1
|
Atkinson A, Rossberg AG, Gaedke U, Sprules G, Heneghan RF, Batziakas S, Grigoratou M, Fileman E, Schmidt K, Frangoulis C. Steeper size spectra with decreasing phytoplankton biomass indicate strong trophic amplification and future fish declines. Nat Commun 2024; 15:381. [PMID: 38195697 PMCID: PMC10776571 DOI: 10.1038/s41467-023-44406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
Under climate change, model ensembles suggest that declines in phytoplankton biomass amplify into greater reductions at higher trophic levels, with serious implications for fisheries and carbon storage. However, the extent and mechanisms of this trophic amplification vary greatly among models, and validation is problematic. In situ size spectra offer a novel alternative, comparing biomass of small and larger organisms to quantify the net efficiency of energy transfer through natural food webs that are already challenged with multiple climate change stressors. Our global compilation of pelagic size spectrum slopes supports trophic amplification empirically, independently from model simulations. Thus, even a modest (16%) decline in phytoplankton this century would magnify into a 38% decline in supportable biomass of fish within the intensively-fished mid-latitude ocean. We also show that this amplification stems not from thermal controls on consumers, but mainly from temperature or nutrient controls that structure the phytoplankton baseline of the food web. The lack of evidence for direct thermal effects on size structure contrasts with most current thinking, based often on more acute stress experiments or shorter-timescale responses. Our synthesis of size spectra integrates these short-term dynamics, revealing the net efficiency of food webs acclimating and adapting to climatic stressors.
Collapse
Affiliation(s)
- Angus Atkinson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL13DH, UK.
| | - Axel G Rossberg
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Ursula Gaedke
- Institute of Biochemistry and Biology, University of Potsdam, 14469, Potsdam, Germany
| | - Gary Sprules
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON, L5L 1C6, Canada
| | - Ryan F Heneghan
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Stratos Batziakas
- Hellenic Centre for Marine Research, Former U.S. Base at Gournes, P.O. Box 2214, Heraklion GR-71003, Crete, Greece
| | | | - Elaine Fileman
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL13DH, UK
| | - Katrin Schmidt
- University of Plymouth, School of Geography, Earth and Environmental Sciences, Plymouth, PL4 8AA, UK
| | - Constantin Frangoulis
- Hellenic Centre for Marine Research, Former U.S. Base at Gournes, P.O. Box 2214, Heraklion GR-71003, Crete, Greece
| |
Collapse
|
2
|
McLaskey AK, Forster I, Hunt BPV. Distinct trophic ecologies of zooplankton size classes are maintained throughout the seasonal cycle. Oecologia 2024; 204:227-239. [PMID: 38219265 DOI: 10.1007/s00442-023-05501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 12/10/2023] [Indexed: 01/16/2024]
Abstract
Marine food webs are strongly size-structured and size-based analysis of communities is a useful approach to evaluate food webs in a way that can be compared across systems. Fatty acid analysis is commonly used to identify diet sources of species, offering a powerful complement to stable isotopes, but is rarely applied to size-structured communities. In this study, we used fatty acids and stable isotopes to characterize size-based variation in prey resources and trophic pathways over a nine-month temperate coastal ocean time series of seven plankton size classes, from > 0.7-μm particulate organic matter through > 2000-μm zooplankton. Zooplankton size classes were generally distinguishable by their dietary fatty acids, while stable isotopes revealed more seasonal variability. Fatty acids of zooplankton were correlated with those of their prey (particulate organic matter and smaller zooplankton) and identified trophic pathways, including widespread ties to the microbial food web. Diatom fatty acids also contributed to zooplankton but fall blooms were more important than spring. Concurrent isotope-based trophic position estimates and fatty acid markers of carnivory showed that some indicators (18:1ω9/18:1ω7) are not consistent across size classes, while others (DHA:EPA) are relatively reliable. Both analysis methods provided distinct information to build a more robust understanding of resource use. For example, fatty acid markers showed that trophic position was likely underestimated in 250-μm zooplankton, probably due to their consumption of protists with low isotopic fractionation factors. Applying fatty acid analysis to a size-structured framework provides more insight into trophic pathways than isotopes alone.
Collapse
Affiliation(s)
- Anna K McLaskey
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada.
- Hakai Institute, Campbell River, BC, Canada.
| | - Ian Forster
- Pacific Science Enterprise Center, Fisheries and Oceans Canada, West Vancouver, BC, Canada
| | - Brian P V Hunt
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
- Hakai Institute, Campbell River, BC, Canada
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Kang HC, Jeong HJ, Ok JH, Lim AS, Lee K, You JH, Park SA, Eom SH, Lee SY, Lee KH, Jang SH, Yoo YD, Lee MJ, Kim KY. Food web structure for high carbon retention in marine plankton communities. SCIENCE ADVANCES 2023; 9:eadk0842. [PMID: 38100582 PMCID: PMC10848704 DOI: 10.1126/sciadv.adk0842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Total annual net primary productions in marine and terrestrial ecosystems are similar. However, a large portion of the newly produced marine phytoplankton biomass is converted to carbon dioxide because of predation. Which food web structure retains high carbon biomass in the plankton community in the global ocean? In 6954 individual samples or locations containing phytoplankton, unicellular protozooplankton, and multicellular metazooplankton in the global ocean, phytoplankton-dominated bottom-heavy pyramids held higher carbon biomass than protozooplankton-dominated middle-heavy diamonds or metazooplankton-dominated top-heavy inverted pyramids. Bottom-heavy pyramids predominated, but the high predation impact by protozooplankton on phytoplankton or the vertical migration of metazooplankton temporarily changed bottom-heavy pyramids to middle-heavy diamonds or top-heavy inverted pyramids but returned to bottom-heavy pyramids shortly. This finding has profound implications for carbon retention by plankton communities in the global ocean.
Collapse
Affiliation(s)
- Hee Chang Kang
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hae Jin Jeong
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jin Hee Ok
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - An Suk Lim
- Division of Life Science, Gyeongsang National University, Jinju 52828, South Korea
| | - Kitack Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Ji Hyun You
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sang Ah Park
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Se Hee Eom
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sung Yeon Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kyung Ha Lee
- Food and Nutrition Tech, CJ CheilJedang, Suwon 16495, South Korea
| | - Se Hyeon Jang
- Department of Oceanography, Chonnam National University, Gwangju 61186, South Korea
| | - Yeong Du Yoo
- Department of Oceanography, Kunsan National University, Kunsan 54150, South Korea
| | - Moo Joon Lee
- Department of Marine Biotechnology, Anyang University, Incheon 23038, South Korea
| | - Kwang Young Kim
- Department of Oceanography, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
4
|
Russo L, Casella V, Marabotti A, Jordán F, Congestri R, D'Alelio D. Trophic hierarchy in a marine community revealed by network analysis on co-occurrence data. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Govaert L, Pantel JH, De Meester L. Quantifying eco‐evolutionary contributions to trait divergence in spatially structured systems. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lynn Govaert
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB) Berlin Germany
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Ch. Deberiotstraat 32, B‐3000 Leuven Belgium
- Department of Evolutionary Biology and Environmental Studies University of Zurich, Winterthurerstrasse 190 Zürich Switzerland
- Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133 Dübendorf Switzerland
| | - Jelena H. Pantel
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Ch. Deberiotstraat 32, B‐3000 Leuven Belgium
- Department of Computer Science, Mathematics, and Environmental Science The American University of Paris, 6 rue du Colonel Combes Paris France
- Ecological Modelling, Faculty of Biology University of Duisburg‐Essen, Universitätsstraße 5 Essen Germany
| | - Luc De Meester
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB) Berlin Germany
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Ch. Deberiotstraat 32, B‐3000 Leuven Belgium
- Institute of Biology, Freie Universität Berlin Berlin Germany
| |
Collapse
|
6
|
Chenillat F, Rivière P, Ohman MD. On the sensitivity of plankton ecosystem models to the formulation of zooplankton grazing. PLoS One 2021; 16:e0252033. [PMID: 34033649 PMCID: PMC8148333 DOI: 10.1371/journal.pone.0252033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/08/2021] [Indexed: 12/02/2022] Open
Abstract
Model representations of plankton structure and dynamics have consequences for a broad spectrum of ocean processes. Here we focus on the representation of zooplankton and their grazing dynamics in such models. It remains unclear whether phytoplankton community composition, growth rates, and spatial patterns in plankton ecosystem models are especially sensitive to the specific means of representing zooplankton grazing. We conduct a series of numerical experiments that explicitly address this question. We focus our study on the form of the functional response to changes in prey density, including the formulation of a grazing refuge. We use a contemporary biogeochemical model based on continuum size-structured organization, including phytoplankton diversity, coupled to a physical model of the California Current System. This region is of particular interest because it exhibits strong spatial gradients. We find that small changes in grazing refuge formulation across a range of plausible functional forms drive fundamental differences in spatial patterns of plankton concentrations, species richness, pathways of grazing fluxes, and underlying seasonal cycles. An explicit grazing refuge, with refuge prey concentration dependent on grazers' body size, using allometric scaling, is likely to provide more coherent plankton ecosystem dynamics compared to classic formulations or size-independent threshold refugia. We recommend that future plankton ecosystem models pay particular attention to the grazing formulation and implement a threshold refuge incorporating size-dependence, and we call for a new suite of experimental grazing studies.
Collapse
Affiliation(s)
- Fanny Chenillat
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Université de Brest, Ifremer, IRD, IUEM, Brest, France
| | - Pascal Rivière
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Université de Brest, Ifremer, IRD, IUEM, Brest, France
| | - Mark D. Ohman
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|