1
|
Cellular Crosstalk between Endothelial and Smooth Muscle Cells in Vascular Wall Remodeling. Int J Mol Sci 2021; 22:ijms22147284. [PMID: 34298897 PMCID: PMC8306829 DOI: 10.3390/ijms22147284] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Pathological vascular wall remodeling refers to the structural and functional changes of the vessel wall that occur in response to injury that eventually leads to cardiovascular disease (CVD). Vessel wall are composed of two major primary cells types, endothelial cells (EC) and vascular smooth muscle cells (VSMCs). The physiological communications between these two cell types (EC–VSMCs) are crucial in the development of the vasculature and in the homeostasis of mature vessels. Moreover, aberrant EC–VSMCs communication has been associated to the promotor of various disease states including vascular wall remodeling. Paracrine regulations by bioactive molecules, communication via direct contact (junctions) or information transfer via extracellular vesicles or extracellular matrix are main crosstalk mechanisms. Identification of the nature of this EC–VSMCs crosstalk may offer strategies to develop new insights for prevention and treatment of disease that curse with vascular remodeling. Here, we will review the molecular mechanisms underlying the interplay between EC and VSMCs. Additionally, we highlight the potential applicable methodologies of the co-culture systems to identify cellular and molecular mechanisms involved in pathological vascular wall remodeling, opening questions about the future research directions.
Collapse
|
2
|
MiR-140-5p inhibits oxidized low-density lipoprotein-induced oxidative stress and cell apoptosis via targeting toll-like receptor 4. Gene Ther 2020; 28:413-421. [PMID: 32203196 DOI: 10.1038/s41434-020-0139-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
Abstract
Critical roles of several microRNAs have been implicated in atherosclerosis (AS). In this study, we studied the functional role of miR-140-5p in AS. An AS model was constructed in THP-1 macrophages challenged with oxidized low-density lipoprotein (ox-LDL). The expression of miR-140-5p was up- or downregulated with corresponding mimic or inhibitor regents. Our experiments showed that the levels of cell apoptosis and fatty acid accumulation were decreased in THP-1 macrophages treated with miR-140-5p mimic, whereas increased in those treated with miR-140-5p inhibitor. The levels of ROS (reactive oxygen species), MDA (malondialdehyde), TC (Triglyceride), and TG (total cholesterol) were reduced and the level of SOD (superoxide dismutase) was improved in miR-140-5p overexpressed THP-1 macrophages, which can be reversed with miR-140-5p depletion. Moreover, through bioinformatics analysis, we found toll-like receptor 4 (TLR4) was a potential target of miR-140-5p. Luciferase reporter assay demonstrated that miR-140-5p regulated TLR4 expression via binding 3'UTR of TLR4 in THP-1 macrophages. In ox-LDL challenged THP-1 macrophages, the expression of TLR4 was decreased after miR-140-5p mimic transfection, whereas improved after treatment with miR-140-5p inhibitors. As a conclusion, miR-140-5p can participate in inhibiting ox-LDL-induced oxidative stress and cell apoptosis via targeting TLR4 in macrophage-mediated ox-LDL induced AS.
Collapse
|
3
|
Anderson JA, Lamichhane S, Vierhout T, Engebretson D. Determining the cross-talk between smooth muscle cells and macrophages on a cobalt-chromium stent material surface using an in vitro postimplantation coculture model. J Biomed Mater Res A 2017; 106:673-685. [PMID: 29047206 DOI: 10.1002/jbm.a.36271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/28/2017] [Accepted: 10/12/2017] [Indexed: 01/25/2023]
Abstract
Smooth muscle cells (SMCs) and macrophages are important cellular components involved in the development of complications following the implantation of cardiovascular devices. This leads to various disorders such as restenosis, chronic inflammation, and may ultimately result in device failure. In this study, we developed a postimplant stent coculture model using different ratios of SMCs and macrophages seeded on to cobalt-chromium alloy. The macrophages had an increased affinity to the coculture surfaces, which resulted in decreased SMC attachment to the alloy surfaces at the initial time point. Once adhered, the macrophages spread freely and displayed advanced stages of inflammation at 48 h when cocultured with SMCs. This resulted in an increased secretion of proinflammatory cytokines (tumor necrosis factor alpha, monocyte chemotactic protein 1, interleukin [IL]-6, and IL-8) by 48 h in the coculture samples with the greatest increase observed with the high number of macrophages. Therefore, the increased levels of proinflammatory cytokines promoted the growth of SMCs in coculture to a greater extent than when the SMCs were culture alone. Thus, this study demonstrated the constant cross-talk between SMCs and macrophages occurring on the postimplant stent surface. Similar coculture models can be used to test the biocompatibility of drugs and biomaterials at possible postimplantation scenarios. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 673-685, 2018.
Collapse
Affiliation(s)
- Jordan A Anderson
- Biomedical Engineering Department, The University of South Dakota, 4800 N. Career Avenue, Sioux Falls, South Dakota 57107
| | - Sujan Lamichhane
- Biomedical Engineering Department, The University of South Dakota, 4800 N. Career Avenue, Sioux Falls, South Dakota 57107
| | - Thomas Vierhout
- Biomedical Engineering Department, The University of South Dakota, 4800 N. Career Avenue, Sioux Falls, South Dakota 57107
| | - Daniel Engebretson
- Biomedical Engineering Department, The University of South Dakota, 4800 N. Career Avenue, Sioux Falls, South Dakota 57107
| |
Collapse
|
4
|
Zuniga MC, White SLP, Zhou W. Design and utilization of macrophage and vascular smooth muscle cell co-culture systems in atherosclerotic cardiovascular disease investigation. Vasc Med 2014; 19:394-406. [DOI: 10.1177/1358863x14550542] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atherosclerotic cardiovascular disease has been acknowledged as a chronic inflammatory condition. Monocytes and macrophages lead the inflammatory pathology of atherosclerosis whereas changes in atheromatous plaque thickness and matrix composition are attributed to vascular smooth muscle cells. Because these cell types are key players in atherosclerosis progression, it is crucial to utilize a reliable system to investigate their interaction. In vitro co-culture systems are useful platforms to study specific molecular mechanisms between cells. This review aims to summarize the various co-culture models that have been developed to investigate vascular smooth muscle cell and monocyte/macrophage interactions, focusing on the monocyte/macrophage effects on vascular smooth muscle cell function.
Collapse
Affiliation(s)
- Mary C Zuniga
- Surgical Services, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Sharla L Powell White
- Division of Vascular Surgery, School of Medicine, Stanford University, Stanford, CA, USA
- Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Wei Zhou
- Surgical Services, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Vascular Surgery, School of Medicine, Stanford University, Stanford, CA, USA
- Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Hallow KM, Taylor WR, Rachev A, Vito RP. Markers of inflammation collocate with increased wall stress in human coronary arterial plaque. Biomech Model Mechanobiol 2009; 8:473-86. [DOI: 10.1007/s10237-009-0151-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
|
6
|
Abstract
Rupture of abdominal aortic aneurysm (AAA) represents a significant clinical event, having a mortality rate of 90% and being currently ranked as the 13th leading cause of death in the US. The ability to reliably evaluate the susceptibility of a particular AAA to rupture on a case-specific basis could vastly improve the clinical management of these patients. Because AAA rupture represents a mechanical failure of the degenerated aortic wall, biomechanical considerations are important to understand this process and to improve our predictions of its occurrence. Presented here is an overview of research to date related to the biomechanics of AAA rupture. This includes a summary of results related to ex vivo and in vivo mechanical testing, noninvasive AAA wall stress estimations, and potential mechanisms of AAA wall weakening. We conclude with a demonstration of a biomechanics-based approach to predicting AAA rupture on a patient-specific basis, which may ultimately prove to be superior to the widely and currently used maximum diameter criterion.
Collapse
Affiliation(s)
- David A Vorp
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 100 Technology Drive, Suite 200, Pittsburgh, PA 15219, USA.
| | | |
Collapse
|
7
|
Proudfoot D, Fitzsimmons C, Torzewski J, Bowyer DE. Inhibition of human arterial smooth muscle cell growth by human monocyte/macrophages: a co-culture study. Atherosclerosis 1999; 145:157-65. [PMID: 10428306 DOI: 10.1016/s0021-9150(99)00028-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Monocyte/macrophages produce a variety of substances which may influence the function of smooth muscle cells (SMC). During atherogenesis, macrophages are thought to modulate SMC migration, proliferation and synthesis of extracellular matrix. Such modulation is the balance between stimulatory and inhibitory influences. Thus, for example, our earlier studies have shown that macrophages not only secrete mitogens, but also produce small molecular weight inhibitors of SMC proliferation. In the present study, we have used a co-culture system in which human monocyte/macrophages were separated from human arterial SMC (hSMC) by a filter with the optional addition of a 12 kDa cut-off dialysis membrane, in order to assess their effect on hSMC growth. We have found that human peripheral blood-derived monocytes produced a substance of < 12 kDa that inhibited hSMC growth in the co-culture system. The monocyte-derived factor causing this effect was completely blocked by indomethacin, indicating that growth-inhibitory factors produced by the monocytes were cyclooxygenase products. We have shown that PGE1 and PGE2 inhibit hSMC growth, making them likely candidates for the effector molecules released from monocytes in our co-culture system.
Collapse
Affiliation(s)
- D Proudfoot
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, UK
| | | | | | | |
Collapse
|
8
|
Fitzsimmons C, Proudfoot D, Bowyer DE. Monocyte prostaglandins inhibit procollagen secretion by human vascular smooth muscle cells: implications for plaque stability. Atherosclerosis 1999; 142:287-93. [PMID: 10030379 DOI: 10.1016/s0021-9150(98)00240-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extracellular matrix remodelling occurs during atherosclerosis dictating the structure of the plaque and thus the resistance to rupture. Monocytes and macrophages are believed to play a role in this remodelling. In the present study, filter-separated co-culture has been used to study the effect of monocytes on procollagen turnover by human vascular smooth muscle cells (VSMC). In this system, freshly isolated human peripheral blood monocytes inhibited procollagen secretion from VSMC without affecting either degradation of procollagen, or DNA synthesis by the VSMC. Insertion of a 12 kDa dialysis membrane between the two cell types and treatment with indomethacin showed that the inhibitory factor was of low molecular weight and was cyclooxygenase-dependent. Pre-incubation of each cell type with indomethacin demonstrated that monocyte, but not VSMC cyclooxygenase was required. Thus, the inhibitory effect on procollagen secretion was due, most likely, to monocyte prostaglandins. Neither inhibition of thromboxane synthetase, nor blocking IL-1 activity, reduced the inhibitory activity. Addition of prostaglandins PGE1, PGE2 and PGF2alpha to VSMC cultures caused a reduction in procollagen secretion which was equivalent to, but was not additive with, the maximal effect achieved by monocytes. Monocytes and macrophages are a major source of prostaglandins and these molecules are likely to play an important role in collagen turnover within lesions.
Collapse
Affiliation(s)
- C Fitzsimmons
- Department of Pathology, University of Cambridge, UK.
| | | | | |
Collapse
|
9
|
Abstract
Occlusive vascular disease most often results from thrombosis superimposed on atherosclerotic plaque. Disruption of plaque exposes thrombogenic substances within the plaque to blood and may result in thrombotic occlusion of the affected vessel. Mural thrombi may be incorporated into plaque, enhancing the evolution of atherosclerotic lesions. Inflammation plays a key role in the formation and complication of atherosclerosis. Inflammatory mediators regulate processes that determine the composition of the plaque's fibrous cap, a structure that separates blood from the thrombogenic lipid core. Several inflammatory mediators control the release of metalloproteinases (enzymes that break down cap constituents) from smooth muscle cells, macrophages and other cells within plaque. Inflammatory mediators also control the production of connective tissue matrix by cells in the plaque. Factors involved in coagulation, such as thrombin, can regulate non-thrombotic functions of vascular wall cells such as smooth muscle proliferation or cytokine release. The many mechanisms involved in arterial occlusive disease present numerous points at which intervention with pharmacologic agents may prove effective in lowering the risk of acute arterial thrombotic complications.
Collapse
Affiliation(s)
- P Libby
- Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
10
|
Davis V, Persidskaia R, Baca-Regen L, Itoh Y, Nagase H, Persidsky Y, Ghorpade A, Baxter BT. Matrix metalloproteinase-2 production and its binding to the matrix are increased in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 1998; 18:1625-33. [PMID: 9763536 DOI: 10.1161/01.atv.18.10.1625] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Degradation of the elastic media is a hallmark of abdominal aortic aneurysms (AAAs). We examined the expression of 2 elastolytic matrix metalloproteinases (MMPs), MMP-2 and MMP-9, in AAA aortic tissues compared with those from atherosclerotic occlusive disease (AOD) and nondiseased control tissues. Quantitative competitive reverse transcription-polymerase chain reaction and gelatin zymography showed increased MMP-9 mRNA and protein in both AAA and AOD tissues compared with those in control tissue, but there was no significant difference between AAA and AOD. In contrast, MMP-2 mRNA and protein levels were significantly higher in AAA than in AOD or control tissues. Sequential extraction of the MMPs from the aortic tissue with a physiological salt solution, 2% dimethylsulfoxide (DMSO), and 10 mol/L urea showed that large amounts of MMP-2 and MMP-9 were bound to the matrix. The most conspicuous finding was that the levels of MMP-2 were significantly elevated in the DMSO fraction in AAA tissues compared with AOD and control tissues. In addition, a large portion of MMP-2 found in the DMSO and urea fractions was in the active 62-kDa form, indicating that the precursor of MMP-2 in AAA is largely activated locally and binds to the tissue matrix tightly. By immunolocalization, MMP-9 was found to be primarily produced by macrophages and MMP-2 by mesenchymal cells. The production of MMP-2 was prominent when mesenchymal cells were surrounded by inflammatory cells, suggesting paracrine modulation of MMP-2 expression in AAAs. These observations emphasize that MMP-2 participates in the progression of AAAs by degrading aortic tissue matrix components.
Collapse
Affiliation(s)
- V Davis
- Departments of Surgery and of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, USA
| | | | | | | | | | | | | | | |
Collapse
|