1
|
Conrad-Rooney E, Barker Plotkin A, Pasquarella VJ, Elkinton J, Chandler JL, Matthes JH. Defoliation severity is positively related to soil solution nitrogen availability and negatively related to soil nitrogen concentrations following a multi-year invasive insect irruption. AOB PLANTS 2020; 12:plaa059. [PMID: 33324482 PMCID: PMC7724974 DOI: 10.1093/aobpla/plaa059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/07/2020] [Indexed: 05/13/2023]
Abstract
Understanding connections between ecosystem nitrogen (N) cycling and invasive insect defoliation could facilitate the prediction of disturbance impacts across a range of spatial scales. In this study we investigated relationships between ecosystem N cycling and tree defoliation during a recent 2015-18 irruption of invasive gypsy moth caterpillars (Lymantria dispar), which can cause tree stress and sometimes mortality following multiple years of defoliation. Nitrogen is a critical nutrient that limits the growth of caterpillars and plants in temperate forests. In this study, we assessed the associations among N concentrations, soil solution N availability and defoliation intensity by L. dispar at the scale of individual trees and forest plots. We measured leaf and soil N concentrations and soil solution inorganic N availability among individual red oak trees (Quercus rubra) in Amherst, MA and across a network of forest plots in Central Massachusetts. We combined these field data with estimated defoliation severity derived from Landsat imagery to assess relationships between plot-scale defoliation and ecosystem N cycling. We found that trees in soil with lower N concentrations experienced more herbivory than trees in soil with higher N concentrations. Additionally, forest plots with lower N soil were correlated with more severe L. dispar defoliation, which matched the tree-level relationship. The amount of inorganic N in soil solution was strongly positively correlated with defoliation intensity and the number of sequential years of defoliation. These results suggested that higher ecosystem N pools might promote the resistance of oak trees to L. dispar defoliation and that defoliation severity across multiple years is associated with a linear increase in soil solution inorganic N.
Collapse
Affiliation(s)
- Emma Conrad-Rooney
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | | | | | - Joseph Elkinton
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jennifer L Chandler
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jaclyn Hatala Matthes
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
- Corresponding author’s e-mail address:
| |
Collapse
|
4
|
Walker JT, Beachley G, Amos HM, Baron JS, Bash J, Baumgardner R, Bell MD, Benedict KB, Chen X, Clow DW, Cole A, Coughlin JG, Cruz K, Daly RW, Decina SM, Elliott EM, Fenn ME, Ganzeveld L, Gebhart K, Isil SS, Kerschner BM, Larson RS, Lavery T, Lear GG, Macy T, Mast MA, Mishoe K, Morris KH, Padgett PE, Pouyat RV, Puchalski M, Pye HOT, Rea AW, Rhodes MF, Rogers CM, Saylor R, Scheffe R, Schichtel BA, Schwede DB, Sexstone GA, Sive BC, Sosa Echeverría R, Templer PH, Thompson T, Tong D, Wetherbee GA, Whitlow TH, Wu Z, Yu Z, Zhang L. Toward the improvement of total nitrogen deposition budgets in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:1328-1352. [PMID: 31466212 PMCID: PMC7724633 DOI: 10.1016/j.scitotenv.2019.07.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Frameworks for limiting ecosystem exposure to excess nutrients and acidity require accurate and complete deposition budgets of reactive nitrogen (Nr). While much progress has been made in developing total Nr deposition budgets for the U.S., current budgets remain limited by key data and knowledge gaps. Analysis of National Atmospheric Deposition Program Total Deposition (NADP/TDep) data illustrates several aspects of current Nr deposition that motivate additional research. Averaged across the continental U.S., dry deposition contributes slightly more (55%) to total deposition than wet deposition and is the dominant process (>90%) over broad areas of the Southwest and other arid regions of the West. Lack of dry deposition measurements imposes a reliance on models, resulting in a much higher degree of uncertainty relative to wet deposition which is routinely measured. As nitrogen oxide (NOx) emissions continue to decline, reduced forms of inorganic nitrogen (NHx = NH3 + NH4+) now contribute >50% of total Nr deposition over large areas of the U.S. Expanded monitoring and additional process-level research are needed to better understand NHx deposition, its contribution to total Nr deposition budgets, and the processes by which reduced N deposits to ecosystems. Urban and suburban areas are hotspots where routine monitoring of oxidized and reduced Nr deposition is needed. Finally, deposition budgets have incomplete information about the speciation of atmospheric nitrogen; monitoring networks do not capture important forms of Nr such as organic nitrogen. Building on these themes, we detail the state of the science of Nr deposition budgets in the U.S. and highlight research priorities to improve deposition budgets in terms of monitoring and flux measurements, leaf- to regional-scale modeling, source apportionment, and characterization of deposition trends and patterns.
Collapse
Affiliation(s)
- J T Walker
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America.
| | - G Beachley
- U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC, United States of America
| | - H M Amos
- AAAS Science and Technology Policy Fellow hosted by the U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States of America
| | - J S Baron
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, United States of America
| | - J Bash
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - R Baumgardner
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - M D Bell
- National Park Service, Air Resources Division, Lakewood, CO, United States of America
| | - K B Benedict
- Colorado State University, Department of Atmospheric Science, Fort Collins, CO, United States of America
| | - X Chen
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - D W Clow
- U.S. Geological Survey, Colorado Water Science Center, Denver, CO, United States of America
| | - A Cole
- Environment and Climate Change Canada, Air Quality Research Division, Toronto, ON, Canada
| | - J G Coughlin
- U.S. Environmental Protection Agency, Region 5, Chicago, IL, United States of America
| | - K Cruz
- U.S. Department of Agriculture, National Institute of Food and Agriculture, Washington, DC, United States of America
| | - R W Daly
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - S M Decina
- University of California, Department of Chemistry, Berkeley, CA, United States of America
| | - E M Elliott
- University of Pittsburgh, Department of Geology & Environmental Science, Pittsburgh, PA, United States of America
| | - M E Fenn
- U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Riverside, CA, United States of America
| | - L Ganzeveld
- Meteorology and Air Quality (MAQ), Wageningen University and Research Centre, Wageningen, Netherlands
| | - K Gebhart
- National Park Service, Air Resources Division, Fort Collins, CO, United States of America
| | - S S Isil
- Wood Environment & Infrastructure Solutions, Inc., Newberry, FL, United States of America
| | - B M Kerschner
- Prairie Research Institute, University of Illinois, Champaign, IL, United States of America
| | - R S Larson
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI, United States of America
| | - T Lavery
- Environmental Consultant, Cranston, RI, United States of America
| | - G G Lear
- U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC, United States of America
| | - T Macy
- U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC, United States of America
| | - M A Mast
- U.S. Geological Survey, Colorado Water Science Center, Denver, CO, United States of America
| | - K Mishoe
- Wood Environment & Infrastructure Solutions, Inc., Newberry, FL, United States of America
| | - K H Morris
- National Park Service, Air Resources Division, Lakewood, CO, United States of America
| | - P E Padgett
- U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Riverside, CA, United States of America
| | - R V Pouyat
- U.S. Forest Service, Bethesda, MD, United States of America
| | - M Puchalski
- U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC, United States of America
| | - H O T Pye
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - A W Rea
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - M F Rhodes
- D&E Technical, Urbana, IL, United States of America
| | - C M Rogers
- Wood Environment & Infrastructure Solutions, Inc., Newberry, FL, United States of America
| | - R Saylor
- National Oceanic and Atmospheric Administration, Air Resources Laboratory, Oak Ridge, TN, United States of America
| | - R Scheffe
- U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Durham, NC, United States of America
| | - B A Schichtel
- National Park Service, Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, United States of America
| | - D B Schwede
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - G A Sexstone
- U.S. Geological Survey, Colorado Water Science Center, Denver, CO, United States of America
| | - B C Sive
- National Park Service, Air Resources Division, Lakewood, CO, United States of America
| | - R Sosa Echeverría
- Centro de Ciencias de la Atmosfera, Universidad Nacional Autónoma de México, Mexico
| | - P H Templer
- Boston University, Department of Biology, Boston, MA, United States of America
| | - T Thompson
- AAAS Science and Technology Policy Fellow hosted by the U.S. Environmental Protection Agency, Office of Policy, Washington, DC, United States of America
| | - D Tong
- George Mason University. National Oceanic and Atmospheric Administration, Air Resources Laboratory, College Park, MD, United States of America
| | - G A Wetherbee
- U.S. Geological Survey, Hydrologic Networks Branch, Denver, CO, United States of America
| | - T H Whitlow
- Cornell University, Department of Horticulture, Ithaca, NY, United States of America
| | - Z Wu
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - Z Yu
- University of Pittsburgh, Department of Geology & Environmental Science, Pittsburgh, PA, United States of America
| | - L Zhang
- Environment and Climate Change Canada, Air Quality Research Division, Toronto, ON, Canada
| |
Collapse
|
5
|
Decina SM, Templer PH, Hutyra LR, Gately CK, Rao P. Variability, drivers, and effects of atmospheric nitrogen inputs across an urban area: Emerging patterns among human activities, the atmosphere, and soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:1524-1534. [PMID: 28800694 DOI: 10.1016/j.scitotenv.2017.07.166] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 05/14/2023]
Abstract
Atmospheric deposition of nitrogen (N) is a major input of N to the biosphere and is elevated beyond preindustrial levels throughout many ecosystems. Deposition monitoring networks in the United States generally avoid urban areas in order to capture regional patterns of N deposition, and studies measuring N deposition in cities usually include only one or two urban sites in an urban-rural comparison or as an anchor along an urban-to-rural gradient. Describing patterns and drivers of atmospheric N inputs is crucial for understanding the effects of N deposition; however, little is known about the variability and drivers of atmospheric N inputs or their effects on soil biogeochemistry within urban ecosystems. We measured rates of canopy throughfall N as a measure of atmospheric N inputs, as well as soil net N mineralization and nitrification, soil solution N, and soil respiration at 15 sites across the greater Boston, Massachusetts area. Rates of throughfall N are 8.70±0.68kgNha-1yr-1, vary 3.5-fold across sites, and are positively correlated with rates of local vehicle N emissions. Ammonium (NH4+) composes 69.9±2.2% of inorganic throughfall N inputs and is highest in late spring, suggesting a contribution from local fertilizer inputs. Soil solution NO3- is positively correlated with throughfall NO3- inputs. In contrast, soil solution NH4+, net N mineralization, nitrification, and soil respiration are not correlated with rates of throughfall N inputs. Rather, these processes are correlated with soil properties such as soil organic matter. Our results demonstrate high variability in rates of urban throughfall N inputs, correlation of throughfall N inputs with local vehicle N emissions, and a decoupling of urban soil biogeochemistry and throughfall N inputs.
Collapse
Affiliation(s)
- Stephen M Decina
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | | | - Lucy R Hutyra
- Department of Earth and Environment, Boston University, Boston, MA 02215, USA
| | - Conor K Gately
- Department of Earth and Environment, Boston University, Boston, MA 02215, USA; Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Preeti Rao
- School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Orwig DA, Barker Plotkin AA, Davidson EA, Lux H, Savage KE, Ellison AM. Foundation species loss affects vegetation structure more than ecosystem function in a northeastern USA forest. PeerJ 2013; 1:e41. [PMID: 23638378 PMCID: PMC3629072 DOI: 10.7717/peerj.41] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/28/2013] [Indexed: 11/20/2022] Open
Abstract
Loss of foundation tree species rapidly alters ecological processes in forested ecosystems. Tsuga canadensis, an hypothesized foundation species of eastern North American forests, is declining throughout much of its range due to infestation by the nonnative insect Adelges tsugae and by removal through pre-emptive salvage logging. In replicate 0.81-ha plots, T. canadensis was cut and removed, or killed in place by girdling to simulate adelgid damage. Control plots included undisturbed hemlock and mid-successional hardwood stands that represent expected forest composition in 50–100 years. Vegetation richness, understory vegetation cover, soil carbon flux, and nitrogen cycling were measured for two years prior to, and five years following, application of experimental treatments. Litterfall and coarse woody debris (CWD), including snags, stumps, and fallen logs and branches, have been measured since treatments were applied. Overstory basal area was reduced 60%–70% in girdled and logged plots. Mean cover and richness did not change in hardwood or hemlock control plots but increased rapidly in girdled and logged plots. Following logging, litterfall immediately decreased then slowly increased, whereas in girdled plots, there was a short pulse of hemlock litterfall as trees died. CWD volume remained relatively constant throughout but was 3–4× higher in logged plots. Logging and girdling resulted in small, short-term changes in ecosystem dynamics due to rapid regrowth of vegetation but in general, interannual variability exceeded differences among treatments. Soil carbon flux in girdled plots showed the strongest response: 35% lower than controls after three years and slowly increasing thereafter. Ammonium availability increased immediately after logging and two years after girdling, due to increased light and soil temperatures and nutrient pulses from leaf-fall and reduced uptake following tree death. The results from this study illuminate ecological processes underlying patterns observed consistently in region-wide studies of adelgid-infested hemlock stands. Mechanisms of T. canadensis loss determine rates, magnitudes, and trajectories of ecological changes in hemlock forests. Logging causes abrupt, large changes in vegetation structure whereas girdling (and by inference, A. tsugae) causes sustained, smaller changes. Ecosystem processes depend more on vegetation cover per se than on species composition. We conclude that the loss of this late-successional foundation species will have long-lasting impacts on forest structure but subtle impacts on ecosystem function.
Collapse
Affiliation(s)
- David A Orwig
- Harvard University, Harvard Forest , Petersham, MA , USA
| | | | | | | | | | | |
Collapse
|
16
|
Raciti SM, Hutyra LR, Rao P, Finzi AC. Inconsistent definitions of "urban" result in different conclusions about the size of urban carbon and nitrogen stocks. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2012; 22:1015-1035. [PMID: 22645829 DOI: 10.1890/11-1250.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
There is conflicting evidence about the importance of urban soils and vegetation in regional C budgets that is caused, in part, by inconsistent definitions of "urban" land use. We quantified urban ecosystem contributions to C stocks in the Boston (Massachusetts, USA) Metropolitan Statistical Area (MSA) using several alternative urban definitions. Development altered aboveground and belowground C and N stocks, and the sign and magnitude of these changes varied by land use and development intensity. Aboveground biomass (live trees, dbh > or = 5 cm) for the MSA was 7.2 +/- 0.4 kg C/m2 (mean +/- SE), reflecting a high proportion of forest cover. Vegetation C was highest in forest (11.6 +/- 0.5 kg C/m2), followed by residential (4.6 +/- 0.5 kg C/m2), and then other developed (2.0 +/- 0.4 kg C/m2) land uses. Soil C (0-10 cm depth) followed the same pattern of decreasing C concentration from forest, to residential, to other developed land uses (4.1 +/- 0.1, 4.0 +/- 0.2, and 3.3 +/- 0.2 kg C/m2, respectively). Within a land use type, urban areas (which we defined as > 25% impervious surface area [ISA] within a 1-km(2) moving window) generally contained less vegetation C, but slightly more soil C, than nonurban areas. Soil N concentrations were higher in urban areas than nonurban areas of the same land use type, except for residential areas, which had similarly high soil N concentrations. When we compared our definition of urban to other commonly used urban extents (U.S. Census Bureau, Global Rural-Urban Mapping Project [GRUMP], and the MSA itself), we found that urban soil (1 m depth) and vegetation C stocks spanned a wide range, from 14.4 +/- 0.8 to 54.5 +/- 3.4 Tg C and from 4.2 +/- 0.4 to 27.3 +/- 3.2 Tg C, respectively. Conclusions about the importance of urban soils and vegetation to regional C and N stocks are very sensitive to the definition of urban used by the investigators. Urban areas, regardless of definition, are rapidly expanding in their extent; a systematic understanding of how our development patterns influence ecosystems is necessary to inform future development choices.
Collapse
Affiliation(s)
- Steve M Raciti
- Department of Geography and Environment, Boston University, 675 Commonwealth Avenue, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|