic, analgesic, antineoplastic, antipsychotic, and antihypertensive drugs. In discussing these applications, we further explore a variety of testing-related principles, fabrication approaches, characterization techniques, and parameters associated with the sensitivity and selectivity of these sensor platforms before surveying the future outlook regarding the fabrication of next-generation (bio)sensor platforms for use in pharmaceutical analysis.
Collapse
Affiliation(s)
- Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| |
Collapse
|
5
|
Beitollahi H, Garkani Nejad F, Tajik S, Di Bartolomeo A. Screen-Printed Graphite Electrode Modified with Graphene-Co 3O 4 Nanocomposite: Voltammetric Assay of Morphine in the Presence of Diclofenac in Pharmaceutical and Biological Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193454. [PMID: 36234582 PMCID: PMC9565238 DOI: 10.3390/nano12193454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 05/12/2023]
Abstract
This work focuses on the development of a novel electrochemical sensor for the determination of morphine in the presence of diclofenac. The facile synthesis of graphene-Co3O4 nanocomposite was performed. The prepared material (graphene-Co3O4 nanocomposite) was analyzed by diverse microscopic and spectroscopic approaches for its crystallinity, composition, and morphology. Concerning the electrochemical determinations, after drop-casting the as-fabricated graphene-Co3O4 nanocomposite on the surface of a screen-printed graphite electrode (SPGE), their electrochemical performance was scrutinized towards the morphine detection. It was also found that an SPGE modified by a graphene-Co3O4 nanocomposite exhibited better electrocatalytic activity for morphine oxidation than unmodified electrode. Under optimal conditions, the differential pulse voltammetry (DPV) was employed to explore the present sensor (graphene-Co3O4/SPGE), the findings of which revealed a linear dynamic range as broad as 0.02-575.0 µM and a limit of detection (LOD) as narrow as 0.007 μM. The sensitivity was estimated to be 0.4 µM/(µA cm2). Furthermore, the graphene-Co3O4/SPGE sensor demonstrated good analytical efficiency for sensing morphine in the presence of diclofenac in well-spaced anodic peaks. According to the DPV results, this sensor displayed two distinct peaks for the oxidation of morphine and diclofenac with 350 mV potential difference. In addition, the graphene-Co3O4/SPGE was explored for voltammetric determination of diclofenac and morphine in pharmaceutical and biological specimens of morphine ampoule, diclofenac tablet, and urine, where recovery rates close to 100% were recorded for all of the samples.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman P.O. Box 76318-85356, Iran
- Correspondence: (H.B.); (A.D.B.)
| | - Fraiba Garkani Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman P.O. Box 76175-133, Iran
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran
| | - Antonio Di Bartolomeo
- Department of Physics “E.R. Caianaiello”, University of Salerno, 84084 Fisciano, Salerno, Italy
- Correspondence: (H.B.); (A.D.B.)
| |
Collapse
|
6
|
Lazanas AC, Prodromidis MI. Large surface vanadium pentoxide nanosheet modified screen-printed electrode for nanomolar diclofenac determination. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Qayyum A, Batool Z, Fatima M, Buzdar SA, Ullah H, Nazir A, Jabeen Q, Siddique S, Imran R. Antibacterial and in vivo toxicological studies of Bi 2O 3/CuO/GO nanocomposite synthesized via cost effective methods. Sci Rep 2022; 12:14287. [PMID: 35995797 PMCID: PMC9395419 DOI: 10.1038/s41598-022-17332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
In this research work, Bi2O3, Bi2O3/GO and Bi2O3/CuO/GO nanocomposites have been synthesized via an eco-friendly green synthesis technique, solgel route and co-precipitation method respectively for the assessment of antibacterial activity as well as in vivo toxicity. The XRD patterns confirm the formation of Bi2O3, Bi2O3/GO and Bi2O3/CuO/GO nanocomposites showing monoclinic structures. Crystallite size and lattice strain are calculated by Scherrer equation, Scherrer plot and Willimson Hall plot methods. Average crystallite size measured for Bi2O3, Bi2O3/GO and Bi2O3/CuO/GO nanocomposites by Scherrer equation, Scherrer plot and WH-plot methods are (5.1, 13.9, 11.5)nm, (5.4, 14.2, 11.3)nm and (5.2, 13.5, 12.0)nm respectively. Optical properties such as absorption peaks and band-gap energies are studied by UV-vis spectroscopy. The FTIR peaks at 513 cm-1, 553 cm-1 and 855 cm-1 confirms the successful synthesis of Bi2O3, Bi2O3/GO and Bi2O3/CuO/GO nanocomposites. The antibacterial activity of synthesized Bi2O3, Bi2O3/GO and Bi2O3/CuO/GO nanocomposites is examined against two gram-negative (Escherichia coli and pseudomonas) as well as gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) at dose 25 mg/kg and 40 mg/kg by disk diffusion technique. Zone of inhibition for Bi2O3, Bi2O3/GO and Bi2O3/CuO/GO at dose 40 mg/kg against E. coli (gram - ve) are 12 mm, 17 mm and 18 mm respectively and against Pseudomonas (gram - ve) are 28 mm, 19 mm and 21 mm respectively. While the zone of inhibition for Bi2O3/GO and Bi2O3/CuO/GO at dose 40 mg/kg against B. cereus (gram + ve) are 8 mm and 8.5 mm respectively and against S. aureus (gram + ve) are 5 mm and 10.5 mm respectively. These amazing results reveal that Bi2O3, Bi2O3/GO and Bi2O3/CuO/GO nanocomposite as a kind of antibacterial content, have enormous potential for biomedical applications. In addition, the in vivo toxicity of synthesized Bi2O3/CuO/GO nanocomposite is investigated on Swiss Albino mice at dose of 20 mg/kg by evaluating immune response, hematology and biochemistry at the time period of 2, 7, 14 and 30 days. No severe damage is observed in mice during whole treatment. The p value calculated by statistical analysis of hematological and biochemistry tests is nonsignificant which ensures that synthesized nanocomposites are safe and non-toxic as they do not affect mice significantly. This study proves that Bi2O3/CuO/GO nanocomposites are biocompatible and can be explored further for different biomedical applications.
Collapse
Affiliation(s)
- Asifa Qayyum
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zahida Batool
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Mahvish Fatima
- Department of Physics, Deanship of Educational Services, Qassim University, P.O.Box 6595, Buraydah, 51452, Saudi Arabia.
| | - Saeed Ahmad Buzdar
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafeez Ullah
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Aalia Nazir
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Qaiser Jabeen
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sofia Siddique
- Department of Physics, University of Engineering and Technology Lahore, Lahore, Pakistan
| | - Rimsha Imran
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
8
|
Kalambate PK, Noiphung J, Rodthongkum N, Larpant N, Thirabowonkitphithan P, Rojanarata T, Hasan M, Huang Y, Laiwattanapaisal W. Nanomaterials-based electrochemical sensors and biosensors for the detection of non-steroidal anti-inflammatory drugs. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Gunes O, Sarilmaz A, Bas SZ, Ozmen M, Ozel F, Ersoz M. Electrochemical Detection of Epinephrine Based on a Screen‐printed Electrode Modified with NiO−ERGO Nanocomposite Film. ELECTROANAL 2021. [DOI: 10.1002/elan.202100394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ozlem Gunes
- Department of Chemistry Selcuk University 42250 Konya Turkey
| | - Adem Sarilmaz
- Department of Metallurgical and Materials Engineering Karamanoglu Mehmetbey University 70200 Karaman Turkey
| | - Salih Zeki Bas
- Department of Chemistry Selcuk University 42250 Konya Turkey
| | - Mustafa Ozmen
- Department of Chemistry Selcuk University 42250 Konya Turkey
| | - Faruk Ozel
- Department of Metallurgical and Materials Engineering Karamanoglu Mehmetbey University 70200 Karaman Turkey
| | - Mustafa Ersoz
- Department of Chemistry Selcuk University 42250 Konya Turkey
| |
Collapse
|
10
|
An electrochemical sensor based on plasma-treated zinc oxide nanoflowers for the simultaneous detection of dopamine and diclofenac sodium. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105237] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Simultaneous Analysis of Paracetamol and Diclofenac Using MWCNTs-COOH Modified Screen-Printed Carbon Electrode and Pulsed Potential Accumulation. MATERIALS 2020; 13:ma13143091. [PMID: 32664310 PMCID: PMC7412038 DOI: 10.3390/ma13143091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022]
Abstract
A differential-pulse adsorptive stripping voltammetric (DPAdSV) procedure with the use of pulsed potential accumulation and carboxyl functionalized multiwalled carbon nanotubes modified screen-printed carbon electrode (SPCE/MWCNTs-COOH) was delineated for simultaneous analysis of paracetamol (PA) and diclofenac (DF). The use of carboxyl functionalized MWCNTs and pulsed potential accumulation improves the analytical signals of PA and DF, and minimizes interferences from surfactants. After optimization of analytical conditions for this sensor, the peak currents of the two compounds were found to increase linearly with the increase in their concentration (5.0 × 10-9-5.0 × 10-6 mol L-1 with a detection limit of 1.4 × 10-9 mol L-1 for PA, and 1.0 × 10-10-2.0 × 10-8 mol L-1 with a detection limit of 3.0 × 10-11 mol L-1 for DF). For the first time, the electrochemical sensor allows simultaneous determination of PA and DF at concentrations of 24.3 ± 0.5 nmol L-1 and 3.7 ± 0.7 nmol L-1, respectively, in wastewater samples purified in a sewage treatment plant.
Collapse
|
12
|
Kimuam K, Rodthongkum N, Ngamrojanavanich N, Chailapakul O, Ruecha N. Single step preparation of platinum nanoflowers/reduced graphene oxide electrode as a novel platform for diclofenac sensor. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Sasal A, Tyszczuk-Rotko K, Wójciak M, Sowa I. First Electrochemical Sensor (Screen-Printed Carbon Electrode Modified with Carboxyl Functionalized Multiwalled Carbon Nanotubes) for Ultratrace Determination of Diclofenac. MATERIALS 2020; 13:ma13030781. [PMID: 32046335 PMCID: PMC7040793 DOI: 10.3390/ma13030781] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022]
Abstract
A simple, sensitive and time-saving differential-pulse adsorptive stripping voltammetric (DPAdSV) procedure using a screen-printed carbon electrode modified with carboxyl functionalized multiwalled carbon nanotubes (SPCE/MWCNTs-COOH) for the determination of diclofenac (DF) is presented. The sensor was characterized using optical profilometry, SEM, and cyclic voltammetry (CV). The use of carboxyl functionalized MWCNTs as a SPCE modifier improved the electron transfer process and the active surface area of sensor. Under optimum conditions, very sensitive results were obtained with a linear range of 0.1–10.0 nmol L−1 and a limit of detection value of 0.028 nmol L−1. The SPCE/MWCNTs-COOH also exhibited satisfactory repeatability, reproducibility, and selectivity towards potential interferences. Moreover, for the first time, the electrochemical sensor allows determining the real concentrations of DF in environmental water samples without sample pretreatment steps.
Collapse
Affiliation(s)
- Agnieszka Sasal
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University, 20-031 Lublin, Poland;
| | - Katarzyna Tyszczuk-Rotko
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University, 20-031 Lublin, Poland;
- Correspondence: (K.T.-R.); (M.W.)
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence: (K.T.-R.); (M.W.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|