1
|
Chahal KK, Li J, Kufareva I, Parle M, Durden DL, Wechsler-Reya RJ, Chen CC, Abagyan R. Nilotinib, an approved leukemia drug, inhibits smoothened signaling in Hedgehog-dependent medulloblastoma. PLoS One 2019; 14:e0214901. [PMID: 31539380 PMCID: PMC6754133 DOI: 10.1371/journal.pone.0214901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/04/2019] [Indexed: 01/21/2023] Open
Abstract
Dysregulation of the seven-transmembrane (7TM) receptor Smoothened (SMO) and other components of the Hedgehog (Hh) signaling pathway contributes to the development of cancers including basal cell carcinoma (BCC) and medulloblastoma (MB). However, SMO-specific antagonists produced mixed results in clinical trials, marked by limited efficacy and high rate of acquired resistance in tumors. Here we discovered that Nilotinib, an approved inhibitor of several kinases, possesses an anti-Hh activity, at clinically achievable concentrations, due to direct binding to SMO and inhibition of SMO signaling. Nilotinib was more efficacious than the SMO-specific antagonist Vismodegib in inhibiting growth of two Hh-dependent MB cell lines. It also reduced tumor growth in subcutaneous MB mouse xenograft model. These results indicate that in addition to its known activity against several tyrosine-kinase-mediated proliferative pathways, Nilotinib is a direct inhibitor of the Hh pathway. The newly discovered extension of Nilotinib's target profile holds promise for the treatment of Hh-dependent cancers.
Collapse
Affiliation(s)
- Kirti Kandhwal Chahal
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego (UCSD), La Jolla, California, United States of America
- Department of Pharmaceutical Sciences, G.J. University of Science and Technology, Hisar, India
| | - Jie Li
- Department of Neurosurgery, Minneapolis, Minnesota, United States of America
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego (UCSD), La Jolla, California, United States of America
| | - Milind Parle
- Department of Pharmaceutical Sciences, G.J. University of Science and Technology, Hisar, India
| | - Donald L. Durden
- Department of Pediatrics, Moores Cancer Center, School of Medicine, UCSD and Rady Children’s Hospital, San Diego, La Jolla, California, United States of America
| | - Robert J. Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Clark C. Chen
- Department of Neurosurgery, Minneapolis, Minnesota, United States of America
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego (UCSD), La Jolla, California, United States of America
| |
Collapse
|
2
|
Ocak S, Özkan MA, Ozkan F, Öz B, Celkan TT, Apak H. Çocukluk çağı medulloblastom olgularında P53, ERBB2, c-Kit ve BCL2 Ekspresyonunun prognostik ve klinik önemi. CUKUROVA MEDICAL JOURNAL 2019. [DOI: 10.17826/cumj.442463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
3
|
Ehrhardt M, Craveiro RB, Velz J, Olschewski M, Casati A, Schönberger S, Pietsch T, Dilloo D. The FDA approved PI3K inhibitor GDC-0941 enhances in vitro the anti-neoplastic efficacy of Axitinib against c-myc-amplified high-risk medulloblastoma. J Cell Mol Med 2018; 22:2153-2161. [PMID: 29377550 PMCID: PMC5867109 DOI: 10.1111/jcmm.13489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022] Open
Abstract
Aberrant receptor kinase signalling and tumour neovascularization are hallmarks of medulloblastoma development and are both considered valuable therapeutic targets. In addition to VEGFR1/2, expression of PDGFR α/β in particular has been documented as characteristic of metastatic disease correlating with poor prognosis. Therefore, we have been suggested that the clinically approved multi‐kinase angiogenesis inhibitor Axitinib, which specifically targets these kinases, might constitute a promising option for medulloblastoma treatment. Indeed, our results delineate anti‐neoplastic activity of Axitinib in medulloblastoma cell lines modelling the most aggressive c‐myc‐amplified Non‐WNT/Non‐SHH and SHH‐TP53‐mutated tumours. Exposure of medulloblastoma cell lines to Axitinib results in marked inhibition of proliferation and profound induction of cell death. The differential efficacy of Axitinib is in line with target expression of medulloblastoma cells identifying VEGFR 1/2, PDGFR α/β and c‐kit as potential markers for drug application. The high specificity of Axitinib and the consequential low impact on the haematopoietic and immune system render this drug ideal multi‐modal treatment approaches. In this context, we demonstrate that the clinically available PI3K inhibitor GDC‐0941 enhances the anti‐neoplastic efficacy of Axitinib against c‐myc‐amplified medulloblastoma. Our findings provide a rational to further evaluate Axitinib alone and in combination with other therapeutic agents for the treatment of most aggressive medulloblastoma subtypes.
Collapse
Affiliation(s)
- Michael Ehrhardt
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| | - Rogerio B Craveiro
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| | - Julia Velz
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| | - Martin Olschewski
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| | - Anna Casati
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| | - Stefan Schönberger
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn, Bonn, Germany
| | - Dagmar Dilloo
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
4
|
DJ-1 is activated in medulloblastoma and is associated with cell proliferation and differentiation. World J Surg Oncol 2014; 12:373. [PMID: 25475127 PMCID: PMC4289263 DOI: 10.1186/1477-7819-12-373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/18/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND DJ-1 is a key regulator in human tumorigenesis, including brain malignancies. The mechanisms by which DJ-1 contributes to the pathogenesis of medulloblastoma (MB) remain unclear, and its impact on the prognosis for patients with MB has not been identified. The aim of this study was to determine whether the DJ-1 protein is associated with tumorigenesis of MBs, and whether DJ-1 is a valuable factor for predicting the prognosis of patients with MB. METHODS We collected 66 pairs of MB and adjacent normal cerebellum samples. Expression of DJ-1, Ser 473-phosphorylated-Akt (p-Akt), PTEN, and Ki-67 (MIB-1) was detected by immunohistochemical staining, and the correlation of these immunostaining results with the clinicopathological features of patients with MB was determined. RESULTS High DJ-1 expression (48.5%, 32/66) in tumor cells of MBs was significantly associated with the classic MB variant (P = 0.003), high proliferative activity (P = 0.002) and undifferentiated tumor (P = 0.001), whereas high p-Akt expression (56.1%, 37/66) was associated with tumor metastasis stage (P = 0.007), undifferentiated tumor (P = 0.007), and high-risk tumor (P = 0.002). High DJ-1 expression also correlated with high p-Akt expression and high MIB-1 index. However, only high levels of DJ-1(P = 0.009) and high MIB-1 index (P = 0.001) were strong independent prognostic factors associated with worse overall survival. CONCLUSIONS Although the validity of the preliminary data in this study needs to be confirmed by a larger number of cases, our study indicates that DJ-1, PTEN, and p-Akt might play important roles in cell proliferation and differentiation of MBs. The evaluation of expression of DJ-1 and related proteins might be useful for predicting the prognosis of patients with MB.
Collapse
|
5
|
Craveiro RB, Ehrhardt M, Holst MI, Pietsch T, Dilloo D. In comparative analysis of multi-kinase inhibitors for targeted medulloblastoma therapy pazopanib exhibits promising in vitro and in vivo efficacy. Oncotarget 2014; 5:7149-61. [PMID: 25216529 PMCID: PMC4196191 DOI: 10.18632/oncotarget.2240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/18/2014] [Indexed: 12/12/2022] Open
Abstract
Regardless of the recent advances in cytotoxic therapies, 30% of children diagnosed with medulloblastoma. succumb to the disease. Therefore, novel therapeutic approaches are warranted. Here we demonstrate that Pazopanib a clinically approved multi-kinase angiogenesis inhibitor (MKI) inhibits proliferation and apoptosis in medulloblastoma cell lines. Moreover, Pazopanib profoundly attenuates medulloblastoma cell migration, a prerequisite for tumor invasion and metastasis. In keeping with the observed anti-neoplastic activity of Pazopanib, we also delineate reduced phosphorylation of the STAT3 protein, a key regulator of medulloblastoma proliferation and cell survival. Finally, we document profound in vivo activity of Pazopanib in an orthotopic mouse model of the most aggressive c-myc amplified human medulloblastoma variant. Pazopanib reduced the growth rate of intracranial growing medulloblastoma and significantly prolonged the survival. Furthermore, to put these results into a broader perspective we analysed Pazopanib side by side with the MKI Sorafenib. Both compounds share a similar target profile but display different pharmacodynamics and pharmacokinetics with distinct cytotoxic activity in different tumor entities. Thus, we identified Pazopanib as a new promising candidate for a rational clinical assessment for targeted paediatric medulloblastoma therapy.
Collapse
Affiliation(s)
- Rogerio B Craveiro
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany. These authors contributed equally to this work
| | - Michael Ehrhardt
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany. These authors contributed equally to this work
| | - Martin I Holst
- Department of Neuropathology, University of Bonn, Bonn, Germany
| | | | - Dagmar Dilloo
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
6
|
Virág J, Kenessey I, Haberler C, Piurkó V, Bálint K, Döme B, Tímár J, Garami M, Hegedűs B. Angiogenesis and angiogenic tyrosine kinase receptor expression in pediatric brain tumors. Pathol Oncol Res 2013; 20:417-26. [PMID: 24190638 DOI: 10.1007/s12253-013-9711-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/10/2013] [Indexed: 01/07/2023]
Abstract
Tumor angiogenesis and receptor tyrosine kinases (RTK) are major novel targets in anticancer molecular therapy. Accordingly, we characterized the vascular network and the expression pattern of angiogenic RTK in the most frequent pediatric brain tumors. In a retrospective collection of 44 cases (14 astrocytoma, 16 ependymoma and 14 medulloblastoma), immunohistochemistry for VEGFR1, VEGFR2, PDGFRα, PDGFRβ, and c-Kit as well as microvessel labeling with CD34 and SMA were conducted on surgical specimens. We found a significantly higher vascular density in ependymoma. Glomeruloid formations were abundant in medulloblastoma but rare or almost absent in astrocytoma and ependymoma, respectively. C-Kit and VEGFR2 labeled blood vessels were more abundant in ependymoma than in the other two types of tumors. In contrast, medulloblastoma contained higher number of PDGFRα expressing vessels. In tumor cells, we found no VEGFR2 but VEGFR1 expression in all three tumor types. PDGFRα was strongly expressed on the tumor cells in all three malignancies, while PDGFRβ tumor cell expression was present in the majority of medulloblastoma cases. Interestingly, small populations of c-Kit expressing cancer cells were found in a number of medulloblastoma and ependymoma cases. Our study suggests that different angiogenic mechanisms are present in ependymoma and medulloblastoma. Furthermore ependymoma patients may benefit from anti-angiogenic therapies based on the high vascularization as well as the endothelial expression of c-kit and VEGFR2. The expression pattern of the receptors on tumor cells also suggests the targeting of specific angiogenic tyrosine kinase receptors may have direct antitumor activity. Further preclinical and biomarker driven clinical investigations are needed to establish the application of tyrosine kinase inhibitors in the treatment of pediatric brain tumors.
Collapse
Affiliation(s)
- József Virág
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
HESRG: a novel biomarker for intracranial germinoma and embryonal carcinoma. J Neurooncol 2011; 106:251-9. [PMID: 21861197 DOI: 10.1007/s11060-011-0673-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/29/2011] [Indexed: 12/16/2022]
Abstract
The novel stem cell-related gene, HESRG, was first identified by our group, and its expression pattern in human tumors remains unknown. In this study, we used RT-PCR to systematically investigate the expression of HESRG in various types of intracranial tumors and found that HESRG was expressed only in germinoma and embryonal carcinoma, but hardly at all in other types of brain tumors. Real-time PCR results further confirmed this expression pattern. Subsequently, we tested 134 intracranial non-germ cell tumors and 64 intracranial germ cell tumors by immunohistochemistry. Our results showed that HESRG was expressed strongly and diffusively in the nuclei of tumor cells in intracranial germinoma and embryonal carcinoma as well as in human embryonic stem cells. No positive staining signal was observed in any other type of intracranial tumors. In germinomas, 25 of 31 showed intensive (3+) expression, four cases showed moderate (2+) immunostaining and the remaining 2 cases showed weak (1+) immunostaining. In embryonal carcinoma, 6 of 9 showed intensive (3+) immunostaining and 3 of 9 showed moderate (2+) immunostaining. These results suggest that HESRG is a novel, sensitive and specific biomarker for intracranial germinoma and embryonal carcinoma.
Collapse
|
8
|
Mandrioli L, Biserni R, Panarese S, Morini M, Gandini G, Bettini G. Immunohistochemical Profiling and Telomerase Activity of a Canine Medulloblastoma. Vet Pathol 2010; 48:814-6. [DOI: 10.1177/0300985810390016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A well-demarcated mass was found by computed tomography in the left cerebellar hemisphere of a 4-year-old male Boxer with acute onset of progressive central vestibular syndrome. At necropsy, the pink, gelatinous mass was in the flocculonodular lobe. Histologically, neoplastic tissue arose from the granular layer of the cerebellar cortex and consisted of sheets of oval to round hyperchromatic cells, consistent with the diagnosis of medulloblastoma. Synaptophysin and neuron-specific enolase immunoreactivity supported the neuronal origin of the neoplastic cells; furthermore, a weak to moderate c-kit expression was detected, as reported in pediatric medulloblastoma. Telomerase activity of tumor cells was demonstrated by immunohistochemistry and by the telomere repeat amplification protocol, suggesting involvement of this enzymatic pathway.
Collapse
Affiliation(s)
- L. Mandrioli
- Department of Veterinary Public Health and Animal Pathology, Alma Mater Studiorum–University of Bologna, Ozzano Emilia, Italy
| | - R. Biserni
- Veterinary Clinical Department, Alma Mater Studiorum–University of Bologna, Ozzano Emilia, Italy
| | - S. Panarese
- Department of Veterinary Public Health and Animal Pathology, Alma Mater Studiorum–University of Bologna, Ozzano Emilia, Italy
| | - M. Morini
- Department of Veterinary Public Health and Animal Pathology, Alma Mater Studiorum–University of Bologna, Ozzano Emilia, Italy
| | - G. Gandini
- Veterinary Clinical Department, Alma Mater Studiorum–University of Bologna, Ozzano Emilia, Italy
| | - G. Bettini
- Department of Veterinary Public Health and Animal Pathology, Alma Mater Studiorum–University of Bologna, Ozzano Emilia, Italy
| |
Collapse
|
9
|
Enguita-Germán M, Gurrea M, Schiapparelli P, Zhu TS, Crowley JG, Hamm LL, Costello MA, He X, Talsma CE, Flack CG, Hervey-Jumper SL, Heth JA, Muraszko KM, Rey JA, Fan X, Castresana JS. KIT expression and methylation in medulloblastoma and PNET cell lines and tumors. J Neurooncol 2010; 103:247-53. [PMID: 20853134 DOI: 10.1007/s11060-010-0391-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 08/26/2010] [Indexed: 02/02/2023]
Abstract
The stem cell factor/kit tyrosine kinase receptor pathway is related to tumor growth and progression in several cancers including Ewing sarcoma, a peripheral PNET (pPNET). Identifying additional groups of tumors that may use the pathway is important as they might be responsive to imatinib mesylate treatment. MB and central PNET (cPNET) are embryonal tumors of the CNS that share similar undifferentiated morphology with Ewing sarcomas and display aggressive clinical behavior. cPNET outcome is significantly lower than MB outcome, even for localized tumors treated with high-risk MB therapy. The elucidation of signaling pathways involved in MB and cPNET pathogenesis, and the discovery of new therapeutic targets is necessary to improve the treatment of these neoplasms. We analyzed KIT expression in 2 MB, one pPNET, one cPNET and 2 rhabdomyosarcoma (RMS) cell lines. Also, in 13 tumor samples (12 MB and one cPNET), we found KIT overexpression in the most aggressive cell lines (metastatic MB and pPNET). Hypermethylation of KIT was clear in the RMS non-expressing cell lines. Among MB tumors, we could see variable levels of KIT expression; a subset of them (25%) might be related in its growth pattern to KIT up-regulation. No methylated KIT was detected in the tumors expressing the lowest levels of KIT. Our results point to methylation as an epigenetic regulatory mechanism for KIT inhibition only in the KIT non-expressing RMS cell lines, and neither in the rest of the cell lines nor in the tumor samples.
Collapse
Affiliation(s)
- Mónica Enguita-Germán
- Brain Tumor Biology Unit-CIFA, University of Navarra School of Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Koos B, Jeibmann A, Lünenbürger H, Mertsch S, Nupponen NN, Roselli A, Leuschner I, Paulus W, Frühwald MC, Hasselblatt M. The tyrosine kinase c-Abl promotes proliferation and is expressed in atypical teratoid and malignant rhabdoid tumors. Cancer 2010; 116:5075-81. [DOI: 10.1002/cncr.25420] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Abstract
Medulloblastoma is one of the most frequent brain tumors in childhood. The mortality of medulloblastoma decreased significantly during the last few decades, which was the result of the better surgical and radiotherapeutic methods and of the development of chemotherapy. The aim of this publication is the critical review of the present chemotherapeutic treatment. The new therapeutic trials based on the molecular genetic mechanism of these tumors are also mentioned.
Collapse
Affiliation(s)
- Dezsô Schuler
- Semmelweis Egyetem AOK II. sz. Gyermekgyógyászati Klinika 1094 Budapest Tuzoltó utca 7-9.
| |
Collapse
|
12
|
Baryawno N, Sveinbjörnsson B, Eksborg S, Chen CS, Kogner P, Johnsen JI. Small-molecule inhibitors of phosphatidylinositol 3-kinase/Akt signaling inhibit Wnt/beta-catenin pathway cross-talk and suppress medulloblastoma growth. Cancer Res 2009; 70:266-76. [PMID: 20028853 DOI: 10.1158/0008-5472.can-09-0578] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Activation of the beta-catenin and receptor kinase pathways occurs often in medulloblastoma, the most common pediatric malignant brain tumor. In this study, we show that molecular cross-talk between the beta-catenin and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways is crucial to sustain medulloblastoma pathophysiology. Constitutive activation of phosphoinositide-dependent protein kinase 1 (PDK1), Akt, and phosphorylation of [corrected] glycogen synthase kinase 3beta (GSK-3beta) was detected by immunohistochemistry in all primary medulloblastomas examined (n = 41). Small-molecule inhibitors targeting the PI3K/Akt signaling pathway affected beta-catenin signaling by activation [corrected] of GSK-3beta, [corrected] resulting in cytoplasmic retention of beta-catenin and reduced expression of its target genes cyclin D1 and c-Myc. The PDK1 inhibitor OSU03012 induced mitochondrial-dependent apoptosis of medulloblastoma cells and enhanced the cytotoxic effects of chemotherapeutic drugs in a synergistic or additive manner. In vivo, OSU03012 inhibited the growth of established medulloblastoma xenograft tumors in a dose-dependent manner and augmented the antitumor effects of mammalian target of rapamycin inhibitor CCI-779. These findings demonstrate the importance of cross-talk between the PI3K/Akt and beta-catenin pathways in medulloblastoma and rationalize the PI3K/Akt signaling pathway as a therapeutic target in treatment of this disease.
Collapse
Affiliation(s)
- Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
13
|
Puputti M, Tynninen O, Pernilä P, Salmi M, Jalkanen S, Paetau A, Sihto H, Joensuu H. Expression of KIT receptor tyrosine kinase in endothelial cells of juvenile brain tumors. Brain Pathol 2009; 20:763-70. [PMID: 20030644 PMCID: PMC2901521 DOI: 10.1111/j.1750-3639.2009.00357.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
KIT receptor tyrosine kinase is expressed in tumor endothelial cells of adult glioblastomas, but its expression in pediatric brain tumor endothelial cells is unknown. We assessed expression of KIT, phosphorylated KIT, stem cell factor (SCF) and vascular endothelial growth factor receptor‐2 (VEGFR‐2) in 35 juvenile pilocytic astrocytomas and 49 other pediatric brain tumors using immunohistochemistry, and KIT messenger RNA (mRNA) using in situ hybridization. KIT and phospho‐KIT were moderately or strongly expressed in tumor endothelia of 37% and 35% of pilocytic astrocytomas, respectively, whereas marked SCF and VEGFR‐2 expression was uncommon. KIT mRNA was detected in tumor endothelial cells. Tumor endothelial cell KIT expression was strongly (P < 0.01) associated with endothelial cell phospho‐KIT and SCF expression, and with tumor KIT (P = 0.0011) and VEGFR‐2 expression (P = 0.022). KIT and phospho‐KIT were present in endothelia of other pediatric brain tumors, notably ependymomas. Endothelial cell KIT expression was associated with a young age at diagnosis of pilocytic astrocytoma or ependymoma, and it was occasionally present in histologically normal tissue of the fetus and children. We conclude that KIT is commonly present in endothelial cells of juvenile brain tumors and thus may play a role in angiogenesis in these neoplasms.
Collapse
|
14
|
Blom T, Roselli A, Häyry V, Tynninen O, Wartiovaara K, Korja M, Nordfors K, Haapasalo H, Nupponen NN. Amplification and overexpression of KIT, PDGFRA, and VEGFR2 in medulloblastomas and primitive neuroectodermal tumors. J Neurooncol 2009; 97:217-24. [PMID: 19779861 DOI: 10.1007/s11060-009-0014-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
Medulloblastomas (MB) and primitive neuroectodermal tumors (PNET) are the most common malignant brain tumors in children. These two tumor types are histologically similar, but have different genetic backgrounds and clinical outcomes. Other brain tumors, such as gliomas, frequently have coamplification and overexpression of receptor tyrosine kinases KIT, platelet-derived growth factor receptor alpha (PDGFRA), and vascular endothelial growth factor receptor 2 (VEGFR2). We investigated protein expression and gene copy numbers of KIT, PDGFRA, and VEGFR2 in 41 MB and 11 PNET samples by immunohistochemistry (IHC) and chromogenic in situ hybridization (CISH). KIT and PDGFRA expression was detected in both MBs and PNETs, whereas VEGFR2 expression was weak in these tumors. KIT, PDGFRA, and VEGFR2 amplifications were all present in 4% of MBs/PNETs, and KIT amplification was associated with concurrent PDGFRA and VEGFR2 amplifications (P <or= 0.001). Most strikingly, increased gene copy number of PDGFRA was associated with poor overall survival (P = 0.027). We suggest that coamplification of PDGFRA or VEGFR2 with KIT may be clinically useful novel molecular markers in MBs and PNETs.
Collapse
Affiliation(s)
- Tea Blom
- Molecular Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, 00014, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Geoerger B, Morland B, Ndiaye A, Doz F, Kalifa G, Geoffray A, Pichon F, Frappaz D, Chatelut E, Opolon P, Hain S, Boderet F, Bosq J, Emile JF, Deley MCL, Capdeville R, Vassal G. Target-driven exploratory study of imatinib mesylate in children with solid malignancies by the Innovative Therapies for Children with Cancer (ITCC) European Consortium. Eur J Cancer 2009; 45:2342-51. [DOI: 10.1016/j.ejca.2009.03.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/18/2009] [Accepted: 03/09/2009] [Indexed: 10/20/2022]
|
16
|
|
17
|
Baruchel S, Sharp JR, Bartels U, Hukin J, Odame I, Portwine C, Strother D, Fryer C, Halton J, Egorin MJ, Reis RM, Martinho O, Stempak D, Hawkins C, Gammon J, Bouffet E. A Canadian paediatric brain tumour consortium (CPBTC) phase II molecularly targeted study of imatinib in recurrent and refractory paediatric central nervous system tumours. Eur J Cancer 2009; 45:2352-9. [PMID: 19505817 DOI: 10.1016/j.ejca.2009.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/16/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE To evaluate the safety, efficacy and pharmacokinetics of imatinib in children with recurrent or refractory central nervous system (CNS) tumours expressing KIT and/or PDGFRA. METHODS Nineteen patients aged 2-18 years, with recurrent or refractory CNS tumours expressing either of the target receptors KIT and/or PDGFRA (by immunohistochemistry) were eligible. Participants received imatinib orally at a dose of 440 mg/m(2)/day and toxicities and tumour responses were monitored. Serial blood and cerebrospinal fluid samples for pharmacokinetics were obtained in a subset of consenting patients. Frozen tumour samples were analysed retrospectively for KIT and PDGFRA gene amplification in a subset of patients for whom samples were available. RESULTS Common toxicities were lymphopaenia, neutropaenia, leucopaenia, elevated serum transaminases and vomiting. No intratumoural haemorrhages were observed. Although there were no objective responses to imatinib, four patients had long-term stable disease (SD) (38-104 weeks). Our results suggest a possible relationship between KIT expression and maintenance of SD with imatinib treatment; KIT immunopositivity was seen in only 58% (11/19) of study participants overall, but in 100% of patients with SD at 38 weeks. All patient tumours showed PDGFRA expression. Pharmacokinetic data showed a high interpatient variability, but corresponded with previously reported values. CONCLUSIONS Imatinib at 440 mg/m(2)/day is relatively safe in children with recurrent CNS tumours, but induced no objective responses. Demonstration of SD in previously progressing patients (KIT-expressing) suggests cytostatic activity of imatinib.
Collapse
Affiliation(s)
- Sylvain Baruchel
- Department of Paediatrics Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abouantoun TJ, MacDonald TJ. Imatinib blocks migration and invasion of medulloblastoma cells by concurrently inhibiting activation of platelet-derived growth factor receptor and transactivation of epidermal growth factor receptor. Mol Cancer Ther 2009; 8:1137-47. [PMID: 19417143 DOI: 10.1158/1535-7163.mct-08-0889] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Platelet-derived growth factor (PDGF) receptor (PDGFR) expression correlates with metastatic medulloblastoma. PDGF stimulation of medulloblastoma cells phosphorylates extracellular signal-regulated kinase (ERK) and promotes migration. We sought to determine whether blocking PDGFR activity effectively inhibits signaling required for medulloblastoma cell migration and invasion. DAOY and D556 human medulloblastoma cells were treated with imatinib mesylate (Gleevec), a PDGFR tyrosine kinase inhibitor, or transfected with small interfering RNA (siRNA) to PDGFRB to test the effects of blocking PDGFR phosphorylation and expression, respectively. PDGFR cell signaling, migration, invasion, survival, and proliferation following PDGF-BB stimulation, with and without PDGFR inhibition, were measured. PDGF-BB treatment of cells increased PDGFRB, Akt and ERK phosphorylation, and transactivated epidermal growth factor receptor (EGFR), which correlated with enhanced migration, survival, and proliferation. Imatinib (1 μmol/L) treatment of DAOY and D556 cells inhibited PDGF-BB- and serum-mediated migration and invasion at 24 and 48 h, respectively, and concomitantly inhibited PDGF-BB activation of PDGFRB, Akt, and ERK but increased PTEN expression and activity. Imatinib treatment also induced DAOY cell apoptosis at 72 h and inhibited DAOY and D556 cell proliferation at 48 h. siRNA silencing of PDGFRB similarly inhibited signaling, migration, and survival and both siRNA and imatinib treatment inhibited PDGF-BB-mediated EGFR transactivation, indicating that the effects of imatinib treatment are specific to PDGFRB target inhibition. These results indicate that PDGFRB tyrosine kinase activity is critical for migration and invasion of medulloblastoma cells possibly by transactivating EGFR; thus, imatinib may represent an important novel therapeutic agent for the treatment of medulloblastoma.
Collapse
Affiliation(s)
- Thamara J Abouantoun
- The George Washington University and Center for Cancer and Immunology Research, Children's Research Institute, Washington, District of Columbia 20010, USA.
| | | |
Collapse
|
19
|
Abstract
Medulloblastoma is the most common brain tumor of childhood. Multiple signaling pathways have been associated with medulloblastoma formation and growth. These include the developmental pathways Hedgehog, (Hh) Notch, and Wnt as well as the receptor tyrosine kinases (RTK) c-Met, erbB2, IGF-R and TrkC, and the oncoprotein Myc. Here we review the involvement of these pathways in medulloblastoma malignancy with a focus on their mode of deregulation, prognostic value, functional effects, cellular and molecular mechanisms of action, and implications for therapy.
Collapse
Affiliation(s)
- Fadila Guessous
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
20
|
Entz-Werle N, Carli ED, Ducassou S, Legrain M, Grill J, Dufour C. Medulloblastoma: what is the role of molecular genetics? Expert Rev Anticancer Ther 2008; 8:1169-81. [PMID: 18588461 DOI: 10.1586/14737140.8.7.1169] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Among pediatric malignancies, medulloblastoma (MB) is one of the most common malignant tumors of the CNS. In the past few years, thanks to a multidisciplinary approach including surgery, chemo- and radiation therapy, survival has significantly improved. Despite that, a third of patients still have a low chance of being cured and long-term survivors experience severe treatment-related sequelae. MBs are usually classified according to a clinical risk stratification, based on histological features, age at diagnosis, extent of tumor resection and presence or absence of metastases. However, these clinical variables have recently been reported to be poor for defining risk-related disease. Retrospective studies have identified histological or biological factors that have distinct roles in prognosis. As several pathways have been discovered to be involved in MB pathogenesis, they should be taken into account to more accurately stratify patients and their treatment and to develop innovative therapies.
Collapse
Affiliation(s)
- Natacha Entz-Werle
- Service de Pédiatrie, U 682 Inserm CHRU Hautepierre, Avenue Molière - 67098 Strasbourg Cedex France.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Biologicals are defined as agents that are either uniquely or partially tumor-specific. Great expectations were raised by the success in agents that target a specific genetic translocation: all-trans retinoic acid, targeting the chronic myeloid leukemia retinoic acid receptor in acute promyelocytic leukemia and imatinib, a small molecule targeting the BCR-ABL translocation in chronic myeloid leukemia (CML). Thus far, the search for similar "druggable" genetic targets in pediatric cancers has not yet resulted in such dramatic results. The rarity of pediatric cancer as well as ethical considerations necessitate that the agents for testing be carefully and rigorously selected. Biologicals present an additional challenge, as they often do not lend themselves to in vitro testing. Early approaches to specific targeting of solid tumors utilized monoclonal antibodies. The microenvironment provides an interesting new biological approach to treating tumors and alteration of the host immune response provides another avenue. Biological agents are a step forward in supportive care to reduce the hematological toxicity of high-dose chemotherapy and to manage the frequent infectious complications.
Collapse
Affiliation(s)
- Bharat Agarwal
- Department of Pediatric Hematology and Oncology, B.J. Wadia Hospital for Children, Institute of Child Health and Research Centre, Mumbai, India.
| |
Collapse
|
22
|
Hassan HT. c-Kit expression in human normal and malignant stem cells prognostic and therapeutic implications. Leuk Res 2008; 33:5-10. [PMID: 18639336 DOI: 10.1016/j.leukres.2008.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 06/06/2008] [Accepted: 06/11/2008] [Indexed: 10/21/2022]
Abstract
The human stem cell factor/c-Kit signaling pathway is pivotal for the survival of embryonic, foetal and adult stem cells and for their fundamental role in generating healthy functioning cell and tissue types during embryonic, foetal and adult life. Common biological features between human stem cells and cancer cells include (A) self-renewal, (B) extensive capacity of proliferation, (C) migration to and homing at distant sites and (D) resistance to toxic agents. Given these shared attributes, cancer was proposed to originate from transforming mutation(s) in normal stem cells that dysregulate their physiological programs. This theory has been recently supported by the findings that among all malignant cells within a particular tumour, only cell fraction expressing stem cell markers such as c-Kit named 'cancer stem cells' has the exclusive potential to generate tumour cell population. The involvement of c-Kit and its mutation in various haematological malignancies and solid tumours are reviewed. The impacts of dysregulated c-Kit as oncogenic tyrosine kinase on autocrine stimulation and resistance to chemotherapy of cancer stem cells are evaluated. The significance and efficacy of molecular therapeutic targeting of c-Kit signaling pathway in the management of patients with c-Kit-positive malignancies are appraised.
Collapse
|
23
|
Entz-Werle N, Velasco V, Neuville A, Geoerger B, Mathieu MC, Guerin E, Kehrli P, Gaub MP, Vassal G, Grill J. Do medulloblastoma tumors meet the Food and Drug Administration criteria for anti-erbB2 therapy with trastuzumab? Pediatr Blood Cancer 2008; 50:163-6. [PMID: 16724315 DOI: 10.1002/pbc.20908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several publications have recently focused on the erbB2 receptor in pediatric medulloblastomas (MBs) and its prognostic consequence. We determined erbB2 expression in 23 MBs at diagnosis. After DNA extraction, quantitative PCR targeting the erbB2 gene was performed and correlated with FISH analysis and immunohistochemistry. The samples were representative of the spectrum of the disease apart from the absence of large cell MBs. Using the tools validated for breast cancers by the FDA, we did not observe any expression or amplification of erbB2 and hence we speculate that MBs are not a good target for treatment with anti-erbB2 antibodies.
Collapse
|
24
|
|
25
|
Blom T, Tynninen O, Puputti M, Halonen M, Paetau A, Haapasalo H, Tanner M, Nupponen NN. Molecular genetic analysis of the REST/NRSF gene in nervous system tumors. Acta Neuropathol 2006; 112:483-90. [PMID: 16823502 DOI: 10.1007/s00401-006-0102-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 06/09/2006] [Accepted: 06/12/2006] [Indexed: 11/30/2022]
Abstract
The gene for RE1-silencing transcription factor (REST) alias neuron-restrictive silencer factor NRSF, acts as a transcriptional repressor in the neuronal differentiation pathways in non-neuronal cells, and plays an important role in neuronal development. Inactivating mutations or overexpression of REST have previously been reported in various types of cancer, but no data is available for the role of REST alterations in gliomas. REST gene was screened for mutations in 161 nervous system tumors consisting of astrocytomas, glioblastomas, oligodendrogliomas, oligoastrocytomas, medulloblastomas, meningiomas and schwannomas. REST exons 1-3 were analyzed using denaturing high-performance liquid chromatography (DHPLC) and direct sequencing. The gene copy numbers of REST were investigated by chromogenic (CISH) and fluorescence in situ hybridization (FISH) techniques. Non-synonymous SNPs (P797L, P815S) were found in eight different brain tumor samples. No truncating or activating novel mutations of REST were discovered. Since REST is located at 4q12, a chromosome region implicated in brain tumorigenesis, we conducted gene copy number analyses in medulloblastomas and gliomas. The majority of gliomas (67%) demonstrated low-level amplifications of REST, and only one oligodendroglioma showed high-level amplification of the gene. In medulloblastomas, 38% of samples were determined as aneuploidic, no high-level amplifications were found. Our data suggests that REST is neither activated nor inactivated via mutations in gliomas, while high-level amplification may rarely occur.
Collapse
Affiliation(s)
- Tea Blom
- Molecular Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, P.O. Box 180, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hartmann W, Digon-Söntgerath B, Koch A, Waha A, Endl E, Dani I, Denkhaus D, Goodyer CG, Sörensen N, Wiestler OD, Pietsch T. Phosphatidylinositol 3'-kinase/AKT signaling is activated in medulloblastoma cell proliferation and is associated with reduced expression of PTEN. Clin Cancer Res 2006; 12:3019-27. [PMID: 16707597 DOI: 10.1158/1078-0432.ccr-05-2187] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Medulloblastomas represent the most frequent malignant brain tumors of childhood. They are supposed to originate from cerebellar neural precursor cells. Recently, it has been shown that Sonic Hedgehog-induced formation of medulloblastoma in an animal model is significantly enhanced by activation of the phosphatidylinositol 3'-kinase (PI3K) signaling pathway. EXPERIMENTAL DESIGN To examine a role for PI3K/AKT signaling in the molecular pathogenesis of human medulloblastoma, we did an immunohistochemical study of the expression of Ser473-phosphorylated (p)-AKT protein in 22 medulloblastoma samples: All samples displayed p-AKT expression. To investigate if an activated PI3K/AKT pathway is required for medulloblastoma cell growth, we treated five human medulloblastoma cell lines with increasing concentrations of the PI3K inhibitor LY294002 and analyzed cellular proliferation and apoptosis. The antiproliferative effect could be antagonized by overexpressing constitutively active AKT. As the activation of PI3K/AKT signaling may be associated with alterations of the PTEN gene located at 10q23.3, a chromosomal region subject to frequent allelic losses in medulloblastoma, we screened PTEN for mutations and mRNA expression. RESULTS Proliferation of all of the medulloblastoma cell lines was dependent on PI3K/AKT signaling, whereas apoptosis was not prominently affected. Allelic loss was detected in 16% of the cases. One medulloblastoma cell line was found to carry a truncating mutation in the PTEN coding sequence. Even more important, PTEN mRNA and protein levels were found to be significantly lower in medulloblastomas compared with normal cerebellar tissue of different developmental stages. Reduction of PTEN expression was found to be associated with PTEN promoter hypermethylation in 50% of the tumor samples. CONCLUSIONS We conclude that activation of the PI3K/AKT pathway constitutes an important step in the molecular pathogenesis of medulloblastoma and that dysregulation of PTEN may play a significant role in this context.
Collapse
Affiliation(s)
- Wolfgang Hartmann
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Miettinen M, Lasota J. KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohistochem Mol Morphol 2006; 13:205-20. [PMID: 16082245 DOI: 10.1097/01.pai.0000173054.83414.22] [Citation(s) in RCA: 359] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CD117 (KIT) is a type III receptor tyrosine kinase operating in cell signal transduction in several cell types. Normally KIT is activated (phosphorylated) by binding of its ligand, the stem cell factor. This leads to a phosphorylation cascade ultimately activating various transcription factors in different cell types. Such activation regulates apoptosis, cell differentiation, proliferation, chemotaxis, and cell adhesion. KIT-dependent cell types include mast cells, some hematopoietic stem cells, germ cells, melanocytes, and Cajal cells of the gastrointestinal tract, and neoplasms of these cells are examples of KIT-positive tumors. Other KIT-positive normal cells include epithelial cells in skin adnexa, breast, and subsets of cerebellar neurons. KIT positivity has been variably reported in sarcomas such as angiosarcoma, Ewing sarcoma, synovial sarcoma, leiomyosarcoma, and MFH; results of the last three are controversial. The variations in published data may result from incomplete specificity of some polyclonal antibodies, possibly contributed by too high dilutions. Also, KIT is expressed in pulmonary and other small cell carcinomas, adenoid cystic carcinoma, renal chromophobe carcinoma, thymic, and some ovarian and few breast carcinomas. A good KIT antibody reacts with known KIT positive cells, and smooth muscle cells and fibroblasts are negative. KIT deficiency due to hereditary nonsense/missense mutations leads to disruption of KIT-dependent functions such as erythropoiesis, skin pigmentation, fertility, and gastrointestinal motility. Conversely, pathologic activation of KIT through gain-of-function mutations leads to neoplasia of KIT-dependent and KIT-positive cell types at least in three different systems: mast cells/myeloid cells--mastocytosis/acute myeloid leukemia, germ cells--seminoma, and Cajal cells--gastrointestinal stromal tumors (GISTs). KIT tyrosine kinase inhibitors such as imatinib mesylate are the generally accepted treatment of metastatic GISTs, and their availability has prompted an active search for other treatment targets among KIT-positive tumors such as myeloid leukemias and small cell carcinoma of the lung, with variable and often nonconvincing results.
Collapse
Affiliation(s)
- Markku Miettinen
- Department of Soft Tissue Pathology, Armed Forces Institute of Pathology, Washington, DC 20306-6000, USA.
| | | |
Collapse
|