1
|
Wei Q, Pan H, Yang Y, Tan S, Zheng L, Wang H, Zhang J, Zhang Z, Wei Y, Wang X, Ma X, Xiong S. Effects of elevated atmospheric [CO 2] on grain starch characteristics in different specialized wheat. FRONTIERS IN PLANT SCIENCE 2024; 14:1334053. [PMID: 38304450 PMCID: PMC10830628 DOI: 10.3389/fpls.2023.1334053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
The increasing atmospheric [CO2] poses great challenges to wheat production. Currently, the response of starch characteristics in different specialized wheat cultivars to elevated [CO2], as well as the underlying physiological and molecular mechanisms remains unclear. Therefore, an experiment was conducted with open-top chambers to study the effects of ambient [CO2] [a(CO2)] and elevated [CO2] [e(CO2)] on photosynthetic performance, yield and starch characteristics of bread wheat (Zhengmai 369, ZM369) and biscuit wheat (Yangmai 15, YM15) from 2020 to 2022. The results demonstrated a significant improvement in photosynthetic performance, yield, amylose and amylopectin content, volume ratio of large granules under e[CO2]. Moreover, e[CO2] upregulated the gene expression and enzyme activities of GBSS (Granule-bound starch synthase) and SSS (Soluble starch synthase), increased starch pasting viscosity, gelatinization enthalpy and crystallinity. Compared to YM15, ZM369 exhibited a higher upregulation of GBSSI, greater increase in amylose content and volume ratio of large granules, as well as higher gelatinization enthalpy and crystallinity. However, ZM369 showed a lower increase in amylopectin content and a lower upregulation of SSSI and SSSII. Correlation analysis revealed amylose and amylopectin content had a positive correlation with GBSS and SSS, respectively, a significant positively correlation among the amylose and amylopectin content, starch granule volume, and pasting properties. In conclusion, these changes may enhance the utilization value of biscuit wheat but exhibit an opposite effect on bread wheat. The results provide a basis for selecting suitable wheat cultivars and ensuring food security under future climate change conditions.
Collapse
Affiliation(s)
- Qiongru Wei
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Huqiang Pan
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yuxiu Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shichao Tan
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Liang Zheng
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Huali Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jie Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhiyong Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yihao Wei
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaochun Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Xinming Ma
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shuping Xiong
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Chen Y, Han M, Qin W, Hou Y, Zhang Z, Zhu B. Effects of whole-soil warming on CH 4 and N 2 O fluxes in an alpine grassland. GLOBAL CHANGE BIOLOGY 2024; 30:e17033. [PMID: 38273530 DOI: 10.1111/gcb.17033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/23/2023] [Indexed: 01/27/2024]
Abstract
Global climate warming could affect the methane (CH4 ) and nitrous oxide (N2 O) fluxes between soils and the atmosphere, but how CH4 and N2 O fluxes respond to whole-soil warming is unclear. Here, we for the first time investigated the effects of whole-soil warming on CH4 and N2 O fluxes in an alpine grassland ecosystem on the Tibetan Plateau, and also studied the effects of experimental warming on CH4 and N2 O fluxes across terrestrial ecosystems through a global-scale meta-analysis. The whole-soil warming (0-100 cm, +4°C) significantly elevated soil N2 O emission by 101%, but had a minor effect on soil CH4 uptake. However, the meta-analysis revealed that experimental warming did not significantly alter CH4 and N2 O fluxes, and it may be that most field warming experiments could only heat the surface soils. Moreover, the warming-induced higher plant litter and available N in soils may be the main reason for the higher N2 O emission under whole-soil warming in the alpine grassland. We need to pay more attention to the long-term response of greenhouse gases (including CH4 and N2 O fluxes) from different soil depths to whole-soil warming over year-round, which could help us more accurately assess and predict the ecosystem-climate feedback under realistic warming scenarios in the future.
Collapse
Affiliation(s)
- Ying Chen
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, Peking University, Beijing, China
| | - Mengguang Han
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, Peking University, Beijing, China
| | - Wenkuan Qin
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, Peking University, Beijing, China
| | - Yanhui Hou
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, Peking University, Beijing, China
| | - Zhenhua Zhang
- Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem, and Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Biao Zhu
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, Peking University, Beijing, China
| |
Collapse
|
3
|
Quan Q, Tian D, Luo Y, Zhang F, Crowther TW, Zhu K, Chen HYH, Zhou Q, Niu S. Water scaling of ecosystem carbon cycle feedback to climate warming. SCIENCE ADVANCES 2019; 5:eaav1131. [PMID: 31457076 PMCID: PMC6703863 DOI: 10.1126/sciadv.aav1131] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 07/15/2019] [Indexed: 05/22/2023]
Abstract
It has been well established by field experiments that warming stimulates either net ecosystem carbon uptake or release, leading to negative or positive carbon cycle-climate change feedback, respectively. This variation in carbon-climate feedback has been partially attributed to water availability. However, it remains unclear under what conditions water availability enhances or weakens carbon-climate feedback or even changes its direction. Combining a field experiment with a global synthesis, we show that warming stimulates net carbon uptake (negative feedback) under wet conditions, but depresses it (positive feedback) under very dry conditions. This switch in carbon-climate feedback direction arises mainly from scaling effects of warming-induced decreases in soil water content on net ecosystem productivity. This water scaling of warming effects offers generalizable mechanisms not only to help explain varying magnitudes and directions of observed carbon-climate feedback but also to improve model prediction of ecosystem carbon dynamics in response to climate change.
Collapse
Affiliation(s)
- Quan Quan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Fangyue Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Tom W. Crowther
- Institute of Integrative Biology, ETH-Zürich, Universitätstrasse 16, 8006 Zürich, Switzerland
| | - Kai Zhu
- Department of Environmental Studies, University of California, Santa Cruz, CA 95060, USA
| | - Han Y. H. Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Qingping Zhou
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu 610041, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
- Corresponding author.
| |
Collapse
|
4
|
Laine AM, Mäkiranta P, Laiho R, Mehtätalo L, Penttilä T, Korrensalo A, Minkkinen K, Fritze H, Tuittila ES. Warming impacts on boreal fen CO 2 exchange under wet and dry conditions. GLOBAL CHANGE BIOLOGY 2019; 25:1995-2008. [PMID: 30854735 DOI: 10.1111/gcb.14617] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/11/2019] [Accepted: 02/21/2019] [Indexed: 05/14/2023]
Abstract
Northern peatlands form a major soil carbon (C) stock. With climate change, peatland C mineralization is expected to increase, which in turn would accelerate climate change. A particularity of peatlands is the importance of soil aeration, which regulates peatland functioning and likely modulates the responses to warming climate. Our aim is to assess the impacts of warming on a southern boreal and a sub-arctic sedge fen carbon dioxide (CO2 ) exchange under two plausible water table regimes: wet and moderately dry. We focused this study on minerotrophic treeless sedge fens, as they are common peatland types at boreal and (sub)arctic areas, which are expected to face the highest rates of climate warming. In addition, fens are expected to respond to environmental changes faster than the nutrient poor bogs. Our study confirmed that CO2 exchange is more strongly affected by drying than warming. Experimental water level draw-down (WLD) significantly increased gross photosynthesis and ecosystem respiration. Warming alone had insignificant impacts on the CO2 exchange components, but when combined with WLD it further increased ecosystem respiration. In the southern fen, CO2 uptake decreased due to WLD, which was amplified by warming, while at northern fen it remained stable. As a conclusion, our results suggest that a very small difference in the WLD may be decisive, whether the C sink of a fen decreases, or whether the system is able to adapt within its regime and maintain its functions. Moreover, the water table has a role in determining how much the increased temperature impacts the CO2 exchange.
Collapse
Affiliation(s)
- Anna M Laine
- School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | | | - Raija Laiho
- Natural Resources Institute Finland, Helsinki, Finland
| | - Lauri Mehtätalo
- School of Computing, University of Eastern Finland, Joensuu, Finland
| | - Timo Penttilä
- Natural Resources Institute Finland, Helsinki, Finland
| | - Aino Korrensalo
- School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | - Kari Minkkinen
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Hannu Fritze
- Natural Resources Institute Finland, Helsinki, Finland
| | | |
Collapse
|
5
|
Laine AM, Mehtätalo L, Tolvanen A, Frolking S, Tuittila ES. Impacts of drainage, restoration and warming on boreal wetland greenhouse gas fluxes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:169-181. [PMID: 30077847 DOI: 10.1016/j.scitotenv.2018.07.390] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Northern wetlands with organic soil i.e., mires are significant carbon storages. This key ecosystem service may be threatened by anthropogenic activities and climate change, yet we still lack a consensus on how these major changes affects their carbon sink capacities. We studied how forestry drainage and restoration combined with experimental warming, impacts greenhouse gas fluxes of wetlands with peat. We measured CO2 and CH4 during two and N2O fluxes during one growing season using the chamber method. Gas fluxes were primarily controlled by water table, leaf area and temperature. Land use had a clear impact of on CO2 exchange. Forestry drainage increased respiration rates and decreased field layer net ecosystem CO2 uptake (NEE) and leaf area index (LAI), while at restoration sites the flux rates and LAI had recovered to the level of undrained sites. CH4 emissions were exceptionally low at all sites during our study years due to natural drought, but still somewhat lower at drained compared to undrained sites. Moderate warming triggered an increase in LAI across all land use types. This was accompanied by an increase in cumulative seasonal NEE. Restoration appeared to be an effective tool to return the ecosystem functions of these wetlands as we found no differences in LAI or any gas flux components (PMAX, Reco, NEE, CH4 or N2O) between restored and undrained sites. We did not find any signs that moderate warming would compromise the return of the ecosystem functions related to C sequestration.
Collapse
Affiliation(s)
- A M Laine
- Department of Forest Science, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland; Department of Ecology and Genetics, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland; School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland.
| | - L Mehtätalo
- School of Computing, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland.
| | - A Tolvanen
- Department of Ecology and Genetics, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland; Natural Resources Institute Finland (Luke), P.O. Box 413, FI-90014 Oulu, Finland.
| | - S Frolking
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland; Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, 8 College Road, Durham, NH 03824-3525, USA.
| | - E-S Tuittila
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland.
| |
Collapse
|
6
|
McPartland MY, Kane ES, Falkowski MJ, Kolka R, Turetsky MR, Palik B, Montgomery RA. The response of boreal peatland community composition and NDVI to hydrologic change, warming, and elevated carbon dioxide. GLOBAL CHANGE BIOLOGY 2019; 25:93-107. [PMID: 30295397 DOI: 10.1111/gcb.14465] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Widespread changes in arctic and boreal Normalized Difference Vegetation Index (NDVI) values captured by satellite platforms indicate that northern ecosystems are experiencing rapid ecological change in response to climate warming. Increasing temperatures and altered hydrology are driving shifts in ecosystem biophysical properties that, observed by satellites, manifest as long-term changes in regional NDVI. In an effort to examine the underlying ecological drivers of these changes, we used field-scale remote sensing of NDVI to track peatland vegetation in experiments that manipulated hydrology, temperature, and carbon dioxide (CO2 ) levels. In addition to NDVI, we measured percent cover by species and leaf area index (LAI). We monitored two peatland types broadly representative of the boreal region. One site was a rich fen located near Fairbanks, Alaska, at the Alaska Peatland Experiment (APEX), and the second site was a nutrient-poor bog located in Northern Minnesota within the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment. We found that NDVI decreased with long-term reductions in soil moisture at the APEX site, coincident with a decrease in photosynthetic leaf area and the relative abundance of sedges. We observed increasing NDVI with elevated temperature at the SPRUCE site, associated with an increase in the relative abundance of shrubs and a decrease in forb cover. Warming treatments at the SPRUCE site also led to increases in the LAI of the shrub layer. We found no strong effects of elevated CO2 on community composition. Our findings support recent studies suggesting that changes in NDVI observed from satellite platforms may be the result of changes in community composition and ecosystem structure in response to climate warming.
Collapse
Affiliation(s)
- Mara Y McPartland
- Department of Geography, Environment and Society, University of Minnesota, Minneapolis, Minnesota
- Department of Forest Resources, University of Minnesota, St. Paul, Minnesota
| | - Evan S Kane
- School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, Michigan
- Northern Research Station, USDA Forest Service, Houghton, Michigan
| | - Michael J Falkowski
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado
| | - Randy Kolka
- Northern Research Station, USDA Forest Service, Grand Rapids, Minnesota
| | - Merritt R Turetsky
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Brian Palik
- Northern Research Station, USDA Forest Service, Grand Rapids, Minnesota
| | | |
Collapse
|
7
|
Response of Black Ash Wetland Gaseous Soil Carbon Fluxes to a Simulated Emerald Ash Borer Infestation. FORESTS 2018. [DOI: 10.3390/f9060324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Mountain Peatlands Range from CO2 Sinks at High Elevations to Sources at Low Elevations: Implications for a Changing Climate. Ecosystems 2016. [DOI: 10.1007/s10021-016-0034-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Precipitation overrides warming in mediating soil nitrogen pools in an alpine grassland ecosystem on the Tibetan Plateau. Sci Rep 2016; 6:31438. [PMID: 27527683 PMCID: PMC4985624 DOI: 10.1038/srep31438] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/20/2016] [Indexed: 11/28/2022] Open
Abstract
Soils in the alpine grassland store a large amount of nitrogen (N) due to slow decomposition. However, the decomposition could be affected by climate change, which has profound impacts on soil N cycling. We investigated the changes of soil total N and five labile N stocks in the topsoil, the subsoil and the entire soil profile in response to three years of experimental warming and altered precipitation in a Tibetan alpine grassland. We found that warming significantly increased soil nitrate N stock and decreased microbial biomass N (MBN) stock. Increased precipitation reduced nitrate N, dissolved organic N and amino acid N stocks, but increased MBN stock in the topsoil. No change in soil total N was detected under warming and altered precipitation regimes. Redundancy analysis further revealed that soil moisture (26.3%) overrode soil temperature (10.4%) in explaining the variations of soil N stocks across the treatments. Our results suggest that precipitation exerted stronger influence than warming on soil N pools in this mesic and high-elevation grassland ecosystem. This indicates that the projected rise in future precipitation may lead to a significant loss of dissolved soil N pools by stimulating the biogeochemical processes in this alpine grassland.
Collapse
|
10
|
Crawford JT, Stanley EH, Spawn SA, Finlay JC, Loken LC, Striegl RG. Ebullitive methane emissions from oxygenated wetland streams. GLOBAL CHANGE BIOLOGY 2014; 20:3408-3422. [PMID: 24756991 DOI: 10.1111/gcb.12614] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr(-1) ; over 6400 km(2) ) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.
Collapse
Affiliation(s)
- John T Crawford
- U.S. Geological Survey, National Research Program, Boulder, CO, 80303, USA; Center for Limnology, University of Wisconsin-Madison, 680 N. Park St., Madison, WI, 53706, USA
| | | | | | | | | | | |
Collapse
|
11
|
Munir TM, Strack M. Methane Flux Influenced by Experimental Water Table Drawdown and Soil Warming in a Dry Boreal Continental Bog. Ecosystems 2014. [DOI: 10.1007/s10021-014-9795-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|