1
|
Bonato A, Raparelli G, Caruso M. Molecular pathways involved in the control of contractile and metabolic properties of skeletal muscle fibers as potential therapeutic targets for Duchenne muscular dystrophy. Front Physiol 2024; 15:1496870. [PMID: 39717824 PMCID: PMC11663947 DOI: 10.3389/fphys.2024.1496870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin, a subsarcolemmal protein whose absence results in increased susceptibility of the muscle fiber membrane to contraction-induced injury. This results in increased calcium influx, oxidative stress, and mitochondrial dysfunction, leading to chronic inflammation, myofiber degeneration, and reduced muscle regenerative capacity. Fast glycolytic muscle fibers have been shown to be more vulnerable to mechanical stress than slow oxidative fibers in both DMD patients and DMD mouse models. Therefore, remodeling skeletal muscle toward a slower, more oxidative phenotype may represent a relevant therapeutic approach to protect dystrophic muscles from deterioration and improve the effectiveness of gene and cell-based therapies. The resistance of slow, oxidative myofibers to DMD pathology is attributed, in part, to their higher expression of Utrophin; there are, however, other characteristics of slow, oxidative fibers that might contribute to their enhanced resistance to injury, including reduced contractile speed, resistance to fatigue, increased capillary density, higher mitochondrial activity, decreased cellular energy requirements. This review focuses on signaling pathways and regulatory factors whose genetic or pharmacologic modulation has been shown to ameliorate the dystrophic pathology in preclinical models of DMD while promoting skeletal muscle fiber transition towards a slower more oxidative phenotype.
Collapse
Affiliation(s)
| | | | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Monterotondo (RM), Italy
| |
Collapse
|
2
|
Li X, Zhong Z, Zhang R, Zhang J, Zhang Y, Zeng S, Du Q, Wang H, Zhang S, Lu L, Li M, Long K. Decoding the transcriptome of muscular dystrophy due to Ptrf deficiency using single-nucleus RNA sequencing. FASEB J 2023; 37:e22993. [PMID: 37235502 DOI: 10.1096/fj.202201949rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/20/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Lacking PTRF (polymerase I and transcript release factor), an essential caveolae component, causes a secondary deficiency of caveolins resulting in muscular dystrophy. The transcriptome responses of different types of muscle fibers and mononuclear cells in skeletal muscle to muscular dystrophy caused by Ptrf deletion have not been explored. Here, we created muscular dystrophy mice by Ptrf knockout and applied single-nucleus RNA sequencing (snRNA-seq) to unveil the transcriptional changes of the skeletal muscle at single-nucleus resolution. 11 613 muscle nuclei (WT, 5838; Ptrf KO, 5775) were classified into 12 clusters corresponding to 11 nuclear types. Trajectory analysis revealed the potential transition between type IIb_1 and IIb_2 myonuclei upon muscular dystrophy. Functional enrichment analysis indicated that apoptotic signaling and enzyme-linked receptor protein signaling pathway were significantly enriched in type IIb_1 and IIb_2 myonuclei of Ptrf KO, respectively. The muscle structure development and the PI3K-AKT signaling pathway were significantly enriched in type IIa and IIx myonuclei of Ptrf KO. Meanwhile, metabolic pathway analysis showed a decrease in overall metabolic pathway activity of myonuclei subtypes upon muscular dystrophy, with the most decrease in type IIb_1 myonuclei. Gene regulatory network analysis found that the activity of Mef2c, Mef2d, Myf5, and Pax3 regulons was enhanced in type II myonuclei of Ptrf KO, especially in type IIb_2 myonuclei. In addition, we investigated the transcriptome changes in adipocytes and found that muscular dystrophy enhanced the lipid metabolic capacity of adipocytes. Our findings provide a valuable resource for exploring the molecular mechanism of muscular dystrophy due to Ptrf deficiency.
Collapse
Affiliation(s)
- Xiaokai Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhining Zhong
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ruowei Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiaman Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Sha Zeng
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qinjiao Du
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Haoming Wang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Songling Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lu Lu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Keren Long
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Random errors in protein synthesis activate an age-dependent program of muscle atrophy in mice. Commun Biol 2021; 4:703. [PMID: 34103648 PMCID: PMC8187632 DOI: 10.1038/s42003-021-02204-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Random errors in protein synthesis are prevalent and ubiquitous, yet their effect on organismal health has remained enigmatic for over five decades. Here, we studied whether mice carrying the ribosomal ambiguity (ram) mutation Rps2-A226Y, recently shown to increase the inborn error rate of mammalian translation, if at all viable, present any specific, possibly aging-related, phenotype. We introduced Rps2-A226Y using a Cre/loxP strategy. Resulting transgenic mice were mosaic and showed a muscle-related phenotype with reduced grip strength. Analysis of gene expression in skeletal muscle using RNA-Seq revealed transcriptomic changes occurring in an age-dependent manner, involving an interplay of PGC1α, FOXO3, mTOR, and glucocorticoids as key signaling pathways, and finally resulting in activation of a muscle atrophy program. Our results highlight the relevance of translation accuracy, and show how disturbances thereof may contribute to age-related pathologies. By introducing a ribosomal ambiguity mutation into mice, Moore et al. establish an in-vivo model to investigate how age-related diseases are related to decreasing accuracy in protein synthesis. Their findings potentially offer new insights into the pathological changes observed in age-related diseases, such as muscle atrophy
Collapse
|
4
|
Mekies LN, Regev D, Eisen B, Fernandez‐Gracia J, Baskin P, Ben Jehuda R, Shulman R, Reiter I, Palty R, Arad M, Gottlieb E, Binah O. Depressed β-adrenergic inotropic responsiveness and intracellular calcium handling abnormalities in Duchenne Muscular Dystrophy patients' induced pluripotent stem cell-derived cardiomyocytes. J Cell Mol Med 2021; 25:3922-3934. [PMID: 33619882 PMCID: PMC8051742 DOI: 10.1111/jcmm.16341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is an X-linked disease affecting male and rarely adult heterozygous females, resulting in death by the late 20s to early 30s. Previous studies reported depressed left ventricular function in DMD patients which may result from deranged intracellular Ca2+ -handling. To decipher the mechanism(s) underlying the depressed LV function, we tested the hypothesis that iPSC-CMs generated from DMD patients feature blunted positive inotropic response to β-adrenergic stimulation. To test the hypothesis, [Ca2+ ]i transients and contractions were recorded from healthy and DMD-CMs. While in healthy CMs (HC) isoproterenol caused a prominent positive inotropic effect, DMD-CMs displayed a blunted inotropic response. Next, we tested the functionality of the sarcoplasmic reticulum (SR) by measuring caffeine-induced Ca2+ release. In contrast to HC, DMD-CMs exhibited reduced caffeine-induced Ca2+ signal amplitude and recovery time. In support of the depleted SR Ca2+ stores hypothesis, in DMD-CMs the negative inotropic effects of ryanodine and cyclopiazonic acid were smaller than in HC. RNA-seq analyses demonstrated that in DMD CMs the RNA-expression levels of specific subunits of the L-type calcium channel, the β1-adrenergic receptor (ADRβ1) and adenylate cyclase were down-regulated by 3.5-, 2.8- and 3-fold, respectively, which collectively contribute to the depressed β-adrenergic responsiveness.
Collapse
MESH Headings
- Adrenergic Agents/pharmacology
- Adult
- Calcium/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Cell Differentiation
- Female
- Gene Expression Regulation
- Humans
- Induced Pluripotent Stem Cells/drug effects
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/pathology
- Male
- Middle Aged
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myocardial Contraction
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- RNA-Seq
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Sarcoplasmic Reticulum/drug effects
- Sarcoplasmic Reticulum/metabolism
- Sarcoplasmic Reticulum/pathology
Collapse
Affiliation(s)
- Lucy N. Mekies
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Danielle Regev
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Binyamin Eisen
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Jonatan Fernandez‐Gracia
- Department of Cell Biology and Cancer ScienceRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Polina Baskin
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Ronen Ben Jehuda
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Rita Shulman
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Irina Reiter
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Raz Palty
- Department of BiochemistryRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Michael Arad
- Leviev Heart CenterSheba Medical CenterRamat GanIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Eyal Gottlieb
- Department of Cell Biology and Cancer ScienceRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Ofer Binah
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
5
|
Lim N, Tesar S, Belmadani M, Poirier-Morency G, Mancarci BO, Sicherman J, Jacobson M, Leong J, Tan P, Pavlidis P. Curation of over 10 000 transcriptomic studies to enable data reuse. Database (Oxford) 2021; 2021:6143045. [PMID: 33599246 PMCID: PMC7904053 DOI: 10.1093/database/baab006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/09/2020] [Accepted: 01/28/2021] [Indexed: 01/07/2023]
Abstract
Vast amounts of transcriptomic data reside in public repositories, but effective reuse remains challenging. Issues include unstructured dataset metadata, inconsistent data processing and quality control, and inconsistent probe-gene mappings across microarray technologies. Thus, extensive curation and data reprocessing are necessary prior to any reuse. The Gemma bioinformatics system was created to help address these issues. Gemma consists of a database of curated transcriptomic datasets, analytical software, a web interface and web services. Here we present an update on Gemma's holdings, data processing and analysis pipelines, our curation guidelines, and software features. As of June 2020, Gemma contains 10 811 manually curated datasets (primarily human, mouse and rat), over 395 000 samples and hundreds of curated transcriptomic platforms (both microarray and RNA sequencing). Dataset topics were represented with 10 215 distinct terms from 12 ontologies, for a total of 54 316 topic annotations (mean topics/dataset = 5.2). While Gemma has broad coverage of conditions and tissues, it captures a large majority of available brain-related datasets, accounting for 34% of its holdings. Users can access the curated data and differential expression analyses through the Gemma website, RESTful service and an R package. Database URL: https://gemma.msl.ubc.ca/home.html.
Collapse
Affiliation(s)
- Nathaniel Lim
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada,Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Stepan Tesar
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Manuel Belmadani
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Guillaume Poirier-Morency
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Burak Ogan Mancarci
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada,Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Jordan Sicherman
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada,Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Matthew Jacobson
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Justin Leong
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Patrick Tan
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | | |
Collapse
|
6
|
N2A Titin: Signaling Hub and Mechanical Switch in Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21113974. [PMID: 32492876 PMCID: PMC7312179 DOI: 10.3390/ijms21113974] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Since its belated discovery, our understanding of the giant protein titin has grown exponentially from its humble beginning as a sarcomeric scaffold to recent recognition of its critical mechanical and signaling functions in active muscle. One uniquely useful model to unravel titin’s functions, muscular dystrophy with myositis (mdm), arose spontaneously in mice as a transposon-like LINE repeat insertion that results in a small deletion in the N2A region of titin. This small deletion profoundly affects hypertrophic signaling and muscle mechanics, thereby providing insights into the function of this specific region and the consequences of its dysfunction. The impact of this mutation is profound, affecting diverse aspects of the phenotype including muscle mechanics, developmental hypertrophy, and thermoregulation. In this review, we explore accumulating evidence that points to the N2A region of titin as a dynamic “switch” that is critical for both mechanical and signaling functions in skeletal muscle. Calcium-dependent binding of N2A titin to actin filaments triggers a cascade of changes in titin that affect mechanical properties such as elastic energy storage and return, as well as hypertrophic signaling. The mdm phenotype also points to the existence of as yet unidentified signaling pathways for muscle hypertrophy and thermoregulation, likely involving titin’s PEVK region as well as the N2A signalosome.
Collapse
|
7
|
Chen G, Su Y, Cai Y, He L, Yang G. Comparative transcriptomic analysis reveals beneficial effect of dietary mulberry leaves on the muscle quality of finishing pigs. Vet Med Sci 2019; 5:526-535. [PMID: 31486291 PMCID: PMC6868455 DOI: 10.1002/vms3.187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background The aim of this study was to investigate the effect of dietary mulberry leaves on the transcriptome profiles of finishing pigs. RNA‐Seq was used to identify differentially expressed genes (DEGs) in the longissimus dorsi of 56 pigs fed either a traditional diet or diets supplemented with 3%, 6% or 9% mulberry leaf powder, and both gene ontology (GO) function and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were performed. Furthermore, protein–protein interaction (PPI) network and the subnet module analysis were used to identify genes with beneficial potential, and quantitative real‐time polymerase chain reaction (qRT‐PCR) was used to validate the expression patterns revealed by RNA‐Seq. Results Pigs fed with the 6% mulberry diet exhibited greater average daily gain, lower water loss and lower shear force than the control group and yielded 531 DEGs, including 271 and 260 upregulated and downregulated genes, respectively. Function analysis revealed that the DEGs were significantly enriched in functions related to muscle growth and development. Furthermore, several genes (i.e. ACOT4, ECHS1, HACD1, NPR1, ADCY2, MGLL and IRS1) were enriched in a KEGG pathway that was associated with fatty acid metabolism, and in the PPI subnet module, four of eight node genes, namely TNNC1, MYL3, TCAP and TNNT1, were associated with muscle formation and development. The upregulation of these genes, including TNNC1, TNNT1 and MYL3, was confirmed by qRT‐PCR. Conclusions Dietary mulberry leaves (6%) may improve the muscle quality of pigs by modulating the expression of several key genes, such as TNNC1, MYL3 and TNNT1. The study was aimed to explain the effect of the inclusion of mulberry in the diet of pigs on transcriptome profiling. The inclusion of mulberry in the diet might be helpful in muscle formation and development of pigs by modulating the expression levels of three genes including TNNC1, MYL3 and TNNT1![]()
Collapse
Affiliation(s)
- Guoshun Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yingyu Su
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yu Cai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lianghong He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Gang Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
8
|
Identification of qPCR reference genes suitable for normalizing gene expression in the mdx mouse model of Duchenne muscular dystrophy. PLoS One 2019; 14:e0211384. [PMID: 30699165 PMCID: PMC6353192 DOI: 10.1371/journal.pone.0211384] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
The mdx mouse is the most widely-used animal model of the human disease Duchenne muscular dystrophy, and quantitative PCR analysis of gene expression in the muscles of this animal plays a key role in the study of pathogenesis and disease progression and in evaluation of potential therapeutic interventions. Normalization to appropriate stably-expressed reference genes is essential for accurate quantitative measurement, but determination of such genes is challenging: healthy and dystrophic muscles present very different transcriptional environments, further altering with disease progression and muscle use, raising the possibility that no single gene or combination of genes may be stable under all experimental comparative scenarios. Despite the pedigree of this animal model, this problem remains unaddressed. The aim of this work was therefore to comprehensively assess reference gene suitability in the muscles of healthy and dystrophic mice, identifying reference genes appropriate for specific experimental comparisons, and determining whether an essentially universally-applicable set of genes exists. Using a large sample collection comprising multiple muscles (including the tibialis anterior, diaphragm and heart muscles) taken from healthy and mdx mice at three disease-relevant ages, and a panel of sixteen candidate reference genes (FBXO38, FBXW2, MON2, ZFP91, HTATSF1, GAPDH, ACTB, 18S, CDC40, SDHA, RPL13a, CSNK2A2, AP3D1, PAK1IP1, B2M and HPRT1), we used the geNorm, BestKeeper and Normfinder algorithms to identify genes that were stable under multiple possible comparative scenarios. We reveal that no single gene is stable under all conditions, but a normalization factor derived from multiple genes (RPL13a, CSNK2A2, AP3D1 and the widely-used ACTB) appears suitable for normalizing gene expression in both healthy and dystrophic mouse muscle regardless of muscle type or animal age. We further show that other popular reference genes, including GAPDH, are markedly disease- or muscle-type correlated. This study demonstrates the importance of empirical reference gene identification, and should serve as a valuable resource for investigators wishing to study gene expression in mdx mice.
Collapse
|
9
|
Heydemann A. Skeletal Muscle Metabolism in Duchenne and Becker Muscular Dystrophy-Implications for Therapies. Nutrients 2018; 10:nu10060796. [PMID: 29925809 PMCID: PMC6024668 DOI: 10.3390/nu10060796] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
Abstract
The interactions between nutrition and metabolism and skeletal muscle have long been known. Muscle is the major metabolic organ—it consumes more calories than other organs—and therefore, there is a clear need to discuss these interactions and provide some direction for future research areas regarding muscle pathologies. In addition, new experiments and manuscripts continually reveal additional highly intricate, reciprocal interactions between metabolism and muscle. These reciprocal interactions include exercise, age, sex, diet, and pathologies including atrophy, hypoxia, obesity, diabetes, and muscle myopathies. Central to this review are the metabolic changes that occur in the skeletal muscle cells of muscular dystrophy patients and mouse models. Many of these metabolic changes are pathogenic (inappropriate body mass changes, mitochondrial dysfunction, reduced adenosine triphosphate (ATP) levels, and increased Ca2+) and others are compensatory (increased phosphorylated AMP activated protein kinase (pAMPK), increased slow fiber numbers, and increased utrophin). Therefore, reversing or enhancing these changes with therapies will aid the patients. The multiple therapeutic targets to reverse or enhance the metabolic pathways will be discussed. Among the therapeutic targets are increasing pAMPK, utrophin, mitochondrial number and slow fiber characteristics, and inhibiting reactive oxygen species. Because new data reveals many additional intricate levels of interactions, new questions are rapidly arising. How does muscular dystrophy alter metabolism, and are the changes compensatory or pathogenic? How does metabolism affect muscular dystrophy? Of course, the most profound question is whether clinicians can therapeutically target nutrition and metabolism for muscular dystrophy patient benefit? Obtaining the answers to these questions will greatly aid patients with muscular dystrophy.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Center for Cardiovascular Research, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
10
|
Sekulic-Jablanovic M, Ullrich ND, Goldblum D, Palmowski-Wolfe A, Zorzato F, Treves S. Functional characterization of orbicularis oculi and extraocular muscles. J Gen Physiol 2016; 147:395-406. [PMID: 27069119 PMCID: PMC4845688 DOI: 10.1085/jgp.201511542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/25/2016] [Indexed: 12/17/2022] Open
Abstract
Facial muscles are skeletal muscles that control facial expression. Sekulic-Jablanovic et al. characterize orbicularis oculi and extraocular muscles and find divergence in the expression of key molecules for muscle function between facial, extraocular, and quadriceps muscles. The orbicularis oculi are the sphincter muscles of the eyelids and are involved in modulating facial expression. They differ from both limb and extraocular muscles (EOMs) in their histology and biochemistry. Weakness of the orbicularis oculi muscles is a feature of neuromuscular disorders affecting the neuromuscular junction, and weakness of facial muscles and ptosis have also been described in patients with mutations in the ryanodine receptor gene. Here, we investigate human orbicularis oculi muscles and find that they are functionally more similar to quadriceps than to EOMs in terms of excitation–contraction coupling components. In particular, they do not express the cardiac isoform of the dihydropyridine receptor, which we find to be highly expressed in EOMs where it is likely responsible for the large depolarization-induced calcium influx. We further show that human orbicularis oculi and EOMs express high levels of utrophin and low levels of dystrophin, whereas quadriceps express dystrophin and low levels of utrophin. The results of this study highlight the notion that myotubes obtained by explanting satellite cells from different muscles are not functionally identical and retain the physiological characteristics of their muscle of origin. Furthermore, our results indicate that sparing of facial and EOMs in patients with Duchenne muscular dystrophy is the result of the higher levels of utrophin expression.
Collapse
Affiliation(s)
- Marijana Sekulic-Jablanovic
- Department of Anesthesia, Basel University Hospital, 4031 Basel, Switzerland Department of Biomedicine, Basel University Hospital, 4031 Basel, Switzerland
| | - Nina D Ullrich
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - David Goldblum
- Eye Clinic, Basel University and Basel University Hospital, 4031 Basel, Switzerland
| | - Anja Palmowski-Wolfe
- Eye Clinic, Basel University and Basel University Hospital, 4031 Basel, Switzerland
| | - Francesco Zorzato
- Department of Anesthesia, Basel University Hospital, 4031 Basel, Switzerland Department of Biomedicine, Basel University Hospital, 4031 Basel, Switzerland Department of Life Sciences and Biotechnology, General Pathology Section, University of Ferrara, 44100 Ferrara, Italy
| | - Susan Treves
- Department of Anesthesia, Basel University Hospital, 4031 Basel, Switzerland Department of Biomedicine, Basel University Hospital, 4031 Basel, Switzerland Department of Life Sciences and Biotechnology, General Pathology Section, University of Ferrara, 44100 Ferrara, Italy
| |
Collapse
|
11
|
Chadwick JA, Hauck JS, Lowe J, Shaw JJ, Guttridge DC, Gomez-Sanchez CE, Gomez-Sanchez EP, Rafael-Fortney JA. Mineralocorticoid receptors are present in skeletal muscle and represent a potential therapeutic target. FASEB J 2015; 29:4544-54. [PMID: 26178166 DOI: 10.1096/fj.15-276782] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023]
Abstract
Early treatment with heart failure drugs lisinopril and spironolactone improves skeletal muscle pathology in Duchenne muscular dystrophy (DMD) mouse models. The angiotensin converting enzyme inhibitor lisinopril and mineralocorticoid receptor (MR) antagonist spironolactone indirectly and directly target MR. The presence and function of MR in skeletal muscle have not been explored. MR mRNA and protein are present in all tested skeletal muscles from both wild-type mice and DMD mouse models. MR expression is cell autonomous in both undifferentiated myoblasts and differentiated myotubes from mouse and human skeletal muscle cultures. To test for MR function in skeletal muscle, global gene expression analysis was conducted on human myotubes treated with MR agonist (aldosterone; EC50 1.3 nM) or antagonist (spironolactone; IC50 1.6 nM), and 53 gene expression differences were identified. Five differences were conserved in quadriceps muscles from dystrophic mice treated with spironolactone plus lisinopril (IC50 0.1 nM) compared with untreated controls. Genes down-regulated more than 2-fold by MR antagonism included FOS, ANKRD1, and GADD45B, with known roles in skeletal muscle, in addition to NPR3 and SERPINA3, bona fide targets of MR in other tissues. MR is a novel drug target in skeletal muscle and use of clinically safe antagonists may be beneficial for muscle diseases.
Collapse
Affiliation(s)
- Jessica A Chadwick
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - J Spencer Hauck
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jeovanna Lowe
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jeremiah J Shaw
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Denis C Guttridge
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Celso E Gomez-Sanchez
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Elise P Gomez-Sanchez
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jill A Rafael-Fortney
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
12
|
McDonald AA, Hebert SL, Kunz MD, Ralles SJ, McLoon LK. Disease course in mdx:utrophin+/- mice: comparison of three mouse models of Duchenne muscular dystrophy. Physiol Rep 2015; 3:3/4/e12391. [PMID: 25921779 PMCID: PMC4425985 DOI: 10.14814/phy2.12391] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The mdx mouse model of Duchenne muscular dystrophy (DMD) is used to study disease mechanisms and potential treatments, but its pathology is less severe than DMD patients. Other mouse models were developed to more closely mimic the human disease based on knowledge that upregulation of utrophin has a protective effect in mdx muscle. An mdx:utrophin−/− (dko) mouse was created, which had a severe disease phenotype and a shortened life span. An mdx:utrophin+/− mouse was also created, which had an intermediate disease phenotype compared to the mdx and dko mice. To determine the usefulness of mdx:utrophin+/− mice for long-term DMD studies, limb muscle pathology and function were assessed across the life span of wild-type, mdx, mdx:utrophin+/−, and dko mice. Muscle function assessment, specifically grip duration and rotarod performance, demonstrated that mdx:utrophin+/− mice were weaker for a longer time than mdx mice. Mean myofiber area was smaller in mdx:utrophin+/− mice compared to mdx mice at 12 months. Mdx:utrophin+/− mice had a higher percentage of centrally nucleated myofibers compared to mdx mice at 6 and 12 months. Collagen I and IV density was significantly higher in mdx:utrophin+/− muscle compared to mdx at most ages examined. Generally, mdx:utrophin+/− mice showed an intermediate disease phenotype over a longer time course compared to the mdx and dko mice. While they do not genetically mirror human DMD, mdx:utrophin+/− mice may be a more useful animal model than mdx or dko mice for investigating long-term efficacy of potential treatments when fibrosis or muscle function is the focus.
Collapse
Affiliation(s)
- Abby A McDonald
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis Minnesota
| | - Sadie L Hebert
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota
| | - Matthew D Kunz
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota
| | - Steven J Ralles
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota
| | - Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis Minnesota Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
13
|
Pant M, Sopariwala DH, Bal NC, Lowe J, Delfín DA, Rafael-Fortney J, Periasamy M. Metabolic dysfunction and altered mitochondrial dynamics in the utrophin-dystrophin deficient mouse model of duchenne muscular dystrophy. PLoS One 2015; 10:e0123875. [PMID: 25859846 PMCID: PMC4393257 DOI: 10.1371/journal.pone.0123875] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/23/2015] [Indexed: 12/02/2022] Open
Abstract
The utrophin-dystrophin deficient (DKO) mouse model has been widely used to understand the progression of Duchenne muscular dystrophy (DMD). However, it is unclear as to what extent muscle pathology affects metabolism. Therefore, the present study was focused on understanding energy expenditure in the whole animal and in isolated extensor digitorum longus (EDL) muscle and to determine changes in metabolic enzymes. Our results show that the 8 week-old DKO mice consume higher oxygen relative to activity levels. Interestingly the EDL muscle from DKO mouse consumes higher oxygen per unit integral force, generates less force and performs better in the presence of pyruvate thus mimicking a slow twitch muscle. We also found that the expression of hexokinase 1 and pyruvate kinase M2 was upregulated several fold suggesting increased glycolytic flux. Additionally, there is a dramatic increase in dynamin-related protein 1 (Drp 1) and mitofusin 2 protein levels suggesting increased mitochondrial fission and fusion, a feature associated with increased energy demand and altered mitochondrial dynamics. Collectively our studies point out that the dystrophic disease has caused significant changes in muscle metabolism. To meet the increased energetic demand, upregulation of metabolic enzymes and regulators of mitochondrial fusion and fission is observed in the dystrophic muscle. A better understanding of the metabolic demands and the accompanied alterations in the dystrophic muscle can help us design improved intervention therapies along with existing drug treatments for the DMD patients.
Collapse
Affiliation(s)
- Meghna Pant
- Department of Physiology and Cell Biology The Ohio State University, Columbus, OH 43210, United States of America
| | - Danesh H. Sopariwala
- Department of Physiology and Cell Biology The Ohio State University, Columbus, OH 43210, United States of America
| | - Naresh C. Bal
- Department of Physiology and Cell Biology The Ohio State University, Columbus, OH 43210, United States of America
| | - Jeovanna Lowe
- Department of Molecular & Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, OH 43210, United States of America
| | - Dawn A. Delfín
- Department of Molecular & Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, OH 43210, United States of America
| | - Jill Rafael-Fortney
- Department of Molecular & Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, OH 43210, United States of America
| | - Muthu Periasamy
- Department of Physiology and Cell Biology The Ohio State University, Columbus, OH 43210, United States of America
- * E-mail:
| |
Collapse
|
14
|
Delfín DA, Xu Y, Schill KE, Mays TA, Canan BD, Zang KE, Barnum JA, Janssen PML, Rafael-Fortney JA. Sustaining cardiac claudin-5 levels prevents functional hallmarks of cardiomyopathy in a muscular dystrophy mouse model. Mol Ther 2012; 20:1378-83. [PMID: 22547149 DOI: 10.1038/mt.2012.81] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Identification of new molecular targets in heart failure could ultimately have a substantial positive impact on both the health and financial aspects of treating the large heart failure population. We originally identified reduced levels of the cell junction protein claudin-5 specifically in heart in the dystrophin/utrophin-deficient (Dmd(mdx);Utrn(-/-)) mouse model of muscular dystrophy and cardiomyopathy, which demonstrates physiological hallmarks of heart failure. We then showed that at least 60% of cardiac explant samples from patients with heart failure resulting from diverse etiologies also have reduced claudin-5 levels. These claudin-5 reductions were independent of changes in other cell junction proteins previously linked to heart failure. The goal of this study was to determine whether sustaining claudin-5 levels is sufficient to prevent the onset of histological and functional indicators of heart failure. Here, we show the proof-of-concept rescue experiment in the Dmd(mdx);Utrn(-/-) model, in which claudin-5 reductions were originally identified. Expression of claudin-5 4 weeks after a single administration of recombinant adeno-associated virus (rAAV) containing a claudin-5 expression cassette prevented the onset of physiological hallmarks of cardiomyopathy and improved histological signs of cardiac damage. This experiment demonstrates that claudin-5 may represent a novel treatment target for prevention of heart failure.
Collapse
Affiliation(s)
- Dawn A Delfín
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Soh D, Dong D, Guo Y, Wong L. Finding consistent disease subnetworks across microarray datasets. BMC Bioinformatics 2011; 12 Suppl 13:S15. [PMID: 22372958 PMCID: PMC3278831 DOI: 10.1186/1471-2105-12-s13-s15] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background While contemporary methods of microarray analysis are excellent tools for studying individual microarray datasets, they have a tendency to produce different results from different datasets of the same disease. We aim to solve this reproducibility problem by introducing a technique (SNet). SNet provides both quantitative and descriptive analysis of microarray datasets by identifying specific connected portions of pathways that are significant. We term such portions within pathways as “subnetworks”. Results We tested SNet on independent datasets of several diseases, including childhood ALL, DMD and lung cancer. For each of these diseases, we obtained two independent microarray datasets produced by distinct labs on distinct platforms. In each case, our technique consistently produced almost the same list of significant nontrivial subnetworks from two independent sets of microarray data. The gene-level agreement of these significant subnetworks was between 51.18% to 93.01%. In contrast, when the same pairs of microarray datasets were analysed using GSEA, t-test and SAM, this percentage fell between 2.38% to 28.90% for GSEA, 49.60% tp 73.01% for t-test, and 49.96% to 81.25% for SAM. Furthermore, the genes selected using these existing methods did not form subnetworks of substantial size. Thus it is more probable that the subnetworks selected by our technique can provide the researcher with more descriptive information on the portions of the pathway actually affected by the disease. Conclusions These results clearly demonstrate that our technique generates significant subnetworks and genes that are more consistent and reproducible across datasets compared to the other popular methods available (GSEA, t-test and SAM). The large size of subnetworks which we generate indicates that they are generally more biologically significant (less likely to be spurious). In addition, we have chosen two sample subnetworks and validated them with references from biological literature. This shows that our algorithm is capable of generating descriptive biologically conclusions.
Collapse
Affiliation(s)
- Donny Soh
- National University of Singapore, 13 Computing Drive, Singapore 117417.
| | | | | | | |
Collapse
|
16
|
Schröder W, Klostermann A, Stock KF, Distl O. A genome-wide association study for quantitative trait loci of show-jumping in Hanoverian warmblood horses. Anim Genet 2011; 43:392-400. [PMID: 22497689 DOI: 10.1111/j.1365-2052.2011.02265.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Show-jumping is an economically important breeding goal in Hanoverian warmblood horses. The aim of this study was a genome-wide association study (GWAS) for quantitative trait loci (QTL) for show-jumping in Hanoverian warmblood horses, employing the Illumina equine SNP50 Beadchip. For our analyses, we genotyped 115 stallions of the National State stud of Lower Saxony. The show-jumping talent of a horse includes style and ability in free-jumping. To control spurious associations based on population stratification, two different mixed linear animal model (MLM) approaches were employed, besides linear models with fixed effects only and adaptive permutations for correcting multiple testing. Population stratification was explained best in the MLM considering Hanoverian, Thoroughbred, Trakehner and Holsteiner genes and the marker identity-by-state relationship matrix. We identified six QTL for show-jumping on horse chromosomes (ECA) 1, 8, 9 and 26 (-log(10) P-value >5) and further putative QTL with -log(10) P-values of 3-5 on ECA1, 3, 11, 17 and 21. Within six QTL regions, we identified human performance-related genes including PAPSS2 on ECA1, MYL2 on ECA8, TRHR on ECA9 and GABPA on ECA26 and within the putative QTL regions NRAP on ECA1, and TBX4 on ECA11. The results of our GWAS suggest that genes involved in muscle structure, development and metabolism are crucial for elite show-jumping performance. Further studies are required to validate these QTL in larger data sets and further horse populations.
Collapse
Affiliation(s)
- W Schröder
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Germany
| | | | | | | |
Collapse
|
17
|
Judge LM, Arnett ALH, Banks GB, Chamberlain JS. Expression of the dystrophin isoform Dp116 preserves functional muscle mass and extends lifespan without preventing dystrophy in severely dystrophic mice. Hum Mol Genet 2011; 20:4978-90. [PMID: 21949353 DOI: 10.1093/hmg/ddr433] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dp116 is a non-muscle isoform of dystrophin that assembles the dystrophin-glycoprotein complex (DGC), but lacks actin-binding domains. To examine the functional role of the DGC, we expressed the Dp116 transgene in mice lacking both dystrophin and utrophin (mdx:utrn(-/-)). Unexpectedly, expression of Dp116 prevented the most severe aspects of the mdx:utrn(-/-) phenotype. Dp116:mdx:utrn(-/-) transgenic mice had dramatic improvements in growth, mobility and lifespan compared with controls. This was associated with increased muscle mass and force generating capacity of limb muscles, although myofiber size and specific force were unchanged. Conversely, Dp116 had no effect on dystrophic injury as determined by muscle histopathology and serum creatine kinase levels. Dp116 also failed to restore normal fiber-type distribution or the post-synaptic architecture of the neuromuscular junction. These data demonstrate that the DGC is critical for growth and maintenance of muscle mass, a function that is independent of the ability to prevent dystrophic pathophysiology. Likewise, this is the first demonstration in skeletal muscle of a positive functional role for a dystrophin protein that lacks actin-binding domains. We conclude that both mechanical and non-mechanical functions of dystrophin are important for its role in skeletal muscle.
Collapse
Affiliation(s)
- Luke M Judge
- Department of Neurology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7720, USA
| | | | | | | |
Collapse
|
18
|
Spassov A, Gredes T, Gedrange T, Lucke S, Morgenstern S, Pavlovic D, Kunert-Keil C. Differential expression of myosin heavy chain isoforms in the masticatory muscles of dystrophin-deficient mice. Eur J Orthod 2010; 33:613-9. [PMID: 21187529 DOI: 10.1093/ejo/cjq113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The dystrophin-deficient mouse (mdx) is a homologue animal model of Duchenne muscular dystrophy (DMD) and is characterized by slowly progressive muscle weakness accompanied by changes in myosin heavy chain (MyHC) composition. It is likely that the masticatory muscles undergo similar changes. The aim of this study was to examine the masticatory muscles (masseter, temporal, tongue, and soleus) of 100-day-old mdx and control mice (n = 8-10), and the fibre type distribution (by immunohistochemistry) as well as the expression of the corresponding MyHC messenger RNA (mRNA) (protein and mRNA expression, using Western blot or quantitative real-time polymerase chain reaction (RT-PCR)). Immunohistochemistry and western blot analysis revealed that the masticatory muscles in the control and mdx mice consisted mainly of type 2 fibres, whereas soleus muscle consisted of both type 1 and 2 fibres. In the masseter muscle, the mRNA in mdx mice was not different from that found in the controls. However, the mRNA content of the MyHC-2b isoform in mdx mice was lower in comparison with the controls in the temporal muscle [11.9 versus 36.9 per cent; P < 0.01; mean ± standard error of the mean (SEM), Student's unpaired t-test], as well as in the tongue muscle (65.7 versus 73.8 per cent; P < 0.05). Similarly, the content of MyHC-2x isoforms in mdx tongue muscle was lower than in the controls (25.9 versus 30.8 per cent; P < 0.05). The observed down-regulation of the MyHC-2x and MyHC-2b mRNA in the masticatory muscles of mdx mice may lead to changed fibre type composition. The different MyHC gene expression in mdx mice masticatory muscles may be seen as an adaptive mechanism to muscular dystrophy.
Collapse
Affiliation(s)
- Alexander Spassov
- Department of Orthodontics, Faculty of Medicine, University of Greifswald, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Ohlendieck K. Proteomics of skeletal muscle differentiation, neuromuscular disorders and fiber aging. Expert Rev Proteomics 2010; 7:283-96. [PMID: 20377394 DOI: 10.1586/epr.10.2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Skeletal muscle fibers are the most abundant cellular structure in the human body. Altered neuromuscular activity, traumatic injury or genetic abnormalities have profound effects on muscle integrity, tissue mass, fiber type distribution, metabolic integration and contractile function. The recent application of mass spectrometry-based proteomics has decisively advanced our molecular understanding of numerous physiological adaptations in healthy muscle and pathophysiological mechanisms associated with major muscle diseases. Skeletal muscle proteomics promises to play a major role in the establishment of a disease-specific biomarker signature for the major classes of neuromuscular disorders. New muscle markers will be crucial for the development of improved diagnostics, the monitoring of disease progression, evaluation of drug action and the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
20
|
Capote J, DiFranco M, Vergara JL. Excitation-contraction coupling alterations in mdx and utrophin/dystrophin double knockout mice: a comparative study. Am J Physiol Cell Physiol 2010; 298:C1077-86. [PMID: 20130206 DOI: 10.1152/ajpcell.00428.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The double knockout mouse for utrophin and dystrophin (utr(-/-)/mdx) has been proposed to be a better model of Duchenne Muscular Dystrophy (DMD) than the mdx mouse because the former displays more similar muscle pathology to that of the DMD patients. In this paper the properties of action potentials (APs) and Ca(2+) transients elicited by single and repetitive stimulation were studied to understand the excitation-contraction (EC) coupling alterations observed in muscle fibers from mdx and utr(-/-)/mdx mice. Based on the comparison of the AP durations with those of fibers from wild-type (WT) mice, fibers from both mdx and utr(-/-)/mdx mice could be divided in two groups: fibers with WT-like APs (group 1) and fibers with significantly longer APs (group 2). Although the proportion of fibers in group 2 was larger in utr(-/-)/mdx (36%) than in mdx mice (27%), the Ca(2+) release elicited by single stimulation was found to be similarly depressed (32-38%) in utr(-/-)/mdx and mdx fibers compared with WT counterparts regardless of the fiber's group. Stimulation at 100 Hz revealed that, with the exception of those from utr(-/-)/mdx mice, group 1 fibers were able to sustain Ca(2+) release for longer than group 2 fibers, which displayed an abrupt limitation even at the onset of the train. The differences in behavior between fibers in groups 1 and 2 became almost unnoticeable at 50 Hz stimulation. In general, fibers from utr(-/-)/mdx mice seem to display more persistent alterations in the EC coupling than those observed in the mdx model.
Collapse
Affiliation(s)
- Joana Capote
- Dept. of Physiology, UCLA, Los Angeles, CA 90095-1751, USA
| | | | | |
Collapse
|
21
|
Proteomic profiling of x-linked muscular dystrophy. J Muscle Res Cell Motil 2010; 30:267-9. [DOI: 10.1007/s10974-009-9197-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 12/24/2009] [Indexed: 01/10/2023]
|
22
|
Klover P, Chen W, Zhu BM, Hennighausen L. Skeletal muscle growth and fiber composition in mice are regulated through the transcription factors STAT5a/b: linking growth hormone to the androgen receptor. FASEB J 2009; 23:3140-8. [PMID: 19417088 DOI: 10.1096/fj.08-128215] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In skeletal muscle, STAT5a/b transcription factors are critical for normal postnatal growth, whole-animal glucose homeostasis, and local IGF-1 production. These observations have led us to hypothesize that STAT5a/b are critical for maintenance of normal muscle mass and function. To investigate this, mice with a skeletal muscle-specific deletion of the Stat5a/b genes (Stat5MKO) were used. Stat5MKO mice displayed reduced muscle mass, altered fiber-type distribution and reduced activity. On a molecular level, gene expression in skeletal muscle of Stat5MKO and control mice was analyzed by microarrays and real-time PCR, both in the presence and absence of growth hormone (GH) stimulation. Expression of several genes involved in muscle growth and fiber type were significantly changed. Specifically, in the quadriceps, a muscle almost exclusively composed of type II fibers, the absence of STAT5a/b led to increased expression of several genes associated with type I fibers and the de novo appearance of type I fibers. In addition, it is shown here that expression of the androgen receptor gene (Ar) is controlled by GH through STAT5a/b. The link between STAT5a/b and Ar gene is likely through direct transcriptional regulation, as chromatin immunoprecipitaion of the Ar promoter region in C2C12 myoblasts was accomplished by antibodies against STAT5a. These experiments demonstrate an important role for STAT5a/b in skeletal muscle physiology, and they provide a direct link to androgen signaling.
Collapse
Affiliation(s)
- Peter Klover
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
23
|
Laure L, Suel L, Roudaut C, Bourg N, Ouali A, Bartoli M, Richard I, Danièle N. Cardiac ankyrin repeat protein is a marker of skeletal muscle pathological remodelling. FEBS J 2009; 276:669-84. [PMID: 19143834 DOI: 10.1111/j.1742-4658.2008.06814.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In an attempt to identify potential therapeutic targets for the correction of muscle wasting, the gene expression of several pivotal proteins involved in protein metabolism was investigated in experimental atrophy induced by transient or definitive denervation, as well as in four animal models of muscular dystrophies (deficient for calpain 3, dysferlin, alpha-sarcoglycan and dystrophin, respectively). The results showed that: (a) the components of the ubiquitin-proteasome pathway are upregulated during the very early phases of atrophy but do not greatly increase in the muscular dystrophy models; (b) forkhead box protein O1 mRNA expression is augmented in the muscles of a limb girdle muscular dystrophy 2A murine model; and (c) the expression of cardiac ankyrin repeat protein (CARP), a regulator of transcription factors, appears to be persistently upregulated in every condition, suggesting that CARP could be a hub protein participating in common pathological molecular pathway(s). Interestingly, the mRNA level of a cell cycle inhibitor known to be upregulated by CARP in other tissues, p21(WAF1/CIP1), is consistently increased whenever CARP is upregulated. CARP overexpression in muscle fibres fails to affect their calibre, indicating that CARP per se cannot initiate atrophy. However, a switch towards fast-twitch fibres is observed, suggesting that CARP plays a role in skeletal muscle plasticity. The observation that p21(WAF1/CIP1) is upregulated, put in perspective with the effects of CARP on the fibre type, fits well with the idea that the mechanisms at stake might be required to oppose muscle remodelling in skeletal muscle.
Collapse
|
24
|
Microarray analysis of mdx mice expressing high levels of utrophin: therapeutic implications for dystrophin deficiency. Neuromuscul Disord 2008; 18:239-47. [PMID: 18343112 DOI: 10.1016/j.nmd.2007.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 10/10/2007] [Accepted: 11/19/2007] [Indexed: 11/22/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal muscle wasting disorder caused by dystrophin deficiency. Previous work suggested that increased expression of the dystrophin-related protein utrophin in the mdx mouse can reduce the dystrophic pathophysiology. Physiological tests showed that the transgenic mouse muscle functioned in a way similar to normal muscle. More recently, it has become possible to analyse disease pathways using microarrays, a sensitive method to evaluate the efficacy of a therapeutic approach. We thus examined the gene expression profile of mdx mouse muscle compared to wild-type mouse muscle and compared the data with that obtained from the transgenic line overexpressing utrophin. The data confirm that the expression of utrophin in the mdx mouse muscle results in a global gene expression profile more similar to that seen for the wild-type mouse. This study confirms that a strategy to up-regulate utrophin is likely to be beneficial in dystrophin deficiency.
Collapse
|
25
|
Doran P, Gannon J, O'Connell K, Ohlendieck K. Proteomic profiling of animal models mimicking skeletal muscle disorders. Proteomics Clin Appl 2007; 1:1169-84. [PMID: 21136766 DOI: 10.1002/prca.200700042] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Indexed: 01/01/2023]
Abstract
Over the last few decades of biomedical research, animal models of neuromuscular diseases have been widely used for determining pathological mechanisms and for testing new therapeutic strategies. With the emergence of high-throughput proteomics technology, the identification of novel protein factors involved in disease processes has been decisively improved. This review outlines the usefulness of the proteomic profiling of animal disease models for the discovery of new reliable biomarkers, for the optimization of diagnostic procedures and the development of new treatment options for skeletal muscle disorders. Since inbred animal strains show genetically much less interindividual differences as compared to human patients, considerably lower experimental repeats are capable of producing meaningful proteomic data. Thus, animal model proteomics can be conveniently employed for both studying basic mechanisms of molecular pathogenesis and the effects of drugs, genetic modifications or cell-based therapies on disease progression. Based on the results from comparative animal proteomics, a more informed decision on the design of clinical proteomics studies could be reached. Since no one animal model represents a perfect pathobiochemical replica of all of the symptoms seen in complex human disorders, the proteomic screening of novel animal models can also be employed for swift and enhanced protein biochemical phenotyping.
Collapse
Affiliation(s)
- Philip Doran
- Department of Biology, National University of Ireland, Maynooth Co. Kildare, Ireland
| | | | | | | |
Collapse
|
26
|
Marques MJ, Ferretti R, Vomero VU, Minatel E, Neto HS. Intrinsic laryngeal muscles are spared from myonecrosis in the mdx mouse model of Duchenne muscular dystrophy. Muscle Nerve 2007; 35:349-53. [PMID: 17143878 DOI: 10.1002/mus.20697] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intrinsic laryngeal muscles share many anatomical and physiological properties with extraocular muscles, which are unaffected in both Duchenne muscular dystrophy and mdx mice. We hypothesized that intrinsic laryngeal muscles are spared from myonecrosis in mdx mice and may serve as an additional tool to understand the mechanisms of muscle sparing in dystrophinopathy. Intrinsic laryngeal muscles and tibialis anterior (TA) muscle of adult and aged mdx and control C57Bl/10 mice were investigated. The percentage of central nucleated fibers, as a sign of muscle fibers that had undergone injury and regeneration, and myofiber labeling with Evans blue dye, as a marker of myofiber damage, were studied. Except for the cricothyroid muscle, none of the intrinsic laryngeal muscles from adult and old mdx mice showed signs of myofiber damage or Evans blue dye labeling, and all appeared to be normal. Central nucleation was readily visible in the TA of the same mdx mice. A significant increase in the percentage of central nucleated fibers was observed in adult cricothyroid muscle compared to the other intrinsic laryngeal muscles, which worsened with age. Thus, we have shown that the intrinsic laryngeal muscles are spared from the lack of dystrophin and may serve as a useful model to study the mechanisms of muscle sparing in dystrophinopathy.
Collapse
Affiliation(s)
- Maria Julia Marques
- Departamento de Anatomia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brazil
| | | | | | | | | |
Collapse
|