1
|
Zanetti A, Tomanin R. Targeting Neurological Aspects of Mucopolysaccharidosis Type II: Enzyme Replacement Therapy and Beyond. BioDrugs 2024; 38:639-655. [PMID: 39177874 PMCID: PMC11358193 DOI: 10.1007/s40259-024-00675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Mucopolysaccharidosis type II (MPS II) is a rare, pediatric, neurometabolic disorder due to the lack of activity of the lysosomal hydrolase iduronate 2-sulfatase (IDS), normally degrading heparan sulfate and dermatan sulfate within cell lysosomes. The deficit of activity is caused by mutations affecting the IDS gene, leading to the pathological accumulation of both glycosaminoglycans in the lysosomal compartment and in the extracellular matrix of most body districts. Although a continuum of clinical phenotypes is described, two main forms are commonly recognized-attenuated and severe-the latter being characterized by an earlier and faster clinical progression and by a progressive impairment of central nervous system (CNS) functions. However, attenuated forms have also been recently described as presenting some neurological involvement, although less deep, such as deficits of attention and hearing loss. The main treatment for the disease is represented by enzyme replacement therapy (ERT), applied in several countries since 2006, which, albeit showing partial efficacy on some peripheral organs, exhibited a very poor efficacy on bones and heart, and a total inefficacy on CNS impairment, due to the inability of the recombinant enzyme to cross the blood-brain barrier (BBB). Together with ERT, whose design enhancements, performed in the last few years, allowed a possible brain penetration of the drug through the BBB, other therapeutic approaches aimed at targeting CNS involvement in MPS II were proposed and evaluated in the last decades, such as intrathecal ERT, intracerebroventricular ERT, ex vivo gene therapy, or adeno-associated viral vector (AAV) gene therapy. The aim of this review is to summarize the main clinical aspects of MPS II in addition to current therapeutic options, with particular emphasis on the neurological ones and on the main CNS-targeted therapeutic approaches explored through the years.
Collapse
Affiliation(s)
- Alessandra Zanetti
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women's and Children's Health SDB, University of Padova, Via Giustiniani, 3, 35128, Padua, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, 35127, Padua, Italy
| | - Rosella Tomanin
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women's and Children's Health SDB, University of Padova, Via Giustiniani, 3, 35128, Padua, Italy.
- Istituto di Ricerca Pediatrica Città della Speranza, 35127, Padua, Italy.
| |
Collapse
|
2
|
Das S, Rruga F, Montepeloso A, Dimartino A, Spadini S, Corre G, Patel J, Cavalca E, Ferro F, Gatti A, Milazzo R, Galy A, Politi LS, Rizzardi GP, Vallanti G, Poletti V, Biffi A. An empowered, clinically viable hematopoietic stem cell gene therapy for the treatment of multisystemic mucopolysaccharidosis type II. Mol Ther 2024; 32:619-636. [PMID: 38310355 PMCID: PMC10928283 DOI: 10.1016/j.ymthe.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/14/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Mucopolysaccharidosis type II (MPS II), or Hunter syndrome, is a rare X-linked recessive lysosomal storage disorder due to a mutation in the lysosomal enzyme iduronate-2-sulfatase (IDS) gene. IDS deficiency leads to a progressive, multisystem accumulation of glycosaminoglycans (GAGs) and results in central nervous system (CNS) manifestations in the severe form. We developed up to clinical readiness a new hematopoietic stem cell (HSC) gene therapy approach for MPS II that benefits from a novel highly effective transduction protocol. We first provided proof of concept of efficacy of our approach aimed at enhanced IDS enzyme delivery to the CNS in a murine study of immediate translational value, employing a lentiviral vector (LV) encoding a codon-optimized human IDS cDNA. Then the therapeutic LV was tested for its ability to efficiently and safely transduce bona fide human HSCs in clinically relevant conditions according to a standard vs. a novel protocol that demonstrated superior ability to transduce bona fide long-term repopulating HSCs. Overall, these results provide strong proof of concept for the clinical translation of this approach for the treatment of Hunter syndrome.
Collapse
Affiliation(s)
- Sabyasachi Das
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Fatlum Rruga
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, 35128 Padua, Italy
| | - Annita Montepeloso
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Agnese Dimartino
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, 35128 Padua, Italy
| | - Silvia Spadini
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, 35128 Padua, Italy
| | | | - Janki Patel
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Eleonora Cavalca
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Francesca Ferro
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | | | | | | | - Letterio S Politi
- Humanitas University and IRCCS Humanitas Research Hospital, 20090 Pieve Emanuele (MI), Italy
| | | | | | - Valentina Poletti
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, 35128 Padua, Italy
| | - Alessandra Biffi
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, 35128 Padua, Italy.
| |
Collapse
|
3
|
Yamazaki N, Ohira M, Takada S, Ohtake A, Onodera M, Nakanishi M, Okuyama T, Mashima R. Enhanced osteoblastic differentiation of parietal bone in a novel murine model of mucopolysaccharidosis type II. Mol Genet Metab Rep 2023; 37:101021. [PMID: 38053930 PMCID: PMC10694741 DOI: 10.1016/j.ymgmr.2023.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Mucopolysaccharidosis type II (MPS II, OMIM 309900) is an X-linked disorder caused by a deficiency of lysosomal enzyme iduronate-2-sulfatase (IDS). The clinical manifestations of MPS II involve cognitive decline, bone deformity, and visceral disorders. These manifestations are closely associated with IDS enzyme activity, which catalyzes the stepwise degradation of heparan sulfate and dermatan sulfate. In this study, we established a novel Ids-deficient mice and further assessed the enzyme's physiological role. Using DNA sequencing, we found a genomic modification of the Ids genome, which involved the deletion of a 138-bp fragment spanning from intron 2 to exon 3, along with the insertion of an adenine at the 5' end of exon 3 in the mutated allele. Consistent with previous data, our Ids-deficient mice showed an attenuated enzyme activity and an enhanced accumulation of glycosaminoglycans. Interestingly, we noticed a distinct enlargement of the calvarial bone in both neonatal and young adult mice. Our examination revealed that Ids deficiency led to an enhanced osteoblastogenesis in the parietal bone, a posterior part of the calvarial bone originating from the paraxial mesoderm and associated with an enhanced expression of osteoblastic makers, such as Col1a and Runx2. In sharp contrast, cell proliferation of the parietal bone in these mice appeared similar to that of wild-type controls. These results suggest that the deficiency of Ids could be involved in an augmented differentiation of calvarial bone, which is often noticed as an enlarged head circumference in MPS II-affected individuals.
Collapse
Affiliation(s)
- Narutoshi Yamazaki
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Department of Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Mari Ohira
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Akira Ohtake
- Department of Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama 350-0495, Japan
| | - Masafumi Onodera
- Department of Human Genetics, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mahito Nakanishi
- TOKIWA-Bio Inc., 2-1-6 Sengen, Tsukuba City, Ibaraki 305-0047, Japan
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Department of Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
4
|
Placci M, Giannotti MI, Muro S. Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Adv Drug Deliv Rev 2023; 197:114683. [PMID: 36657645 PMCID: PMC10629597 DOI: 10.1016/j.addr.2022.114683] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 01/18/2023]
Abstract
Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that constitute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their performance, and important items to consider for their clinical translation. Overall, polymeric nanoconstructs hold considerable promise to advance treatment for LSDs.
Collapse
Affiliation(s)
- Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; CIBER-BBN, ISCIII, Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Institute of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
5
|
Mashima R, Nakanishi M. Mammalian Sulfatases: Biochemistry, Disease Manifestation, and Therapy. Int J Mol Sci 2022; 23:ijms23158153. [PMID: 35897729 PMCID: PMC9330403 DOI: 10.3390/ijms23158153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Sulfatases are enzymes that catalyze the removal of sulfate from biological substances, an essential process for the homeostasis of the body. They are commonly activated by the unusual amino acid formylglycine, which is formed from cysteine at the catalytic center, mediated by a formylglycine-generating enzyme as a post-translational modification. Sulfatases are expressed in various cellular compartments such as the lysosome, the endoplasmic reticulum, and the Golgi apparatus. The substrates of mammalian sulfatases are sulfolipids, glycosaminoglycans, and steroid hormones. These enzymes maintain neuronal function in both the central and the peripheral nervous system, chondrogenesis and cartilage in the connective tissue, detoxification from xenobiotics and pharmacological compounds in the liver, steroid hormone inactivation in the placenta, and the proper regulation of skin humidification. Human sulfatases comprise 17 genes, 10 of which are involved in congenital disorders, including lysosomal storage disorders, while the function of the remaining seven is still unclear. As for the genes responsible for pathogenesis, therapeutic strategies have been developed. Enzyme replacement therapy with recombinant enzyme agents and gene therapy with therapeutic transgenes delivered by viral vectors are administered to patients. In this review, the biochemical substrates, disease manifestation, and therapy for sulfatases are summarized.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Correspondence: ; Fax: +81-3-3417-2238
| | | |
Collapse
|
6
|
Del Grosso A, Parlanti G, Mezzena R, Cecchini M. Current treatment options and novel nanotechnology-driven enzyme replacement strategies for lysosomal storage disorders. Adv Drug Deliv Rev 2022; 188:114464. [PMID: 35878795 DOI: 10.1016/j.addr.2022.114464] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/26/2022] [Accepted: 07/19/2022] [Indexed: 11/01/2022]
Abstract
Lysosomal storage disorders (LSDs) are a vast group of more than 50 clinically identified metabolic diseases. They are singly rare, but they affect collectively 1 on 5,000 live births. They result in most of the cases from an enzymatic defect within lysosomes, which causes the subsequent augmentation of unwanted substrates. This accumulation process leads to plenty of clinical signs, determined by the specific substrate and accumulation area. The majority of LSDs present a broad organ and tissue engagement. Brain, connective tissues, viscera and bones are usually afflicted. Among them, brain disease is markedly frequent (two-thirds of LSDs). The most clinically employed approach to treat LSDs is enzyme replacement therapy (ERT), which is practiced by administering systemically the missed or defective enzyme. It represents a healthful strategy for 11 LSDs at the moment, but it solves the pathology only in the case of Gaucher disease. This approach, in fact, is not efficacious in the case of LSDs that have an effect on the central nervous system (CNS) due to the existence of the blood-brain barrier (BBB). Additionally, ERT suffers from several other weak points, such as low penetration of the exogenously administered enzyme to poorly vascularized areas, the development of immunogenicity and infusion-associated reactions (IARs), and, last but not least, the very high cost and lifelong needed. To ameliorate these weaknesses lot of efforts have been recently spent around the development of innovative nanotechnology-driven ERT strategies. They may boost the power of ERT and minimize adverse reactions by loading enzymes into biodegradable nanomaterials. Enzyme encapsulation into biocompatible liposomes, micelles, and polymeric nanoparticles, for example, can protect enzymatic activity, eliminating immunologic reactions and premature enzyme degradation. It can also permit a controlled release of the payload, ameliorating pharmacokinetics and pharmacodynamics of the drug. Additionally, the potential to functionalize the surface of the nanocarrier with targeting agents (antibodies or peptides), could promote the passage through biological barriers. In this review we examined the clinically applied ERTs, highlighting limitations that do not allow to completely cure the specific LSD. Later, we critically consider the nanotechnology-based ERT strategies that have beenin-vitroand/orin-vivotested to improve ERT efficacy.
Collapse
Affiliation(s)
- Ambra Del Grosso
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Gabriele Parlanti
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Roberta Mezzena
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
7
|
Glycosaminoglycan signatures in body fluids of mucopolysaccharidosis type II mouse model under long-term enzyme replacement therapy. J Mol Med (Berl) 2022; 100:1169-1179. [PMID: 35816218 PMCID: PMC9329393 DOI: 10.1007/s00109-022-02221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/09/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022]
Abstract
Abstract Mucopolysaccharidosis type II (MPS II) is a neurometabolic disorder, due to the deficit of the lysosomal hydrolase iduronate 2-sulfatase (IDS). This leads to a severe clinical condition caused by a multi-organ accumulation of the glycosaminoglycans (GAGs/GAG) heparan- and dermatan-sulfate, whose elevated levels can be detected in body fluids. Since 2006, enzyme replacement therapy (ERT) has been clinically applied, showing efficacy in some peripheral districts. In addition to clinical monitoring, GAG dosage has been commonly used to evaluate ERT efficacy. However, a strict long-term monitoring of GAG content and composition in body fluids has been rarely performed. Here, we report the characterization of plasma and urine GAGs in Ids knock-out (Ids-ko) compared to wild-type (WT) mice, and their changes along a 24-week follow-up, with and without ERT. The concentration of heparan-sulfate (HS), chondroitin-sulfate (CS), and dermatan-sulfate (DS), and of the non-sulfated hyaluronic acid (HA), together with their differentially sulfated species, was quantified by capillary electrophoresis with laser-induced fluorescence. In untreated Ids-ko mice, HS and CS + DS were noticeably increased at all time points, while during ERT follow-up, a substantial decrease was evidenced for HS and, to a minor extent, for CS + DS. Moreover, several structural parameters were altered in untreated ko mice and reduced after ERT, however without reaching physiological values. Among these, disaccharide B and HS 2s disaccharide showed to be the most interesting candidates as biomarkers for MPS II. GAG chemical signature here defined provides potential biomarkers useful for an early diagnosis of MPS II, a more accurate follow-up of ERT, and efficacy evaluations of newly proposed therapies. Key messages Plasmatic and urinary GAGs are useful markers for MPS II early diagnosis and prognosis. CE-LIF allows GAG structural analysis and the quantification of 17 different disaccharides. Most GAG species increase and many structural features are altered in MPS II mouse model. GAG alterations tend to restore to wild-type levels following ERT administration. CS+DS/HS ratio, % 2,4dis CS+DS, and % HS 2s are potential markers for MPS II pathology and ERT efficacy.
Supplementary Information The online version contains supplementary material available at 10.1007/s00109-022-02221-3.
Collapse
|
8
|
Differences in MPS I and MPS II Disease Manifestations. Int J Mol Sci 2021; 22:ijms22157888. [PMID: 34360653 PMCID: PMC8345985 DOI: 10.3390/ijms22157888] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Mucopolysaccharidosis (MPS) type I and II are two closely related lysosomal storage diseases associated with disrupted glycosaminoglycan catabolism. In MPS II, the first step of degradation of heparan sulfate (HS) and dermatan sulfate (DS) is blocked by a deficiency in the lysosomal enzyme iduronate 2-sulfatase (IDS), while, in MPS I, blockage of the second step is caused by a deficiency in iduronidase (IDUA). The subsequent accumulation of HS and DS causes lysosomal hypertrophy and an increase in the number of lysosomes in cells, and impacts cellular functions, like cell adhesion, endocytosis, intracellular trafficking of different molecules, intracellular ionic balance, and inflammation. Characteristic phenotypical manifestations of both MPS I and II include skeletal disease, reflected in short stature, inguinal and umbilical hernias, hydrocephalus, hearing loss, coarse facial features, protruded abdomen with hepatosplenomegaly, and neurological involvement with varying functional concerns. However, a few manifestations are disease-specific, including corneal clouding in MPS I, epidermal manifestations in MPS II, and differences in the severity and nature of behavioral concerns. These phenotypic differences appear to be related to different ratios between DS and HS, and their sulfation levels. MPS I is characterized by higher DS/HS levels and lower sulfation levels, while HS levels dominate over DS levels in MPS II and sulfation levels are higher. The high presence of DS in the cornea and its involvement in the arrangement of collagen fibrils potentially causes corneal clouding to be prevalent in MPS I, but not in MPS II. The differences in neurological involvement may be due to the increased HS levels in MPS II, because of the involvement of HS in neuronal development. Current treatment options for patients with MPS II are often restricted to enzyme replacement therapy (ERT). While ERT has beneficial effects on respiratory and cardiopulmonary function and extends the lifespan of the patients, it does not significantly affect CNS manifestations, probably because the enzyme cannot pass the blood-brain barrier at sufficient levels. Many experimental therapies, therefore, aim at delivery of IDS to the CNS in an attempt to prevent neurocognitive decline in the patients.
Collapse
|
9
|
Gene Therapy for Mucopolysaccharidosis Type II-A Review of the Current Possibilities. Int J Mol Sci 2021; 22:ijms22115490. [PMID: 34070997 PMCID: PMC8197095 DOI: 10.3390/ijms22115490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder based on a mutation in the IDS gene that encodes iduronate 2-sulphatase. As a result, there is an accumulation of glycosaminoglycans-heparan sulphate and dermatan sulphate-in almost all body tissues, which leads to their dysfunction. Currently, the primary treatment is enzyme replacement therapy, which improves the course of the disease by reducing somatic symptoms, including hepatomegaly and splenomegaly. The enzyme, however, does not cross the blood-brain barrier, and no improvement in the function of the central nervous system has been observed in patients with the severe form of the disease. An alternative method of treatment that solves typical problems of enzyme replacement therapy is gene therapy, i.e., delivery of the correct gene to target cells through an appropriate vector. Much progress has been made in applying gene therapy for MPS II, from cellular models to human clinical trials. In this article, we briefly present the history and basics of gene therapy and discuss the current state of knowledge about the methods of this therapy in mucopolysaccharidosis type II.
Collapse
|
10
|
Massaro G, Geard AF, Liu W, Coombe-Tennant O, Waddington SN, Baruteau J, Gissen P, Rahim AA. Gene Therapy for Lysosomal Storage Disorders: Ongoing Studies and Clinical Development. Biomolecules 2021; 11:611. [PMID: 33924076 PMCID: PMC8074255 DOI: 10.3390/biom11040611] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Rare monogenic disorders such as lysosomal diseases have been at the forefront in the development of novel treatments where therapeutic options are either limited or unavailable. The increasing number of successful pre-clinical and clinical studies in the last decade demonstrates that gene therapy represents a feasible option to address the unmet medical need of these patients. This article provides a comprehensive overview of the current state of the field, reviewing the most used viral gene delivery vectors in the context of lysosomal storage disorders, a selection of relevant pre-clinical studies and ongoing clinical trials within recent years.
Collapse
Affiliation(s)
- Giulia Massaro
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Amy F. Geard
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Wenfei Liu
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Oliver Coombe-Tennant
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Simon N. Waddington
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Gene Transfer Technology Group, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK
| | - Julien Baruteau
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK;
- Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, National Institute of Health Research, University College London, London WC1N 1EH, UK;
| | - Paul Gissen
- Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, National Institute of Health Research, University College London, London WC1N 1EH, UK;
| | - Ahad A. Rahim
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| |
Collapse
|
11
|
Favret JM, Weinstock NI, Feltri ML, Shin D. Pre-clinical Mouse Models of Neurodegenerative Lysosomal Storage Diseases. Front Mol Biosci 2020; 7:57. [PMID: 32351971 PMCID: PMC7174556 DOI: 10.3389/fmolb.2020.00057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
There are over 50 lysosomal hydrolase deficiencies, many of which cause neurodegeneration, cognitive decline and death. In recent years, a number of broad innovative therapies have been proposed and investigated for lysosomal storage diseases (LSDs), such as enzyme replacement, substrate reduction, pharmacologic chaperones, stem cell transplantation, and various forms of gene therapy. Murine models that accurately reflect the phenotypes observed in human LSDs are critical for the development, assessment and implementation of novel translational therapies. The goal of this review is to summarize the neurodegenerative murine LSD models available that recapitulate human disease, and the pre-clinical studies previously conducted. We also describe some limitations and difficulties in working with mouse models of neurodegenerative LSDs.
Collapse
Affiliation(s)
| | | | | | - Daesung Shin
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
12
|
D’Avanzo F, Rigon L, Zanetti A, Tomanin R. Mucopolysaccharidosis Type II: One Hundred Years of Research, Diagnosis, and Treatment. Int J Mol Sci 2020; 21:E1258. [PMID: 32070051 PMCID: PMC7072947 DOI: 10.3390/ijms21041258] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II, Hunter syndrome) was first described by Dr. Charles Hunter in 1917. Since then, about one hundred years have passed and Hunter syndrome, although at first neglected for a few decades and afterwards mistaken for a long time for the similar disorder Hurler syndrome, has been clearly distinguished as a specific disease since 1978, when the distinct genetic causes of the two disorders were finally identified. MPS II is a rare genetic disorder, recently described as presenting an incidence rate ranging from 0.38 to 1.09 per 100,000 live male births, and it is the only X-linked-inherited mucopolysaccharidosis. The complex disease is due to a deficit of the lysosomal hydrolase iduronate 2-sulphatase, which is a crucial enzyme in the stepwise degradation of heparan and dermatan sulphate. This contributes to a heavy clinical phenotype involving most organ-systems, including the brain, in at least two-thirds of cases. In this review, we will summarize the history of the disease during this century through clinical and laboratory evaluations that allowed its definition, its correct diagnosis, a partial comprehension of its pathogenesis, and the proposition of therapeutic protocols. We will also highlight the main open issues related to the possible inclusion of MPS II in newborn screenings, the comprehension of brain pathogenesis, and treatment of the neurological compartment.
Collapse
Affiliation(s)
- Francesca D’Avanzo
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children ‘s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (F.D.); (A.Z.)
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy;
| | - Laura Rigon
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy;
- Molecular Developmental Biology, Life & Medical Science Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Alessandra Zanetti
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children ‘s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (F.D.); (A.Z.)
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy;
| | - Rosella Tomanin
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children ‘s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (F.D.); (A.Z.)
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy;
| |
Collapse
|
13
|
Poletto E, Pasqualim G, Giugliani R, Matte U, Baldo G. Effects of gene therapy on cardiovascular symptoms of lysosomal storage diseases. Genet Mol Biol 2019; 42:261-285. [PMID: 31132295 PMCID: PMC6687348 DOI: 10.1590/1678-4685-gmb-2018-0100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are inherited conditions caused by impaired lysosomal function and consequent substrate storage, leading to a range of clinical manifestations, including cardiovascular disease. This may lead to significant symptoms and even cardiac failure, which is an important cause of death among patients. Currently available treatments do not completely correct cardiac involvement in the LSDs. Gene therapy has been tested as a therapeutic alternative with promising results for the heart disease. In this review, we present the results of different approaches of gene therapy for LSDs, mainly in animal models, and its effects in the heart, focusing on protocols with cardiac functional analysis.
Collapse
Affiliation(s)
- Edina Poletto
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Pasqualim
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Expression, activity and localization of lysosomal sulfatases in Chronic Obstructive Pulmonary Disease. Sci Rep 2019; 9:1991. [PMID: 30760748 PMCID: PMC6374378 DOI: 10.1038/s41598-018-37958-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death world-wide. Recently, we showed that COPD is associated with gene polymorphisms in SUMF1, a master regulator of sulfatases. Sulfatases are involved in extracellular matrix remodeling and activated by SUMF1, but their role in the lung is poorly described. We aimed to examine how sulfatases are affected in the airways of patients with COPD compared to ever smokers and never smokers. We observed that mRNA expression of the sulfatases GALNS, GNS and IDS was increased, while protein expression of many sulfatases was decreased in COPD fibroblasts. Several sulfatases, including GALNS, IDS, and SGSH, showed increased activity in COPD fibroblasts. Examination of different sulfatases by immunofluorescence showed that IDS, ARSB, GNS and SGSH in fibroblasts were localized to sites other than their reported destination. Using a master panel from different organs, RNA expression of all sulfatases could be observed in lung tissue. Additionally, immunohistochemistry on lung biopsies indicated differing expression of sulfatases in COPD patients. In conclusion, mRNA, protein expression, sulfatase activity levels, and localization of sulfatases are altered in lung fibroblasts and lung tissue from COPD patients and may be mechanistically important in COPD pathogenesis. This could contribute to the understanding of the disease mechanism in COPD and in the long run, to lead to more individualized therapies.
Collapse
|
15
|
Sohn YB, Ko AR, Seong MR, Lee S, Kim MR, Cho SY, Kim JS, Sakaguchi M, Nakazawa T, Kosuga M, Seo JH, Okuyama T, Jin DK. The efficacy of intracerebroventricular idursulfase-beta enzyme replacement therapy in mucopolysaccharidosis II murine model: heparan sulfate in cerebrospinal fluid as a clinical biomarker of neuropathology. J Inherit Metab Dis 2018; 41:1235-1246. [PMID: 29978271 DOI: 10.1007/s10545-018-0221-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/25/2018] [Accepted: 06/12/2018] [Indexed: 11/28/2022]
Abstract
Mucopolysaccharidosis II (MPS II) is caused by a deficiency of iduronate-2-sulfatase that results in accumulation of glycosaminoglycans (GAG), including heparan sulfate (HS), which is considered to contribute to neuropathology. We examined the efficacy of intracerebroventricular (ICV) enzyme replacement therapy (ERT) of idursulfase-beta (IDS-β) and evaluated the usefulness of HS as a biomarker for neuropathology in MPS II mice. We first examined the efficacy of three different doses (3, 10, and 30 μg) of single ICV injections of IDS-β in MPS II mice. After the single-injection study, its long-term efficacy was elucidated with 30 μg of IDS-β ICV injections repeated every 4 weeks for 24 weeks. The efficacy was assessed by the HS content in the cerebrospinal fluid (CSF) and the brain of the animals along with histologic examinations and behavioral tests. In the single-injection study, the 30 μg of IDS-β ICV injection showed significant reductions of HS content in brain and CSF that were maintained for 28 days. Furthermore, HS content in CSF was significantly correlated with HS content in brain. In the long-term repeated-injection study, the HS content in the brain and CSF was also significantly reduced and correlated. The histologic examinations showed a reduction in lysosomal storage. A significant improvement in memory/learning function was observed in open-field and fear-conditioning tests. ICV ERT with 30 μg of IDS-β produced significant improvements in biochemical, histological, and functional parameters in MPS II mice. Furthermore, we demonstrate for the first time that the HS in the CSF had significant positive correlation with brain tissue HS and GAG levels, suggesting HS in CSF as a useful clinical biomarker for neuropathology.
Collapse
Affiliation(s)
- Young Bae Sohn
- Department of Medical Genetics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ah-Ra Ko
- Research Institute for Future Medicine, Samsung Biomedical Research Center, Seoul, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Mi-Ran Seong
- Research Institute for Future Medicine, Samsung Biomedical Research Center, Seoul, Republic of Korea
| | - Soyeon Lee
- Research Institute for Future Medicine, Samsung Biomedical Research Center, Seoul, Republic of Korea
| | - Mi Ra Kim
- Research Institute for Future Medicine, Samsung Biomedical Research Center, Seoul, Republic of Korea
| | - Sung Yoon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Jung-Sun Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Sungkyunkwan University, SAIHST, Seoul, Republic of Korea
| | | | | | - Motomichi Kosuga
- Center for Lysosomal Storage Diseases, National Center for Child Health and Development, 2-10-1, Ohkura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Joo Hyun Seo
- Center for Lysosomal Storage Diseases, National Center for Child Health and Development, 2-10-1, Ohkura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Torayuki Okuyama
- Center for Lysosomal Storage Diseases, National Center for Child Health and Development, 2-10-1, Ohkura, Setagaya-ku, Tokyo, 157-8535, Japan.
| | - Dong-Kyu Jin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
16
|
Stapleton M, Kubaski F, Mason RW, Yabe H, Suzuki Y, Orii KE, Orii T, Tomatsu S. Presentation and Treatments for Mucopolysaccharidosis Type II (MPS II; Hunter Syndrome). Expert Opin Orphan Drugs 2017; 5:295-307. [PMID: 29158997 PMCID: PMC5693349 DOI: 10.1080/21678707.2017.1296761] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/15/2017] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Mucopolysaccharidosis Type II (MPS II; Hunter syndrome) is an X- linked lysosomal storage disorder caused by a deficiency of iduronate-2-sulfatase (IDS). IDS deficiency leads to primary accumulation of dermatan sulfate (DS) and heparan sulfate (HS). MPS II is both multi-systemic and progressive. Phenotypes are classified as either attenuated or severe (based on absence or presence of central nervous system impairment, respectively). AREAS COVERED Current treatments available are intravenous enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), anti-inflammatory treatment, and palliative care with symptomatic surgeries. Clinical trials are being conducted for intrathecal ERT and gene therapy is under pre-clinical investigation. Treatment approaches differ based on age, clinical severity, prognosis, availability and feasibility of therapy, and health insurance.This review provides a historical account of MPS II treatment as well as treatment development with insights into benefits and/or limitations of each specific treatment. EXPERT OPINION Conventional ERT and HSCT coupled with surgical intervention and palliative therapy are currently the treatment options available to MPS II patients. Intrathecal ERT and gene therapy are currently under investigation as future therapies. These investigative treatments are critical to address the limitations in treatment of the central nervous system (CNS).
Collapse
Affiliation(s)
- Molly Stapleton
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Francyne Kubaski
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Robert W. Mason
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Hiromasa Yabe
- Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Gifu, Japan
| | - Kenji E. Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
17
|
Dufresne M, Guneysu D, Patterson NH, Marcinkiewicz MM, Regina A, Demeule M, Chaurand P. Multimodal detection of GM2 and GM3 lipid species in the brain of mucopolysaccharidosis type II mouse by serial imaging mass spectrometry and immunohistochemistry. Anal Bioanal Chem 2016; 409:1425-1433. [DOI: 10.1007/s00216-016-0076-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 11/24/2022]
|
18
|
Comparative study of idursulfase beta and idursulfase in vitro and in vivo. J Hum Genet 2016; 62:167-174. [PMID: 27829684 PMCID: PMC5285491 DOI: 10.1038/jhg.2016.133] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/08/2016] [Accepted: 09/30/2016] [Indexed: 11/17/2022]
Abstract
Hunter syndrome is an X-linked lysosomal storage disease caused by a deficiency in the enzyme iduronate-2-sulfatase (IDS), leading to the accumulation of glycosaminoglycans (GAGs). Two recombinant enzymes, idursulfase and idursulfase beta are currently available for enzyme replacement therapy for Hunter syndrome. These two enzymes exhibited some differences in various clinical parameters in a recent clinical trial. Regarding the similarities and differences of these enzymes, previous research has characterized their biochemical and physicochemical properties. We compared the in vitro and in vivo efficacy of the two enzymes on patient fibroblasts and mouse model. Two enzymes were taken up into the cell and degraded GAGs accumulated in fibroblasts. In vivo studies of two enzymes revealed similar organ distribution and decreased urinary GAGs excretion. Especially, idursulfase beta exhibited enhanced in vitro efficacy for the lower concentration of treatment, in vivo efficacy in the degradation of tissue GAGs and improvement of bones, and revealed lower anti-drug antibody formation. A biochemical analysis showed that both enzymes show largely a similar glycosylation pattern, but the several peaks were different and quantity of aggregates of idursulfase beta was lower.
Collapse
|
19
|
Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-Associated Virus-Based Gene Therapy for CNS Diseases. Hum Gene Ther 2016; 27:478-96. [PMID: 27267688 PMCID: PMC4960479 DOI: 10.1089/hum.2016.087] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Gene therapy is at the cusp of a revolution for treating a large spectrum of CNS disorders by providing a durable therapeutic protein via a single administration. Adeno-associated virus (AAV)-mediated gene transfer is of particular interest as a therapeutic tool because of its safety profile and efficiency in transducing a wide range of cell types. The purpose of this review is to describe the most notable advancements in preclinical and clinical research on AAV-based CNS gene therapy and to discuss prospects for future development based on a new generation of vectors and delivery.
Collapse
Affiliation(s)
| | | | - Mickael Audrain
- Université Paris Descartes, Paris, France
- INSERM UMR1169, Université Paris-Sud,Université Paris-Saclay, Orsay, France
- CEA, DSV, IBM, MIRCen, Fontenay-aux-Roses, France
| | | | - Nathalie Cartier
- INSERM UMR1169, Université Paris-Sud,Université Paris-Saclay, Orsay, France
- CEA, DSV, IBM, MIRCen, Fontenay-aux-Roses, France
| |
Collapse
|
20
|
Giugliani R, Federhen A, Vairo F, Vanzella C, Pasqualim G, da Silva LMR, Giugliani L, de Boer APK, de Souza CFM, Matte U, Baldo G. Emerging drugs for the treatment of mucopolysaccharidoses. Expert Opin Emerg Drugs 2016; 21:9-26. [PMID: 26751109 DOI: 10.1517/14728214.2016.1123690] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Despite being reported for the first time almost one century ago, only in the last few decades effective have treatments become available for the mucopolysaccharidoses (MPSs), a group of 11 inherited metabolic diseases that affect lysosomal function. These diseases are progressive, usually severe, and, in a significant number of cases, involve cognitive impairment. AREAS COVERED This review will not cover established treatments such as bone marrow/hematopoietic stem cell transplantation and classic intravenous enzyme replacement therapy (ERT), whose long-term outcomes have already been published (MPS I, MPS II, and MPS VI), but it instead focuses on emerging therapies for MPSs. That includes intravenous ERT for MPS IVA and VII, intrathecal ERT, ERT with fusion proteins, substrate reduction therapy, gene therapy, and other novel approaches. EXPERT OPINION The available treatments have resulted in improvements for several disease manifestations, but they still do not represent a cure for these diseases; thus, it is important to develop alternative methods to approach the unmet needs (i.e. bone disease, heart valve disease, corneal opacity, and central nervous system (CNS) involvement). The work in progress with novel approaches makes us confident that in 2017, when MPS will commemorate 100 years of its first report, we will be much closer to an effective cure for these challenging conditions.
Collapse
Affiliation(s)
- Roberto Giugliani
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil.,b Department of Genetics , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil.,c Post-Graduate Program in Child and Adolescent Health , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil.,d Post-Graduate Program in Genetics and Molecular Biology , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Andressa Federhen
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil.,c Post-Graduate Program in Child and Adolescent Health , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Filippo Vairo
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Cláudia Vanzella
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil.,e Post-Graduate Program in Biological Sciences: Biochemistry , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Gabriela Pasqualim
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil.,b Department of Genetics , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Letícia Machado Rosa da Silva
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Luciana Giugliani
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Ana Paula Kurz de Boer
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Carolina Fishinger Moura de Souza
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Ursula Matte
- b Department of Genetics , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil.,d Post-Graduate Program in Genetics and Molecular Biology , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil.,f Gene Therapy Center , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Guilherme Baldo
- d Post-Graduate Program in Genetics and Molecular Biology , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil.,f Gene Therapy Center , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil.,g Department of Physiology , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| |
Collapse
|
21
|
Cho SY, Lee J, Ko AR, Kwak MJ, Kim S, Sohn YB, Park SW, Jin DK. Effect of systemic high dose enzyme replacement therapy on the improvement of CNS defects in a mouse model of mucopolysaccharidosis type II. Orphanet J Rare Dis 2015; 10:141. [PMID: 26520066 PMCID: PMC4628320 DOI: 10.1186/s13023-015-0356-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/16/2015] [Indexed: 12/13/2022] Open
Abstract
Background Mucopolysaccharidosis type II (MPS II, Hunter syndrome), is caused by a deficiency of iduronate-2-sulfatase (IDS). Despite the therapeutic effect of intravenous enzyme replacement therapy (ERT), the central nervous system (CNS) defects persist because the enzyme cannot cross the blood-brain barrier (BBB). There have been several trials of direct infusion to the cerebrospinal space showing promising results; however, this approach may have limitations in clinical situations such as CNS infection. The objective of this study was to improve the CNS defect with systemic high-dose ERT. Methods Systemic ERT was performed using three doses (1, 5, and 10 mg/kg weekly) of IDS for three different durations (1, 3, and 6 months) in IDS knock out (KO) mice of two age groups (2 months, 8 months). GAG measurement in tissues, brain pathology, and behavioral assessment were analyzed. Results Brain IDS activities increased in parallel with the concentrations of IDS injected. The glycosaminoglycan (GAG) level and histopathology in the brains of the young mice improved in a dose- and duration-dependent manner; however, those were not improved in the old mice, even at higher doses of IDS. The spontaneous alternation behavior was recovered in young KO mice treated with ≥ 5 mg/kg IDS; however, no significant improvement was observed in old KO mice. Conclusions These results suggest that high-dose ERT given to mice of earlier ages may play a role in preventing GAG accumulation and preventing CNS damage in IDS KO mice. Therefore, ERT above the present standard dose, starting in early childhood, could be a promising treatment regimen for reducing neurological impairment in Hunter syndrome. Electronic supplementary material The online version of this article (doi:10.1186/s13023-015-0356-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sung Yoon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Ah-Ra Ko
- Clinical Research Center, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - Min Jung Kwak
- Department of Pediatrics, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Sujin Kim
- Department of Pediatrics, Myongji Hospital, Seonam Univeristy College of Medicine, Goyang, Republic of Korea
| | - Young Bae Sohn
- Department of Medical Genetics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sung Won Park
- Department of Pediatrics, Dankook University College of Medicine, Cheil General Hospital & Woman's Health Care Center, Seoul, Republic of Korea
| | - Dong-Kyu Jin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea.
| |
Collapse
|
22
|
Giugliani R, Brusius-Facchin AC, Moura de Souza CF, Civallero G, Burin M, Leistner-Segal S, Baldo G, Vairo F. Diagnosis and therapy options in mucopolysaccharidosis II (Hunter syndrome). Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.999666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
McIntyre C, Derrick-Roberts ALK, Byers S, Anson DS. Correction of murine mucopolysaccharidosis type IIIA central nervous system pathology by intracerebroventricular lentiviral-mediated gene delivery. J Gene Med 2014; 16:374-87. [DOI: 10.1002/jgm.2816] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/07/2014] [Accepted: 11/14/2014] [Indexed: 11/06/2022] Open
Affiliation(s)
- Chantelle McIntyre
- School of Paediatrics and Reproductive Health; University of Adelaide; South Australia Australia
| | - Ainslie L. K. Derrick-Roberts
- School of Paediatrics and Reproductive Health; University of Adelaide; South Australia Australia
- Genetics and Molecular Pathology, SA Pathology; North Adelaide South Australia Australia
| | - Sharon Byers
- School of Paediatrics and Reproductive Health; University of Adelaide; South Australia Australia
- Genetics and Molecular Pathology, SA Pathology; North Adelaide South Australia Australia
- School of Molecular and Biomedical Science; University of Adelaide; South Australia Australia
| | - Donald S. Anson
- School of Paediatrics and Reproductive Health; University of Adelaide; South Australia Australia
- Genetics and Molecular Pathology, SA Pathology; North Adelaide South Australia Australia
| |
Collapse
|
24
|
Cho SY, Sohn YB, Jin DK. An overview of Korean patients with mucopolysaccharidosis and collaboration through the Asia Pacific MPS Network. Intractable Rare Dis Res 2014; 3:79-86. [PMID: 25364648 PMCID: PMC4214241 DOI: 10.5582/irdr.2014.01013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/13/2014] [Indexed: 11/05/2022] Open
Abstract
Mucopolysaccharidosis (MPS) is a constellation of disorders characterized by the accumulation of mucopolysaccharides in tissues and organs. This accumulation results in the deterioration and degeneration of multiple organs. This paper describes the general distribution of types of MPS in patients, their clinical characteristics and genotypes, the development of animal studies and preclinical studies, enzyme replacement therapy in South Korea, and the development of idursulfase beta and clinical trials on idursulfase beta in South Korea. In addition, this paper discusses academic collaboration among specialists in MPS care in the Asia-Pacific region, which includes Japan, Taiwan, Malaysia, and South Korea, through an organization called the Asia-Pacific MPS Network (APMN). The Asia-Pacific MPS Registry, an electronic remote data entry system, has been developed by key doctors in the APMN. Rare diseases require international cooperation and collaboration to elucidate their mechanisms and carry out clinical trials; therefore, an organization such as the APMN is required. Furthermore, international collaboration among Asian countries and countries around the world will be of utmost importance in the future.
Collapse
Affiliation(s)
- Sung Yoon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young Bae Sohn
- Department of Medical Genetics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dong-Kyu Jin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Address correspondence to: Dr. Dong-Kyu Jin, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea. E-mail:
| |
Collapse
|
25
|
Lee SC, Lee J, Jin DK, Kim JS, Jeon ES, Kwun YH, Chang MS, Ko AR, Yook YJ, Sohn YB. Improvement of cardiac function by short-term enzyme replacement therapy in a murine model of cardiomyopathy associated with Hunter syndrome evaluated by serial echocardiography with speckle tracking 2-D strain analysis. Mol Genet Metab 2014; 112:218-23. [PMID: 24836711 DOI: 10.1016/j.ymgme.2014.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
Abstract
Cardiac systolic function is significantly decreased in a proportion of patients with Hunter syndrome. This study was performed to evaluate the change in myocardial function associated with enzyme replacement therapy (ERT) in a mouse model of cardiomyopathy associated with Hunter syndrome. Thirty 9-week-old iduronate-2-sulfatase (IDS) knockout mice received either intravenous injection of human recombinant IDS (ERT group, N=15) or saline (control group, N=15) for 5 weeks. Echocardiography was performed at baseline and after treatment. Echocardiographic parameters of left ventricular (LV) systolic function and 2-dimensional radial and circumferential strain were assessed. At follow-up, there was a significant increase in LV fractional shortening and radial and circumferential strain in the ERT group only. Notable myocardial fibrosis was observed in the control group only. In the murine model of Hunter syndrome, ERT exerts beneficial effects on cardiac function, which can be evaluated by serial echocardiographic evaluation including 2-dimensional strain analysis.
Collapse
Affiliation(s)
- Sang-Chol Lee
- Heart, Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jieun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong-Kyu Jin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Jung-Sun Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun-Seok Jeon
- Heart, Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young Hee Kwun
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Mi Sun Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ah-ra Ko
- Clinical Research Center, Samsung Biomedical Research Center, Seoul, Republic of Korea
| | - Yeon Joo Yook
- Clinical Research Center, Samsung Biomedical Research Center, Seoul, Republic of Korea
| | - Young Bae Sohn
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
26
|
Abstract
Otitis media (OM) is a common cause of childhood hearing loss. The large medical costs involved in treating this condition have meant that research to understand the pathology of this disease and identify new therapeutic interventions is important. There is evidence that susceptibility to OM has a significant genetic component, although little is known about the key genetic pathways involved. Mouse models for disease have become an important resource to understand a variety of human pathologies, including OM, due to the ability to easily manipulate their genetic components. This has enabled researchers to create models of acute OM, and has aided in the identification of a number of new genes associated with chronic disease, through the use of mutagenesis programs. The use of mouse models has identified a number of key molecular signalling pathways involved in the development of this condition, with genes identified from models shown to be associated with human OM.
Collapse
|
27
|
Baldo G, Giugliani R, Matte U. Gene delivery strategies for the treatment of mucopolysaccharidoses. Expert Opin Drug Deliv 2014; 11:449-59. [DOI: 10.1517/17425247.2014.880689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Tomatsu S, Alméciga-Díaz CJ, Barbosa H, Montaño AM, Barrera LA, Shimada T, Yasuda E, Mackenzie WG, Mason RW, Suzuki Y, Orii KE, Orii T. Therapies of mucopolysaccharidosis IVA (Morquio A syndrome). Expert Opin Orphan Drugs 2013; 1:805-818. [PMID: 25419501 DOI: 10.1517/21678707.2013.846853] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Morquio A syndrome (mucopolysaccharidosis type IVA, MPS IVA) is one of the lysosomal storage diseases and is caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Deficiency of this enzyme leads to accumulation of glycosaminoglycans (GAGs), keratan sulfate (KS) and chondroitin-6-sulfate (C6S). The majority of KS is produced by chondrocytes, and therefore, the undegraded substrates accumulate mainly in cells and extracelluar matrix (ECM) of cartilage. This has a direct impact on cartilage and bone development, leading to systemic skeletal dysplasia. In patients with Morquio A, cartilage cells are vacuolated, and this results in abnormal chondrogenesis and/or endochondral ossification. AREAS COVERED This article describes the advanced therapies of Morquio A, focused on enzyme replacement therapy (ERT) and gene therapy to deliver the drug to avascular bone lesions. ERT and gene therapies for other types of MPS are also discussed, which provide therapeutic efficacy to bone lesions. EXPERT OPINION ERT, gene therapy and hematopietic stem therapy are clinically and/or experimentally conducted. However, there is no effective curative therapy for bone lesion to date. One of the limitations for Morquio A therapy is that targeting avascular cartilage tissues remains an unmet challenge. ERT or gene therapy with bone-targeting system will improve the bone pathology and skeletal manifestations more efficiently.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Professor and Director, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA ; Nemours/Alfred I. duPont Hospital for Children, Skeletal Dysplasia Center, Nemours Biomedical Research, 1600 Rockland Rd., Wilmington, DE 19803, USA
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Hector Barbosa
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Adriana M Montaño
- Saint Louis University, Department of Pediatrics, St. Louis, MO, USA
| | - Luis A Barrera
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Tsutomu Shimada
- Professor and Director, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Eriko Yasuda
- Professor and Director, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - William G Mackenzie
- Professor and Director, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Robert W Mason
- Professor and Director, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Yasuyuki Suzuki
- Gifu University, Medical Education Development Center, Gifu, Japan
| | - Kenji E Orii
- Gifu University, Department of Pediatrics, Gifu, Japan
| | - Tadao Orii
- Gifu University, Department of Pediatrics, Gifu, Japan
| |
Collapse
|
29
|
Ahn SY, Chang YS, Sung DK, Ko AR, Kim CH, Yoo DK, Lim KH, Sohn YB, Jin DK, Park WS. High-dose enzyme replacement therapy attenuates cerebroventriculomegaly in a mouse model of mucopolysaccharidosis type II. J Hum Genet 2013; 58:728-33. [PMID: 24005894 DOI: 10.1038/jhg.2013.92] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/09/2013] [Accepted: 07/30/2013] [Indexed: 11/09/2022]
Abstract
The natural progression of the severe form of mucopolysaccharidosis II in children is a rapid decline of neurodevelopmental function with hydrocephalus. Recombinant human iduronate-2-sulfatase enzyme replacement therapy (ERT) under a standard regimen seems to have limited effect. Therefore, we determined whether early, high-dose ERT attenuated ventriculomegaly and histologic abnormalities in the brains of IdS-knockout mice. IdS-knockout mice received saline or recombinant human IdS (0.5/1.0/2.0 mg kg(-1)) intravenously once weekly, starting at 4 weeks of age and continuing until 20 weeks. ERT with 2.0 mg kg(-1), but not 0.5 or 1.0 mg kg(-1), significantly attenuated enlarged ventricles, as confirmed by in vivo 7-teslar brain magnetic resonance image (MRI) at 20 weeks. However, neuronal cytoplasmic vacuolization and morphological alteration in the purkinje cells on brain histology and glycosaminoglycan (GAG) levels in brain homogenates were reduced in mice receiving ERT at lower dose than 2.0 mg kg(-1). Additionally, GAG levels significantly correlated with the percent volume ratio of ventricle to whole brain. These results suggested that high-dose systemic ERT started early in life could be a promising therapeutic modality for improving neurologic dysfunction including ventriculomegaly in children with severe Hunter syndrome.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sohn YB, Lee J, Cho SY, Kim SJ, Ko AR, Nam MH, Jin DK. Improvement of CNS defects via continuous intrathecal enzyme replacement by osmotic pump in mucopolysaccharidosis type II mice. Am J Med Genet A 2013; 161A:1036-43. [PMID: 23529876 DOI: 10.1002/ajmg.a.35869] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/30/2012] [Indexed: 01/04/2023]
Abstract
Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome (OMIM 309900), is a rare, X-linked lysosomal storage disorder caused by a deficiency of iduronate-2-sulfatase (IDS; EC 3.1.6.13), which is involved in the lysosomal degradation of glycosaminoglycans (GAG). Although intermittent intrathecal (IT) injection of the enzyme has been introduced as a method to overcome the blood-brain barrier, continuous IT infusion of the enzyme would be more physiologic. This study was performed to investigate responses in the brain of MPS II mice to varying doses of continuous IT infusion of recombinant human IDS (rh-IDS) in MPS II mice by osmotic pump in three different doses (2.4, 4.8, and 12 µg/day) of rh-IDS for 3 weeks. The results showed that the group treated with 12 µg/day doses of rh-IDS demonstrated decreased GAG concentrations compared to the untreated KO mice group (P = 0.003). After 3 weeks of continuous IT ERT, the brain tissues of the high-dose IT-treated KO mice showed a reduction of vacuolation in the cerebral cortex, thalamus and cerebellar cortex, which was not observed in the low- and medium-dose KO mice groups. Moreover, the anti-NeuN signal representing intact neuron was restored in the cortexes of the high-dose group. In conclusion, continuous IT infusion of the deficient enzyme was effective in improving CNS defects in the MPS II mice, and could be a valuable therapeutic method for treating neurological deterioration in patients with MPS II.
Collapse
Affiliation(s)
- Young Bae Sohn
- Department of Medical Genetics, Ajou University Hospital, Suwon, South Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Rowan DJ, Tomatsu S, Grubb JH, Montaño AM, Sly WS. Assessment of bone dysplasia by micro-CT and glycosaminoglycan levels in mouse models for mucopolysaccharidosis type I, IIIA, IVA, and VII. J Inherit Metab Dis 2013; 36:235-46. [PMID: 22971960 PMCID: PMC3594443 DOI: 10.1007/s10545-012-9522-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/26/2012] [Accepted: 07/19/2012] [Indexed: 12/13/2022]
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases caused by mutations in lysosomal enzymes involved in degradation of glycosaminoglycans (GAGs). Patients with MPS grow poorly and become physically disabled due to systemic bone disease. While many of the major skeletal effects in mouse models for MPS have been described, no detailed analysis that compares GAGs levels and characteristics of bone by micro-CT has been done. The aims of this study were to assess severity of bone dysplasia among four MPS mouse models (MPS I, IIIA, IVA and VII), to determine the relationship between severity of bone dysplasia and serum keratan sulfate (KS) and heparan sulfate (HS) levels in those models, and to explore the mechanism of KS elevation in MPS I, IIIA, and VII mouse models. Clinically, MPS VII mice had the most severe bone pathology; however, MPS I and IVA mice also showed skeletal pathology. MPS I and VII mice showed severe bone dysplasia, higher bone mineral density, narrowed spinal canal, and shorter sclerotic bones by micro-CT and radiographs. Serum KS and HS levels were elevated in MPS I, IIIA, and VII mice. Severity of skeletal disease displayed by micro-CT, radiographs and histopathology correlated with the level of KS elevation. We showed that elevated HS levels in MPS mouse models could inhibit N-acetylgalactosamine-6-sulfate sulfatase enzyme. These studies suggest that KS could be released from chondrocytes affected by accumulation of other GAGs and that KS could be useful as a biomarker for severity of bone dysplasia in MPS disorders.
Collapse
Affiliation(s)
- Daniel J. Rowan
- School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Shunji Tomatsu
- Department of Biomedical Research and Department of Orthopedic Surgery, Alfred I. dupont Institute Hospital for Children
| | - Jeffrey H. Grubb
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Adriana M. Montaño
- Department of Pediatrics, Saint Louis University, St. Louis, Missouri, USA
| | - William S. Sly
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
32
|
Higuchi T, Shimizu H, Fukuda T, Kawagoe S, Matsumoto J, Shimada Y, Kobayashi H, Ida H, Ohashi T, Morimoto H, Hirato T, Nishino K, Eto Y. Enzyme replacement therapy (ERT) procedure for mucopolysaccharidosis type II (MPS II) by intraventricular administration (IVA) in murine MPS II. Mol Genet Metab 2012; 107:122-8. [PMID: 22704483 DOI: 10.1016/j.ymgme.2012.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/01/2012] [Accepted: 05/02/2012] [Indexed: 01/25/2023]
Abstract
Mucopolysaccharidosis type II (MPS II), or Hunter syndrome, is a lysosomal storage disorder caused by a deficiency of iduronate-2-sulfatase (IDS) and is characterized by the accumulation of glycosaminoglycans (GAGs). MPS II has been treated by hematopoietic stem cell therapy (HSCT)/enzyme replacement therapy (ERT), but its effectiveness in the central nervous system (CNS) is limited because of poor enzyme uptake across the blood-brain barrier (BBB). To increase the efficacy of ERT in the brain, we tested an intraventricular ERT procedure consisting of repeated administrations of IDS (20 μg/mouse/3 weeks) in IDS-knockout, MPS II model mice. The IDS enzyme activity and the accumulation of total GAGs were measured in mouse brains. The IDS activity was significantly increased, and the accumulation of total GAGs was decreased in the MPS II mouse brains treated with multiple administrations of IDS via intraventricular ERT. Additionally, a high level of IDS enzyme activity was appreciated in other MPS II mouse tissues, such as the liver, spleen, testis and others. A Y-maze was used to test learning and memory after repeated intraventricular ERT with IDS. The IDS-treated mouse groups recovered the capacity for short-term memory and activity. Although large and small vacuoles were found at the margin of the cerebellar Purkinje cells in the disease-control mice, these vacuoles disappeared upon treated with IDS. Loss of vacuoles was also observed in other tissues (liver, kidney and testis). These results demonstrate the possible efficacy of an ERT procedure with intraventricular administration of IDS for the treatment of MPS II.
Collapse
Affiliation(s)
- Takashi Higuchi
- Department of Genetic Diseases & Genomic Science, The Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hong SH, Chu H, Kim KR, Ko MH, Kwon SY, Moon IJ, Chung WH, Cho YS, Kim CH, Suh MW, Choi EW, Sohn YB, Park SW, Kim SH, Cho SY, Ko AR, Jin DK. Auditory characteristics and therapeutic effects of enzyme replacement in mouse model of the mucopolysaccharidosis (MPS) II. Am J Med Genet A 2012; 158A:2131-8. [PMID: 22847837 DOI: 10.1002/ajmg.a.35498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 05/06/2012] [Indexed: 11/08/2022]
Abstract
Mucopolysaccharidosis (MPS) II is an X-linked metabolic disorder caused by dysfunction of iduronate-2-sulfatase (I2S). This abnormality causes the progressive accumulation of incompletely degraded glycosaminoglycans (GAGs) in the lysosomes. The auditory characteristics of MPS II in mouse models have not been reported. In this study, we evaluated the auditory characteristics of the MPS II in IDS knock-out (IDS-KO) mice. In addition, the effect of enzyme replacement therapy (ERT) on hearing was studied. The IDS-KO mice had normal histology of the cochlea and retained good hearing at 7 weeks of age. However, at 17 weeks of age, the hearing thresholds of the IDS-KO mice were elevated and exudates were found in the middle ear. The hearing thresholds of the enzyme-treated IDS-KO (IDS-ERT) mice were similar to the wild-type (WT) mice at 17 weeks. Moreover, the microstructure of the inner ear was similar to the IDS-KO by transmission electron microscopy. The histology findings indicated that the microstructure of the inner ear was similar in comparisons between IDS-KO and IDS-ERT mice, even after 10 weeks of treatment. However, the hearing deficits in the MPS II mouse model can be prevented if ERT is started before the onset of hearing impairment.
Collapse
Affiliation(s)
- Sung Hwa Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, and Hana ENT Hospital, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Matte U, Lagranha VL, de Carvalho TG, Mayer FQ, Giugliani R. Cell microencapsulation: a potential tool for the treatment of neuronopathic lysosomal storage diseases. J Inherit Metab Dis 2011; 34:983-90. [PMID: 21614584 DOI: 10.1007/s10545-011-9350-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/17/2011] [Accepted: 05/04/2011] [Indexed: 02/03/2023]
Abstract
Lysosomal storage disorders (LSD) are monogenic diseases caused by the deficiency of different lysosomal enzymes that degrade complex substrates such as glycosaminoglycans, sphingolipids, and others. As a consequence there is multisystemic storage of these substrates. Most treatments for these disorders are based in the fact that most of these enzymes are soluble and can be internalized by adjacent cells via mannose-6-phosphate receptor. In that sense, these disorders are good candidates to be treated by somatic gene therapy based on cell microencapsulation. Here, we review the existing data about this approach focused on the LSD treatments, the advantages and limitations faced by these studies.
Collapse
Affiliation(s)
- Ursula Matte
- Gene Therapy Center, Experimental Research Center, Hospital de Clínicas, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
35
|
Lee JH, Choe YH, Kim SJ, Paik KH, Jin DK. Changes in glycogen and glycosaminoglycan levels in hepatocytes of iduronate-2-sulfatase knockout mice before and after recombinant iduronate-2-sulfatase supplementation. Yonsei Med J 2011; 52:263-7. [PMID: 21319344 PMCID: PMC3051226 DOI: 10.3349/ymj.2011.52.2.263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Mucopolysaccharidosis II (MPS II) is a lysosomal storage disorder caused by a deficiency of iduronate-2 sulfatase (IdS), which is involved in the degradation of glycosaminoglycan (GAG). In this study, the frequency of fasting hypoglycemia in patients with MPS II was investigated and changes in accumulation of glycogen and GAG in the hepatocytes of IdS-knockout (KO) mice were evaluated before and after recombinant IdS enzyme replacement therapy (ERT). MATERIALS AND METHODS Plasma glucose levels were evaluated after an 8-hour fast in 50 patients with MPS II. The IdS-KO mice were divided into three groups (group 2; saline, group 3; 0.15 mg/kg of IdS, and group 4; 0.5 mg/kg of IdS); wild-type mice were included as controls (group 1). ERT was initiated intravenously at four weeks of age, and continued every week until 20 weeks of age. RESULTS The mean glucose level after an 8-hour fast was 94.1 ± 23.7 mg/dL in the patients with MPS II. Two (4%) out of 50 patients had fasting hypoglycemia. For the mice, GAG in the lysosomes nearly disappeared and glycogen particles in the cytoplasm were restored to the normal range in group 4. CONCLUSION Glucose metabolism in patients with MPS II appeared to function well despite hepatocytic GAG accumulation and hypothetical glycogen depletion. A higher dose of IdS infusion in MPS II mice led to disappearance of lysosomal GAG and restoration of glycogen to the cytoplasm of hepatocytes.
Collapse
Affiliation(s)
- Jee Hyun Lee
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| | - Yon Ho Choe
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Su Jin Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Hoon Paik
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong-Kyu Jin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|