1
|
Rombouts KB, van Merrienboer TAR, Ket JCF, Bogunovic N, van der Velden J, Yeung KK. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur J Clin Invest 2022; 52:e13697. [PMID: 34698377 PMCID: PMC9285394 DOI: 10.1111/eci.13697] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/12/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Aortic aneurysms (AA) are pathological dilations of the aorta, associated with an overall mortality rate up to 90% in case of rupture. In addition to dilation, the aortic layers can separate by a tear within the layers, defined as aortic dissections (AD). Vascular smooth muscle cells (vSMC) are the predominant cell type within the aortic wall and dysregulation of vSMC functions contributes to AA and AD development and progression. However, since the exact underlying mechanism is poorly understood, finding potential therapeutic targets for AA and AD is challenging and surgery remains the only treatment option. METHODS In this review, we summarize current knowledge about vSMC functions within the aortic wall and give an overview of how vSMC functions are altered in AA and AD pathogenesis, organized per anatomical location (abdominal or thoracic aorta). RESULTS Important functions of vSMC in healthy or diseased conditions are apoptosis, phenotypic switch, extracellular matrix regeneration and degradation, proliferation and contractility. Stressors within the aortic wall, including inflammatory cell infiltration and (epi)genetic changes, modulate vSMC functions and cause disturbance of processes within vSMC, such as changes in TGF-β signalling and regulatory RNA expression. CONCLUSION This review underscores a central role of vSMC dysfunction in abdominal and thoracic AA and AD development and progression. Further research focused on vSMC dysfunction in the aortic wall is necessary to find potential targets for noninvasive AA and AD treatment options.
Collapse
Affiliation(s)
- Karlijn B Rombouts
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | - Tara A R van Merrienboer
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | | | - Natalija Bogunovic
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Ducas AA, Kuhn DCS, Bath LC, Lozowy RJ, Boyd AJ. Increased matrix metalloproteinase 9 activity correlates with flow-mediated intraluminal thrombus deposition and wall degeneration in human abdominal aortic aneurysm. JVS Vasc Sci 2021; 1:190-199. [PMID: 34617048 PMCID: PMC8489223 DOI: 10.1016/j.jvssci.2020.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/17/2020] [Indexed: 11/15/2022] Open
Abstract
Objective We have previously demonstrated that human abdominal aortic aneurysm (AAA) rupture occurs in zones of low wall shear stress where flow recirculation and intraluminal thrombus (ILT) deposition are increased. Matrix metalloproteinase-9 (MMP-9) is involved in the pathogenesis of AAA via its lytic effect on collagen and elastin. We hypothesize that flow-mediated ILT deposition promotes increased local inflammatory and MMP-9 activity that leads to AAA wall degeneration. The purpose of this study was to examine the correlation between predicted pulsatile flow dynamics and regional differences in MMP-9, elastin, collagen, and ILT deposition in human AAA. Methods Full-thickness aortic tissue samples were collected from 24 patients undergoing open AAA repair. Control infrarenal aortic tissue was obtained from 6 patients undergoing aortobifemoral bypass. Full-thickness aortic tissue and ILT were assessed for MMP-9 levels using a cytokine array assay. Histologic and immunohistochemical assessment of inflammation, collagen and elastin content, and MMP-9 levels were also measured. Three-dimensional AAA geometry was generated from computed tomography angiogram (CTA) images using Mimics software and computational fluid dynamics was used to predict pulsatile aortic blood flow. Results The majority of AAA showed eccentric ILT deposition which was correlated with predicted recirculation blood flow (R2 = –0.17; P < .05). The regions of high ILT were associated with significant increases in inflammation and loss of elastin and collagen compared with regions of low ILT, or with control tissue. MMP-9 was significantly higher in areas of high ILT deposition compared with areas devoid of ILT. Tissue MMP-9 was correlated with the thickness of ILT deposition (R2 = 0.46; P < .05), and was also present in high levels in thick compared with thin ILT. Conclusions We have shown a correlation between flow-mediated ILT deposition with increased tissue levels of MMP-9 activity, increased inflammatory infiltrate, and decreased elastin and collagen content in stereotactically sampled human AAA, suggesting that ILT deposition is associated with local increases in proteolytic activity that may preferentially weaken and promote rupture at selected regions.
Collapse
Affiliation(s)
- Annie A Ducas
- Department of Surgery, University of Manitoba, Manitoba, Canada
| | - David C S Kuhn
- Department of Mechanical Engineering, University of Manitoba, Manitoba, Canada
| | - Lauren C Bath
- Faculty of Medicine, University of Manitoba, Manitoba, Canada
| | - Richard J Lozowy
- Department of Mechanical Engineering, University of Manitoba, Manitoba, Canada
| | - April J Boyd
- Department of Surgery, University of Manitoba, Manitoba, Canada
| |
Collapse
|
3
|
Migacz M, Janoska-Gawrońska A, Holecki M, Chudek J. The role of osteoprotegerin in the development, progression and management of abdominal aortic aneurysms. Open Med (Wars) 2020; 15:457-463. [PMID: 33336003 PMCID: PMC7712403 DOI: 10.1515/med-2020-0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 01/16/2023] Open
Abstract
Osteoprotegerin (OPG) appears to be a very promising marker both in the diagnosis of abdominal aortic aneurysms (AAAs) and as a potential target in its treatment. This article presents an overview of the current literature that discusses the role of OPG in the pathogenesis of atherosclerosis and its potential value as a prognostic factor in AAA. Pharmacological modulation of OPG expression has been considered. In conclusion, it seems that further research designed to assess the relationship between OPG and AAA is needed as this may contribute to improved AAA monitoring and more effective treatment of patients with AAA.
Collapse
Affiliation(s)
- Maciej Migacz
- Department and Clinic of Internal, Autoimmune and Metabolic Diseases, Faculty of Medicine, Medical University of Silesia in Katowice, Poland
| | - Agata Janoska-Gawrońska
- Department and Clinic of Internal, Autoimmune and Metabolic Diseases, Faculty of Medicine, Medical University of Silesia in Katowice, Poland
| | - Michał Holecki
- Department and Clinic of Internal, Autoimmune and Metabolic Diseases, Faculty of Medicine, Medical University of Silesia in Katowice, Poland
| | - Jerzy Chudek
- Department and Clinic of Internal Medicine and Cancer Chemotherapy, Faculty of Medicine, Medical University of Silesia in Katowice, Poland
| |
Collapse
|
4
|
Moran CS, Jose RJ, Biros E, Golledge J. Osteoprotegerin deficiency limits angiotensin II-induced aortic dilatation and rupture in the apolipoprotein E-knockout mouse. Arterioscler Thromb Vasc Biol 2014; 34:2609-16. [PMID: 25301844 DOI: 10.1161/atvbaha.114.304587] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Mounting evidence links osteoprotegerin with cardiovascular disease. Elevated serum and aortic tissue osteoprotegerin are associated with the presence and growth of abdominal aortic aneurysm in humans; however, a role for osteoprotegerin in abdominal aortic aneurysm pathogenesis remains to be shown. We examined the functional significance of osteoprotegerin in aortic aneurysm using an Opg-deficient mouse model and in vitro investigations. APPROACH AND RESULTS Homozygous deletion of Opg in apolipoprotein E-deficient mice (ApoE(-/-)Opg(-/-)) inhibited angiotensin II-induced aortic dilatation. Survival free from aortic rupture was increased from 67% in ApoE(-/-)Opg(+/+) controls to 94% in ApoE(-/-)Opg(-/-) mice (P=0.040). Serum concentrations of proinflammatory cytokines/chemokines, and aortic expression for cathepsin S (CTSS), matrix metalloproteinase 2, and matrix metalloproteinase 9 after 7 days (early-phase) of angiotensin II infusion were significantly reduced in ApoE(-/-)Opg(-/-) mice compared with ApoE(-/-)Opg(+/+) controls. In addition, aortic expression of markers for an inflammatory phenotype in aortic vascular smooth muscle cells in response to early-phase of angiotensin II infusion was significantly lower in Opg-deficient mice. In vitro, human abdominal aortic aneurysm vascular smooth muscle cells produced more CTSS and exhibited increased CTSS-derived elastolytic activity than healthy aortic vascular smooth muscle cells, whereas recombinant human osteoprotegerin stimulated CTSS-dependent elastase activity in aortic vascular smooth muscle cells. CONCLUSIONS These findings support a role for osteoprotegerin in aortic aneurysm through upregulation of CTSS, matrix metalloproteinase 2, and matrix metalloproteinase 9 within the aorta, promoting an inflammatory phenotype in aortic vascular smooth muscle cells in response to angiotensin II.
Collapse
Affiliation(s)
- Corey S Moran
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia (C.S.M., R.J.J., E.B., J.G.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.)
| | - Roby J Jose
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia (C.S.M., R.J.J., E.B., J.G.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.)
| | - Erik Biros
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia (C.S.M., R.J.J., E.B., J.G.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.)
| | - Jonathan Golledge
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia (C.S.M., R.J.J., E.B., J.G.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.).
| |
Collapse
|
5
|
Hwang JS, Kim HJ, Kim G, Kang ES, Ham SA, Yoo T, Paek KS, Yabe-Nishimura C, Kim HJ, Seo HG. PPARδ reduces abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice by regulating extracellular matrix homeostasis and inflammatory responses. Int J Cardiol 2014; 174:43-50. [DOI: 10.1016/j.ijcard.2014.03.138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 02/19/2014] [Accepted: 03/15/2014] [Indexed: 10/25/2022]
|
6
|
Krishna SM, Seto SW, Moxon JV, Rush C, Walker PJ, Norman PE, Golledge J. Fenofibrate increases high-density lipoprotein and sphingosine 1 phosphate concentrations limiting abdominal aortic aneurysm progression in a mouse model. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:706-18. [PMID: 22698985 DOI: 10.1016/j.ajpath.2012.04.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 04/03/2012] [Accepted: 04/12/2012] [Indexed: 02/03/2023]
Abstract
There are currently no acceptable treatments to limit progression of abdominal aortic aneurysm (AAA). Increased serum concentrations of high-density lipoprotein (HDL) are associated with reduced risk of developing an AAA. The present study aimed to assess the effects of fenofibrate on aortic dilatation in a mouse model of AAA. Male low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice were maintained on a high-fat diet for 3 weeks followed by 6 weeks of oral administration of vehicle or fenofibrate. From 14 to 18 weeks of age, all mice were infused with angiotensin II (AngII). At 18 weeks of age, blood and aortas were collected for assessment of serum lipoproteins, aortic pathology, aortic Akt1 and endothelial nitric oxide synthase (eNOS) activities, immune cell infiltration, eNOS and inducible NOS (iNOS) expression, sphingosine 1 phosphate (S1P) receptor status, and apoptosis. Mice receiving fenofibrate had reduced suprarenal aortic diameter, reduced aortic arch Sudan IV staining, higher serum HDL levels, increased serum S1P concentrations, and increased aortic Akt1 and eNOS activities compared with control mice. Macrophages, T lymphocytes, and apoptotic cells were less evident and eNOS, iNOS, and S1P receptors 1 and 3 were up-regulated in aortas from mice receiving fenofibrate. The present findings suggest that fenofibrate antagonizes AngII-induced AAA and atherosclerosis by up-regulating serum HDL and S1P levels, with associated activation of NO-producing enzymes and reduction of aortic inflammation.
Collapse
Affiliation(s)
- Smriti M Krishna
- Vascular Biology Unit, School of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | | | | | | | | | | | | |
Collapse
|
7
|
Wilson JS, Baek S, Humphrey JD. Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. J R Soc Interface 2012; 9:2047-58. [PMID: 22491975 DOI: 10.1098/rsif.2012.0097] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Complementary advances in medical imaging, vascular biology and biomechanics promise to enable computational modelling of abdominal aortic aneurysms to play increasingly important roles in clinical decision processes. Using a finite-element-based growth and remodelling model of evolving aneurysm geometry and material properties, we show that regional variations in material anisotropy, stiffness and wall thickness should be expected to arise naturally and thus should be included in analyses of aneurysmal enlargement or wall stress. In addition, by initiating the model from best-fit material parameters estimated for non-aneurysmal aortas from different subjects, we show that the initial state of the aorta may influence strongly the subsequent rate of enlargement, wall thickness, mechanical behaviour and thus stress in the lesion. We submit, therefore, that clinically reliable modelling of the enlargement and overall rupture-potential of aneurysms may require both a better understanding of the mechanobiological processes that govern the evolution of these lesions and new methods of determining the patient-specific state of the pre-aneurysmal aorta (or correlation to currently unaffected portions thereof) through knowledge of demographics, comorbidities, lifestyle, genetics and future non-invasive or minimally invasive tests.
Collapse
Affiliation(s)
- J S Wilson
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
8
|
Biros E, Walker PJ, Nataatmadja M, West M, Golledge J. Downregulation of transforming growth factor, beta receptor 2 and Notch signaling pathway in human abdominal aortic aneurysm. Atherosclerosis 2012; 221:383-6. [PMID: 22310065 DOI: 10.1016/j.atherosclerosis.2012.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/19/2011] [Accepted: 01/03/2012] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Mutations in FBN1 and TGFBR2 genes are the main causative mutations identified in Marfan syndrome (MFS). The major vascular complication of MFS is aneurysm formation. Abdominal aortic aneurysm (AAA) is an acquired disease of later life of unknown etiology. The aim of this study was to examine if genetic aberrations in MFS-related genes FBN1 and TGFBR2 are present in patients with AAA. METHODS We assessed the presence of copy number variation (CNV) in FBN1 and TGFBR2 genes in AAA biopsies from twelve patients. We also analyzed the expression of these genes in AAA biopsies compared to control biopsies from six organ donors. In addition we assessed the expression of two members of the Notch signaling pathway NOTCH3 and HEY2 as well as aortic smooth muscle cell (AoSMC) differentiation marker TAGLN in AAA and control biopsies. RESULTS Loss of one copy (deletion) of the FBN1 exon 66 sequence and TGFBR2 exon 8 was identified in 7 (58%) and 11 (92%) of the 12 AAA biopsies. No copy number amplifications (duplications) were detected. Patients carrying TGFBR2 exon 8 deletion showed marked downregulation of this gene in AAA biopsies compared to control biopsies (0.699 vs. 1.765, p = 0.038). Notch signaling components NOTCH3 and HEY2 were markedly downregulated in AAA, while expression of the AoSMC differentiation marker TAGLN did not differ between AAA and control biopsies (0.468 vs. 0.486, p = 0.546). CONCLUSION This study suggests an acquired impairment in TGF-β signaling that along with downregulation of the Notch signaling pathway may contribute to the pathogenesis of AAA.
Collapse
Affiliation(s)
- Erik Biros
- Vascular Biology Unit, School of Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | | | | | | | | |
Collapse
|
9
|
Sun J, Sukhova GK, Zhang J, Chen H, Sjöberg S, Libby P, Xia M, Xiong N, Gelb BD, Shi GP. Cathepsin K deficiency reduces elastase perfusion-induced abdominal aortic aneurysms in mice. Arterioscler Thromb Vasc Biol 2011; 32:15-23. [PMID: 21817099 DOI: 10.1161/atvbaha.111.235002] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Cathepsin K (CatK) is one of the most potent mammalian elastases. We have previously shown increased expression of CatK in human abdominal aortic aneurysm (AAA) lesions. Whether this protease participates directly in AAA formation, however, remains unknown. METHODS AND RESULTS Mouse experimental AAA was induced with aortic perfusion of a porcine pancreatic elastase. Using this experimental model, we demonstrated that absence of CatK prevented AAA formation in mice 14 days postperfusion. CatK deficiency significantly reduced lesion CD4(+) T-cell content, total lesion and medial cell proliferation and apoptosis, medial smooth muscle cell (SMC) loss, elastinolytic CatL and CatS expression, and elastin fragmentation, but it did not affect AAA lesion Mac-3(+) macrophage accumulation or CD31(+) microvessel numbers. In vitro studies revealed that CatK contributed importantly to CD4(+) T-cell proliferation, SMC apoptosis, and other cysteinyl cathepsin and matrix metalloproteinase expression and activities in SMCs and endothelial cells but played negligible roles in microvessel growth and monocyte migration. AAA lesions from CatK-deficient mice showed reduced elastinolytic cathepsin activities compared with those from wild-type control mice. CONCLUSIONS This study demonstrates that CatK plays an essential role in AAA formation by promoting T-cell proliferation, vascular SMC apoptosis, and elastin degradation and by affecting vascular cell protease expression and activities.
Collapse
Affiliation(s)
- Jiusong Sun
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Michel JB, Martin-Ventura JL, Egido J, Sakalihasan N, Treska V, Lindholt J, Allaire E, Thorsteinsdottir U, Cockerill G, Swedenborg J. Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovasc Res 2011; 90:18-27. [PMID: 21037321 PMCID: PMC3058728 DOI: 10.1093/cvr/cvq337] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/04/2010] [Accepted: 10/20/2010] [Indexed: 01/22/2023] Open
Abstract
Aneurysm of the abdominal aorta (AAA) is a particular, specifically localized form of atherothrombosis, providing a unique human model of this disease. The pathogenesis of AAA is characterized by a breakdown of the extracellular matrix due to an excessive proteolytic activity, leading to potential arterial wall rupture. The roles of matrix metalloproteinases and plasmin generation in progression of AAA have been demonstrated both in animal models and in clinical studies. In the present review, we highlight recent studies addressing the role of the haemoglobin-rich, intraluminal thrombus and the adventitial response in the development of human AAA. The intraluminal thrombus exerts its pathogenic effect through platelet activation, fibrin formation, binding of plasminogen and its activators, and trapping of erythrocytes and neutrophils, leading to oxidative and proteolytic injury of the arterial wall. These events occur mainly at the intraluminal thrombus-circulating blood interface, and pathological mediators are conveyed outwards, where they promote matrix degradation of the arterial wall. In response, neo-angiogenesis, phagocytosis by mononuclear cells, and a shift from innate to adaptive immunity in the adventitia are observed. Abdominal aortic aneurysm thus represents an accessible spatiotemporal model of human atherothrombotic progression towards clinical events, the study of which should allow further understanding of its pathogenesis and the translation of pathogenic biological activities into diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Jean-Baptiste Michel
- Inserm Unit 698, Cardiovascular Remodelling, Denis Diderot University, Hôpital X. Bichat, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Biomechanics and Pathobiology of Aortic Aneurysms. STUDIES IN MECHANOBIOLOGY, TISSUE ENGINEERING AND BIOMATERIALS 2011. [DOI: 10.1007/8415_2011_84] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Schweitzer M, Mitmaker B, Obrand D, Sheiner N, Abraham C, Dostanic S, Chalifour LE. Atorvastatin mediates increases in intralesional BAX and BAK expression in human end-stage abdominal aortic aneurysms. Can J Physiol Pharmacol 2010; 87:915-22. [PMID: 19935899 DOI: 10.1139/y09-085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic apoptosis activation may participate in abdominal aortic aneurysm (AAA) expansion. Statin treatment slows AAA progression independent of cholesterol lowering. We hypothesized that Atorvastatin treatment alters apoptosis protein expression and activation in AAAs. Protein was isolated from the central and distal portions of end-stage human AAA tissue obtained during surgical repair from non-statin (NST) and Atorvastatin-treated (AT) patients. Expression was compared using immunoblots. Bcl-2 expression was unchanged but Bak (4-fold, p < 0.013) and Bax (3-fold, p < 0.035) expression was increased in AT (n = 12) versus NST (n = 15) patients. No cytochrome c release or caspase 3 activation was detected and Clusterin, GRP78, and BNIP1 expression was similar in NST and AT samples. Bcl-2 and Bax cDNA sequences from AAA tissue (n = 10) and the general population were identical. Thus, the increase in Bax and Bak in AT-treated AAAs did not activate the mitochondria or endoplasmic reticulum mediated apoptosis pathways. Bcl-2, Bax, and Bak have non-apoptosis related functions that include maintenance of endoplasmic reticulum (ER), homeostasis, and adaptation to stress. We speculate that Atorvastatin-mediated increases in Bax and Bak may positively affect their non-apoptosis related cell functions to account for the beneficial effect of statins to slow AAA expansion.
Collapse
Affiliation(s)
- Morris Schweitzer
- Department of Endocrinology, Sir Mortimer B. Davis-Jewish General Hospital, 3755 chemin Côte Ste Catherine, Montréal, QC H3T 1E2, Canada.
| | | | | | | | | | | | | |
Collapse
|
13
|
Charbonneau C, Gautrot JE, Hébert MJ, Zhu XX, Lerouge S. Chondroitin-4-Sulfate: A Bioactive Macromolecule to Foster Vascular Healing around Stent-Grafts after Endovascular Aneurysm Repair. Macromol Biosci 2007; 7:746-52. [PMID: 17457946 DOI: 10.1002/mabi.200700008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Deficient healing after endovascular aneurysm repair with a stent-graft is thought to be related to pro-apoptotic environment in abdominal aortic aneurysms and inertness of graft materials. We developed a bioactive coating containing chondroitin-4-sulfate and assessed its potential to improve cell adhesion, viability and resistance to apoptosis on PET surfaces. Coatings of collagen type I and CS were prepared and characterized by DMMB, FT-IR, DSC, SEM and contact angle goniometry. Preliminary cell culture experiments with vascular smooth muscle cells showed increased adhesion and viability in serum-free medium on CS-coated surfaces compared to control PET films.
Collapse
Affiliation(s)
- Cindy Charbonneau
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, 1560 Sherbrooke Est, Montréal, QC, Canada H2L 4M1
| | | | | | | | | |
Collapse
|
14
|
Salo T, Soini Y, Oiva J, Nissinen A, Biancari F, Juvonen T, Satta J. Chemically modified tetracyclines (CMT-3 and CMT-8) enable control of the pathologic remodellation of human aortic valve stenosis via MMP-9 and VEGF inhibition. Int J Cardiol 2006; 111:358-64. [PMID: 16242193 DOI: 10.1016/j.ijcard.2005.07.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 07/24/2005] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Tetracycline derivatives affect many cellular functions relevant to chronic cardiovascular pathologies, including cell proliferation, migration and matrix remodelling. Accordingly, we sought to determine whether they may modulate the pathologic characteristics known to be significantly involved in human aortic valve stenosis, such as gelatinase production, apoptosis, expression of vascular endothelial growth factor (VEGF) and tumour necrosis factor-alpha (TNF-alpha). METHODS The effects of tetracycline derivatives (tetracycline and CMTs-3, -5, -8) on MMP-2 and -9 and their endogenous tissue inhibitor (TIMP-1 and -2) production profiles in explanted human aortic valve pieces were examined by means of gelatine zymography and reverse zymography. Chemiluminescent ELISA was performed to assess VEGF and TNF-alpha concentrations in the medium, and in order to evaluate programmed cell death, in situ labelling of the 3'-ends of the DNA fragments generated by apoptosis-associated endonucleases was performed. RESULTS CMT-3 and -8 lowered the MMP-9 and VEGF levels significantly in a drug-, dose-, and time-dependent manner. MMP-2 and TIMPs remained unchanged, emphasizing the specificity of CMTs to MMP-9 production on the one hand and restoring the beneficial equilibrium of MMP-9 and TIMPs on the other. Tetracycline was the only drug with a significant impact on net gelatinolytic activity, suggesting that the effect of tetracycline is more extensive concerning total MMP activity. CONCLUSIONS Tetracycline derivatives may have therapeutic effects on the pathologic remodellation of advanced human aortic stenosis through the inhibition of MMP-9 and VEGF production.
Collapse
Affiliation(s)
- Tuula Salo
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu and Oulu University Hospital, Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
15
|
Baxter BT. Abdominal aortic aneurysm regression by medical treatment: possibility or pipe dream? J Vasc Surg 2006; 43:1068-9. [PMID: 16678709 DOI: 10.1016/j.jvs.2006.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 01/11/2006] [Indexed: 11/21/2022]
|
16
|
Gleason TG. Heritable Disorders Predisposing to Aortic Dissection. Semin Thorac Cardiovasc Surg 2005; 17:274-81. [PMID: 16253833 DOI: 10.1053/j.semtcvs.2005.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2005] [Indexed: 11/11/2022]
Abstract
Heritable disorders of connective tissue often predispose patients to aortic pathology and in particular aortic dissection. The Marfan syndrome, vascular Ehlers-Danlos syndrome, familial forms of thoracic aortic aneurysms or aortic dissection, and bicuspid aortic valve are all examples of heritable disorders that have associated defects affecting the integrity of the aortic wall, posing a risk of both aneurysmal dilation and dissection. The purpose of this review was to outline the phenotypes of the heritable syndromes that predispose to aortic dissection, present a guideline to their management and surveillance, and to offer insight into some of the surgical pitfalls that occur when repairing ascending aortic dissections in these types of patients.
Collapse
Affiliation(s)
- Thomas G Gleason
- Thoracic Aortic Surgery Program, Division of Cardiothoracic Surgery, Northwestern University School of Medicine, Chicago, IL 60611-3056, USA.
| |
Collapse
|
17
|
Wang YX, Martin-McNulty B, da Cunha V, Vincelette J, Lu X, Feng Q, Halks-Miller M, Mahmoudi M, Schroeder M, Subramanyam B, Tseng JL, Deng GD, Schirm S, Johns A, Kauser K, Dole WP, Light DR. Fasudil, a Rho-kinase inhibitor, attenuates angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice by inhibiting apoptosis and proteolysis. Circulation 2005; 111:2219-26. [PMID: 15851596 DOI: 10.1161/01.cir.0000163544.17221.be] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Angiotensin II (Ang II) accelerates atherosclerosis and induces abdominal aortic aneurysm (AAA) in an experimental mouse model. Agonism of a G protein-coupled receptor by Ang II activates Rho-kinase and other signaling pathways and results in activation of proteolysis and apoptosis. Enhanced proteolysis and smooth muscle cell apoptosis are important mechanisms associated with AAA. In this study, we tested the hypothesis that fasudil, a Rho-kinase inhibitor, could attenuate Ang II-induced AAA formation by inhibiting vascular wall apoptosis and extracellular matrix proteolysis. METHODS AND RESULTS Six-month-old apolipoprotein E-deficient mice were infused with Ang II (1.44 mg x kg(-1) x d(-1)) for 1 month. Animals were randomly assigned to treatment with fasudil (136 or 213 mg x kg(-1) x d(-1) in drinking water) or tap water. Ang II infusion induced AAA formation in 75% of the mice, which was accompanied by an increase in proteolysis detected by zymographic analysis and quantified by active matrix metalloproteinase-2 activity, as well as apoptosis detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and quantified by both caspase-3 activity and histone-associated DNA fragmentation. The level of DNA fragmentation in the suprarenal aorta correlated with AAA diameter. Ang II also increased atherosclerotic lesion area and blood pressure. Fasudil treatment resulted in a dose-dependent reduction in both the incidence and severity of AAA. At the higher dose, fasudil decreased AAA by 45% while significantly inhibiting both apoptosis and proteolysis, without affecting atherosclerosis or blood pressure. CONCLUSIONS These data demonstrate that inhibition of Rho-kinase by fasudil attenuated Ang II-induced AAA through inhibition of both apoptosis and proteolysis pathways.
Collapse
Affiliation(s)
- Yi-Xin Wang
- Berlex Biosciences, Richmond, Calif 94804, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Michel JB. Anoikis in the cardiovascular system: known and unknown extracellular mediators. Arterioscler Thromb Vasc Biol 2003; 23:2146-54. [PMID: 14551156 DOI: 10.1161/01.atv.0000099882.52647.e4] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Anoïkis is defined as programmed cell death induced by the loss of cell/matrix interactions. Adhesion to structural glycoproteins of the extracellular matrix is necessary for survival of the differentiated adherent cells in the cardiovascular system, including endothelial cells, smooth muscle cells, fibroblasts, and cardiac myocytes. Adhesion is also a key factor for the differentiation of mesenchymal stem cells. In particular, fibronectin is considered a factor of survival and differentiation for many adherent cells. Adhesion generates cell tensional integrity (tensegrity) and repression of apoptotic signals, whereas detachment has the opposite effect. Anoïkis plays a physiological role by regulating cell homeostasis in tissues. However, anoïkis can also be involved in pathological processes, as illustrated by the resistance to anoïkis in cancer and its enhancement in degenerative tissue remodeling. Extracellular mediators of anoïkis include matrix retraction, leading to loss of tensegrity in fibroblasts, pharmacological disengagement of integrins by RGD-like peptides and fragments of fibronectin, and focal adhesion disassembly by fragments of thrombospondin, plasminogen activator-1, and high-molecular-weight kininogen. In addition to binding of the RGD peptide by integrins, the engagement of the heparin binding sites of adhesive glycoproteins with glycosaminoglycans on the cell surface is also involved in the prevention of cell detachment-induced apoptosis. Proteases able to degrade adhesive glycoproteins, such as fibronectin, induce anoïkis of vascular adherent cells. Active proteases can either be secreted directly by inflammatory cells, as elastase and cathepsin G by polymorphonuclear leukocytes, chymase and tryptase by mast cells, and granzymes by lymphocytes, or generated from circulating zymogens by activation in close contact with the cells. This is the case for the pericellular conversion of plasminogen to plasmin, which degrades fibronectin and induces anoïkis of smooth muscle cells. Involvement of proteases has also been proposed in the apoptotic response of cultured adherent cells to serum starvation. Anoïkis is probably involved in pathological remodeling of cardiovascular tissues, including cardiac myocyte detachment in heart failure, deendothelialization and plaque rupture in atherosclerosis, and smooth muscle cell disappearance in aneurysms and varicose veins. The absence of cell adhesion and growth resulting from cleavage of adhesive proteins also represents a major impediment to cellular healing, including the absence of cell recolonization of proteolytically injured tissue and the low efficacy of cell transplantation. However, the exact role of anoïkis in cardiovascular pathologies remains to be further defined.
Collapse
Affiliation(s)
- Jean-Baptiste Michel
- INSERM Unit 460, CHU Xavier Bichat, 46, rue Henri Huchard, 75877 Paris Cedex 18, France.
| |
Collapse
|
19
|
Tulis DA, Mnjoyan ZH, Schiesser RL, Shelat HS, Evans AJ, Zoldhelyi P, Fujise K. Adenoviral gene transfer of fortilin attenuates neointima formation through suppression of vascular smooth muscle cell proliferation and migration. Circulation 2003; 107:98-105. [PMID: 12515750 DOI: 10.1161/01.cir.0000047675.86603.eb] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Fortilin, a recently characterized nuclear antiapoptotic factor structurally distinct from inhibitor of apoptosis proteins (IAPs) and Bcl-2 family member proteins, has been suggested to be involved in cell survival and regulation of apoptosis within the cardiovascular system. In this continued investigation, we characterized the influence of adenovirus-mediated fortilin (Ad-fortilin) gene delivery on vascular remodeling after experimental angioplasty. METHODS AND RESULTS Vessel wall expression of Ad-fortilin or adenoviral luciferase (Ad-luc) was demonstrated 72 hours and 14 days after rat carotid artery (CA) balloon angioplasty. Morphometric analyses 14 days after injury revealed significantly diminished neointima development in the Ad-fortilin-treated CAs compared with Ad-luc or PBS controls, with no changes in medial wall morphometry observed between the 3 groups. The Ad-fortilin-treated CAs demonstrated a 50% reduction in medial wall proliferating cell nuclear antigen (PCNA) labeling after 72 hours, with significantly reduced neointimal and medial wall PCNA labeling and cell counts after 14 days. Terminal dUTP nick-end labeling results and morphological changes characteristic of programmed cell death suggest a trend toward reduced apoptosis in the fortilin-transfected balloon-injured vessels compared with Ad-luc injured controls. Temporal analysis of human aorta smooth muscle cell (SMC) proliferation demonstrated a marked time-dependent inhibition in Ad-fortilin treated SMCs without the influence of elevated apoptosis. Thymidine incorporation was significantly inhibited in the Ad-fortilin-treated cells compared with Ad-luc controls. Ad-fortilin transfected SMCs also demonstrated significantly decreased migration compared with Ad-luc controls. CONCLUSIONS These cumulative results suggest that the novel antiapoptotic protein fortilin may play important redundant pathophysiological roles in modulating the vascular response to experimental angioplasty through suppression of SMC proliferation and migration concomitant with reduction of vessel wall apoptosis.
Collapse
Affiliation(s)
- David A Tulis
- Department of Medicine, Baylor College of Medicine, Houston, Tex 77030, USA.
| | | | | | | | | | | | | |
Collapse
|