1
|
Mathuram TL. GSK-3: An "Ace" Among Kinases. Cancer Biother Radiopharm 2024; 39:619-631. [PMID: 38746994 DOI: 10.1089/cbr.2024.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024] Open
Abstract
Background: Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase known to participate in the regulation of β-catenin signaling (Wnt signaling). This aids in the establishment of a multicomponent destruction complex that stimulates phosphorylation, leading to the destruction of β-catenin. Evidence about the role of increasingly active β-catenin signaling is involved in many forms of human cancer. The understanding of GSK-3 remains elusive as recent research aims to focus on developing potent GSK-3 inhibitors to target this kinase. Objective: This short review aims to highlight the regulation of GSK-3 with emphasis on Wnt signaling while highlighting its interaction with miRNAs corresponding to pluripotency and epithelial mesenchymal transition substantiating this kinase as an "Ace" among kinases in regulation of cellular processes. Result: Significant findings of miRNA regulation by GSK-3 exemplify the underpinnings of kinase-mediated transcriptional regulation in cancers. Conclusion: The review provides evidence on the role of GSK-3 as a possible master regulator of proteins and noncoding RNA, thereby implicating the fate of a cell.
Collapse
|
2
|
Grayck MR, McCarthy WC, Solar M, Golden E, Balasubramaniyan N, Zheng L, Sherlock LG, Wright CJ. GSK3β/NF-κB -dependent transcriptional regulation of homeostatic hepatocyte Tnf production. Am J Physiol Gastrointest Liver Physiol 2024; 326:G374-G384. [PMID: 38193163 PMCID: PMC11211040 DOI: 10.1152/ajpgi.00229.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024]
Abstract
Maintenance of hepatocyte homeostasis plays an important role in mediating the pathogenesis of many diseases. A growing body of literature has established a critical role played by tumor necrosis factor-α (TNFα) in maintaining hepatocyte homeostasis; however, the transcriptional mechanisms underlying constitutive Tnf expression are unknown. Whole liver fractions and primary hepatocytes from adult control C57BL/6 mice and the murine hepatocyte cell line AML12 were assessed for constitutive Tnf expression. Impacts of glycogen synthase kinase-3 β (GSK3β) and nuclear factor κB (NF-κB) inhibition on constitutive Tnf expression were assessed in AML12 cells. Finally, AML12 cell proliferation following GSK3β and NF-κB inhibition was evaluated. Constitutive Tnf gene expression is present in whole liver, primary hepatocytes, and cultured AML12 hepatocytes. Cytokine-induced Tnf gene expression is regulated by NF-κB activation. Pharmacological inhibition of GSK3β resulted in a time- and dose-dependent inhibition of Tnf gene expression. GSK3β inhibition decreased nuclear levels of the NF-κB subunits p65 and p50. We determined that NF-κB transcription factor subunit p65 binds to consensus sequence elements present in the murine TNFα promoter and inhibition of GSK3β decreases binding and subsequent Tnf expression. Finally, AML12 cell growth was significantly reduced following GSK3β and NF-κB inhibition. These results demonstrate that GSK3β and NF-κB are essential for mediating Tnf expression and constitutive hepatocyte cell growth. These findings add to a growing body of literature on TNFα mediated hepatocyte homeostasis and identify novel molecular mechanisms involved in mediating response to various disease states in the liver.NEW & NOTEWORTHY Maintenance of hepatocyte homeostasis plays an important role in controlling the pathogenesis of many diseases. Our findings add to a growing body of literature on tumor necrosis factor-α (TNFα)-mediated hepatocyte homeostasis and identify novel molecular mechanisms involved in regulating this response.
Collapse
Affiliation(s)
- Maya R Grayck
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - William C McCarthy
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Mack Solar
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Emma Golden
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Natarajan Balasubramaniyan
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Laura G Sherlock
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| |
Collapse
|
3
|
Gao H, Fang B, Sun Z, Du X, Guo H, Zhao L, Zhang M. Effect of Human Milk Oligosaccharides on Learning and Memory in Mice with Alzheimer's Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1067-1081. [PMID: 38112024 DOI: 10.1021/acs.jafc.3c05949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Alzheimer's disease (AD) is distinguished by cognitive dysfunction and neuroinflammation in the brain. 2'-Fucosyllactose (2'-FL) is a major human milk oligosaccharide (HMO) that is abundantly present in breast milk and has been demonstrated to exhibit immunomodulatory effects. However, the role of 2'-FL and HMO in gut microbiota modulation in relation to AD remains insufficiently investigated. This study aimed to elucidate the preventive effect of the 2'-FL and HMO impact of AD and the relevant mechanism involved. Here, the behavioral results showed that 2'-FL and HMO intervention decreased the expression of Tau phosphorylation and amyloid-β (Aβ), inhibited neuroinflammation, and restored cognitive impairment in AD mice. The metagenomic analysis proved that 2'-FL and HMO intervention restored the dysbiosis of the gut microbiota in AD. Notably, 2'-FL and HMO intervention significantly enhanced the relative abundance of Clostridium and Akkermansia. The metabolomics results showed that 2'-FL and HMO enhanced the oleoyl-l-carnitine metabolism as potential drivers. More importantly, the levels of oleoyl-l-carnitine were positively correlated with the abundances of Clostridium and Akkermansia. These results indicated that 2'-FL and HMO had therapeutic potential to prevent AD-induced cognitive impairment, which is of great significance for the treatment of AD.
Collapse
Affiliation(s)
- Haina Gao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Zhe Sun
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyu Du
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Huiyuan Guo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Liang Zhao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Cormier KW, Larsen B, Gingras AC, Woodgett JR. Interactomes of Glycogen Synthase Kinase-3 Isoforms. J Proteome Res 2023; 22:977-989. [PMID: 36779422 PMCID: PMC9990120 DOI: 10.1021/acs.jproteome.2c00825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Functional differentiation of the two isoforms of the protein-serine/threonine kinase, glycogen synthase kinase-3 (GSK-3), is an unsettled area of research. The isoforms are highly similar in structure and are largely redundant, though there is also evidence for specific roles. Identification of isoform-specific protein interactors may elucidate the differences in function and provide insight into isoform-selective regulation. We therefore sought to identify novel GSK-3 interaction partners and to examine differences in the interactomes of the two isoforms using both affinity purification and proximity-dependent biotinylation (BioID) mass spectrometry methods. While the interactomes of the two isomers are highly similar in HEK293 cells, BioID in HeLa cells yielded a variety of preys that are preferentially associated with one of the two isoforms. DCP1B, which favored GSK-3α, and MISP, which favored GSK-3β, were evaluated for reciprocal interactions. The differences in interactions between isoforms may help in understanding the distinct functions and regulation of the two isoforms as well as offer avenues for the development of isoform-specific strategies.
Collapse
Affiliation(s)
- Kevin W Cormier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
5
|
Fang Y, Chen B, Gong AY, Malhotra D, Gupta R, Dworkin LD, Gong R. The ketone body β-hydroxybutyrate mitigates the senescence response of glomerular podocytes to diabetic insults. Kidney Int 2021; 100:1037-1053. [PMID: 34246657 DOI: 10.1016/j.kint.2021.06.031] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 01/23/2023]
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes and clinically featured by progressive albuminuria, consequent to glomerular destruction that involves podocyte senescence. Burgeoning evidence suggests that ketosis, in particular β-hydroxybutyrate, exerts a beneficial effect on aging and on myriad metabolic or chronic diseases, including obesity, diabetes and chronic kidney diseases. Its effect on DKD is largely unknown. In vitro in podocytes exposed to a diabetic milieu, β-hydroxybutyrate treatment substantially mitigated cellular senescence and injury, as evidenced by reduced formation of γH2AX foci, reduced staining for senescence-associated-β-galactosidase activity, diminished expression of key mediators of senescence signaling like p16INK4A and p21, and preserved expression of synaptopodin. This beneficial action of β-hydroxybutyrate coincided with a reinforced transcription factor Nrf2 antioxidant response. Mechanistically, β-hydroxybutyrate inhibition of glycogen synthase kinase 3β (GSK3β), a convergent point for myriad signaling pathways regulating Nrf2 activity, seems to contribute. Indeed, trigonelline, a selective inhibitor of Nrf2, or ectopic expression of constitutively active mutant GSK3β abolished, whereas selective activation of Nrf2 was sufficient for the anti-senescent and podocyte protective effects of β-hydroxybutyrate. Moreover, molecular modeling and docking analysis revealed that β-hydroxybutyrate is able to directly target the ATP-binding pocket of GSK3β and thereby block its kinase activity. In murine models of streptozotocin-elicited DKD, β-hydroxybutyrate therapy inhibited GSK3β and reinforced Nrf2 activation in glomerular podocytes, resulting in lessened podocyte senescence and injury and improved diabetic glomerulopathy and albuminuria. Thus, our findings may pave the way for developing a β-hydroxybutyrate-based novel approach of therapeutic ketosis for treating DKD.
Collapse
Affiliation(s)
- Yudong Fang
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio
| | - Bohan Chen
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio;; Division of Kidney Disease and Hypertension, Rhode Island Hospital, Brown Medical School, Providence, Rhode Island
| | - Athena Y Gong
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio
| | - Deepak Malhotra
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio
| | - Rajesh Gupta
- Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio
| | - Lance D Dworkin
- Division of Kidney Disease and Hypertension, Rhode Island Hospital, Brown Medical School, Providence, Rhode Island;; Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio
| | - Rujun Gong
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio;; Division of Kidney Disease and Hypertension, Rhode Island Hospital, Brown Medical School, Providence, Rhode Island;; Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio; Deaprtment of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio.
| |
Collapse
|
6
|
Wadhwa P, Jain P, Jadhav HR. Glycogen Synthase Kinase 3 (GSK3): Its Role and Inhibitors. Curr Top Med Chem 2021; 20:1522-1534. [PMID: 32416693 DOI: 10.2174/1568026620666200516153136] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/23/2022]
Abstract
Glycogen Synthase Kinase 3 (GSK3) is one of the Serine/Threonine protein kinases, which has gained a lot of attention for its role in a variety of pathways. It has two isoforms, GSK3α and GSK3β. However, GSK3β is highly expressed in different areas of the brain and has been implicated in Alzheimer's disease as it is involved in tau phosphorylation. Due to its high specificity concerning substrate recognition, GSK3 has been considered as an important target. In the last decade, several GSK3 inhibitors have been reported and two molecules are in clinical trials. This review collates the information published in the last decade about the role of GSK3 in Alzheimer's disease and progress in the development of its inhibitors. Using this collated information, medicinal chemists can strategize and design novel GSK3 inhibitors that could be useful in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Pankaj Wadhwa
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani- 333031, Rajasthan, India
| | - Priti Jain
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani- 333031, Rajasthan, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani- 333031, Rajasthan, India
| |
Collapse
|
7
|
de Winter TJJ, Nusse R. Running Against the Wnt: How Wnt/β-Catenin Suppresses Adipogenesis. Front Cell Dev Biol 2021; 9:627429. [PMID: 33634128 PMCID: PMC7900430 DOI: 10.3389/fcell.2021.627429] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) give rise to adipocytes, osteocytes, and chondrocytes and reside in various tissues, including bone marrow and adipose tissue. The differentiation choices of MSCs are controlled by several signaling pathways, including the Wnt/β-catenin signaling. When MSCs undergo adipogenesis, they first differentiate into preadipocytes, a proliferative adipocyte precursor cell, after which they undergo terminal differentiation into mature adipocytes. These two steps are controlled by the Wnt/β-catenin pathway, in such a way that when signaling is abrogated, the next step in adipocyte differentiation can start. This sequence suggests that the main role of Wnt/β-catenin signaling is to suppress differentiation while increasing MSC and preadipocytes cell mass. During later steps of MSC differentiation, however, active Wnt signaling can promote osteogenesis instead of keeping the MSCs undifferentiated and proliferative. The exact mechanisms behind the various functions of Wnt signaling remain elusive, although recent research has revealed that during lineage commitment of MSCs into preadipocytes, Wnt signaling is inactivated by endogenous Wnt inhibitors. In part, this process is regulated by histone-modifying enzymes, which can lead to increased or decreased Wnt gene expression. The role of Wnt in adipogenesis, as well as in osteogenesis, has implications for metabolic diseases since Wnt signaling may serve as a therapeutic target.
Collapse
Affiliation(s)
- Twan J J de Winter
- Faculty of Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Roeland Nusse
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford, CA, United States.,School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
8
|
Miller WP, Sunilkumar S, Giordano JF, Toro AL, Barber AJ, Dennis MD. The stress response protein REDD1 promotes diabetes-induced oxidative stress in the retina by Keap1-independent Nrf2 degradation. J Biol Chem 2020; 295:7350-7361. [PMID: 32295843 PMCID: PMC7247303 DOI: 10.1074/jbc.ra120.013093] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/09/2020] [Indexed: 12/21/2022] Open
Abstract
The transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2) plays a critical role in reducing oxidative stress by promoting the expression of antioxidant genes. Both individuals with diabetes and preclinical diabetes models exhibit evidence of a defect in retinal Nrf2 activation. We recently demonstrated that increased expression of the stress response protein regulated in development and DNA damage 1 (REDD1) is necessary for the development of oxidative stress in the retina of streptozotocin-induced diabetic mice. In the present study, we tested the hypothesis that REDD1 suppresses the retinal antioxidant response to diabetes by repressing Nrf2 function. We found that REDD1 ablation enhances Nrf2 DNA-binding activity in the retina and that the suppressive effect of diabetes on Nrf2 activity is absent in the retina of REDD1-deficient mice compared with WT. In human MIO-M1 Müller cell cultures, REDD1 deletion prevented oxidative stress in response to hyperglycemic conditions, and this protective effect required Nrf2. REDD1 suppressed Nrf2 stability by promoting its proteasomal degradation independently of Nrf2's interaction with Kelch-like ECH-associated protein 1 (Keap1), but REDD1-mediated Nrf2 degradation required glycogen synthase kinase 3 (GSK3) activity and Ser-351/Ser-356 of Nrf2. Diabetes diminished inhibitory phosphorylation of glycogen synthase kinase 3β (GSK3β) at Ser-9 in the retina of WT mice but not in REDD1-deficient mice. Pharmacological inhibition of GSK3 enhanced Nrf2 activity and prevented oxidative stress in the retina of diabetic mice. The findings support a model wherein hyperglycemia-induced REDD1 blunts the Nrf2 antioxidant response to diabetes by activating GSK3, which, in turn, phosphorylates Nrf2 to promote its degradation.
Collapse
Affiliation(s)
- William P Miller
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Joseph F Giordano
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Allyson L Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Alistair J Barber
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033; Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033; Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania 17033.
| |
Collapse
|
9
|
GSK3: A Kinase Balancing Promotion and Resolution of Inflammation. Cells 2020; 9:cells9040820. [PMID: 32231133 PMCID: PMC7226814 DOI: 10.3390/cells9040820] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
GSK3 has been implicated for years in the regulation of inflammation and addressed in a plethora of scientific reports using a variety of experimental (disease) models and approaches. However, the specific role of GSK3 in the inflammatory process is still not fully understood and controversially discussed. Following a detailed overview of structure, function, and various regulatory levels, this review focusses on the immunoregulatory functions of GSK3, including the current knowledge obtained from animal models. Its impact on pro-inflammatory cytokine/chemokine profiles, bacterial/viral infections, and the modulation of associated pro-inflammatory transcriptional and signaling pathways is discussed. Moreover, GSK3 contributes to the resolution of inflammation on multiple levels, e.g., via the regulation of pro-resolving mediators, the clearance of apoptotic immune cells, and tissue repair processes. The influence of GSK3 on the development of different forms of stimulation tolerance is also addressed. Collectively, the role of GSK3 as a kinase balancing the initiation/perpetuation and the amelioration/resolution of inflammation is highlighted.
Collapse
|
10
|
Eichenauer T, Hussein M, Hube-Magg C, Kluth M, Büscheck F, Höflmayer D, Tsourlakis MC, Steurer S, Clauditz TS, Luebke AM, Burandt E, Wilczak W, Hinsch A, Dum D, Beyer B, Steuber T, Huland H, Graefen M, Simon R, Sauter G, Melling N, Schlomm T, Minner S. A nuclear shift of GSK3β protein is an independent prognostic factor in prostate cancer. Oncotarget 2019; 10:1729-1744. [PMID: 30899444 PMCID: PMC6422199 DOI: 10.18632/oncotarget.26739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/15/2019] [Indexed: 01/01/2023] Open
Abstract
Glycogen synthase kinase 3ß (GSK3ß) regulates many cancer relevant cellular processes and represents a potential therapeutic target. GSK3ß overexpression has been linked to adverse tumor features in many cancers, but its role in prostate cancer remains uncertain. We employed immunohistochemical GSK3ß expression analysis on a tissue microarray with 12,427 prostate cancers. Cytoplasmic and nuclear GSK3ß staining was separately analyzed. GSK3ß staining was absent in normal prostate epithelium, whereas 57% of 9,164 interpretable cancers showed detectable GSK3ß expression. Cytoplasmic staining was considered weak, moderate, and strong in 36%, 19.5% and 1.5% of tumors and was accompanied by nuclear GSK3ß staining in 47% of cases. Cytoplasmic GSK3ß staining as well as nuclear GSK3ß accumulation was associated with advanced tumor stage, high Gleason grade, presence of lymph node metastasis and early biochemical recurrence (p < 0.0001 each for cytoplasmic staining and nu-clear accumulation). Prognosis of GSK3ß positive cancers became particularly poor if nuclear GSK3ß staining was also seen (p < 0.0001). The prognostic impact of nuclear GSK3ß accumu-lation was independent of established preoperative and postoperative parameters in multivari-ate analyses (p < 0.0001). The significant association of GSK3ß expression with deletions of PTEN, 3p13 (p < 0.0001 each), 5q21 (p = 0.0014) and 6q15 (p = 0.0026) suggest a role of GSK3ß in the development of genomic instability. In summary, the results of our study identify GSK3ß as an independent prognostic marker in prostate cancer.
Collapse
Affiliation(s)
- Till Eichenauer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Urology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Mohammad Hussein
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Burkhard Beyer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Steuber
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathaniel Melling
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Zhou ZX, Zhang ZP, Tao ZZ, Tan TZ. miR-632 Promotes Laryngeal Carcinoma Cell Proliferation, Migration, and Invasion Through Negative Regulation of GSK3β. Oncol Res 2018; 28:21-31. [PMID: 29562960 PMCID: PMC7851529 DOI: 10.3727/096504018x15213142076069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Laryngeal cancer, one of the most common head and neck malignancies, is an aggressive neoplasm. Increasing evidence has demonstrated that microRNAs (miRNAs) exert important roles in oncogenesis and progression of diverse types of human cancers. miR-632, a tumor-related miRNA, has been reported to be dysregulated and implicated in human malignancies; however, its biological role in laryngeal carcinoma remains to be elucidated. The present study aimed at exploring the role of miR-632 in laryngeal cancer and clarifying the potential molecular mechanisms involved. In the current study, miR-632 was found to be significantly upregulated both in laryngeal cancer tissues and laryngeal cancer cell lines. Functional studies demonstrated that miR-632 accelerated cell proliferation and colony formation, facilitated cell migration and invasion, and enhanced the expression of cell proliferation-associated proteins, cyclin D1 and c-myc. Notably, miR-632 could directly bind to the 3′-untranslated region (3′-UTR) of glycogen synthase kinase 3β (GSK3β) to suppress its expression in laryngeal cancer cells. Mechanical studies revealed that miR-632 promoted laryngeal cancer cell proliferation, migration, and invasion through negative modulation of GSK3β. Pearson’s correlation analysis revealed that miR-632 expression was inversely correlated with GSK3β mRNA expression in laryngeal cancer tissues. Taken together, our findings suggest that miR-632 functions as an oncogene in laryngeal cancer and may be used as a novel therapeutic target for laryngeal cancer.
Collapse
Affiliation(s)
- Zhong-Xin Zhou
- Department of Otorhinolaryngology, Renmin Hospital of Wuhan UniversityWuhan, HubeiP.R. China
| | - Zu-Ping Zhang
- Department of Otorhinolaryngology, Liaocheng People's HospitalLiaocheng, ShandongP.R. China
| | - Ze-Zhang Tao
- Department of Otorhinolaryngology, Renmin Hospital of Wuhan UniversityWuhan, HubeiP.R. China
| | - Ting-Zhao Tan
- Department of Oncology, Liaocheng Tumor HospitalLiaocheng, ShandongP.R. China
| |
Collapse
|
12
|
Abstract
The Karyopherin-β family of proteins mediates nuclear transport of macromolecules. Nuclear versus cytoplasmic localization of proteins is often suggested by the presence of NLSs (nuclear localization signals) or NESs (nuclear export signals). Import-Karyopherin-βs or Importins bind to NLSs in their protein cargos to transport them through nuclear pore complexes into the nucleus. Until recently, only two classes of NLS had been biochemically and structurally characterized: the classical NLS, which is recognized by the Importin-α/β heterodimer and the PY-NLS (proline-tyrosine NLS), which is recognized by Karyopherin-β2 or Transportin-1. Structures of two other Karyopherin-βs, Kap121 and Transportin-SR2, in complex with their respective cargos were reported for the first time recently, revealing two new distinct classes of NLSs. The present paper briefly describes the classical NLS, reviews recent literature on the PY-NLS and provides in-depth reviews of the two newly discovered classes of NLSs that bind Kap121p and Transportin-SR respectively.
Collapse
|
13
|
Cui B, Jin J, Ding X, Deng M, Yu S, Song M, Yu Y, Zhao X, Chen J, Huang L. Glycogen synthase kinase 3β inhibition enhanced proliferation, migration and functional re-endothelialization of endothelial progenitor cells in hypercholesterolemia microenvironment. Exp Biol Med (Maywood) 2015; 240:1752-63. [PMID: 26069270 DOI: 10.1177/1535370215589908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/30/2015] [Indexed: 11/15/2022] Open
Abstract
Hypercholesterolemia impairs the quantity and function of endothelial progenitor cell. We hypothesized that glycogen synthase kinase 3β activity is involved in regulating biological function of endothelial progenitor cells in hypercholesterolemia microenvironment. For study, endothelial progenitor cells derived from apolipoprotein E-deficient mice fed with high-fat diet were used. Glycogen synthase kinase 3β activity was interfered with glycogen synthase kinase 3β inhibitor lithium chloride or transduced with replication defective adenovirus vector expressing catalytically inactive glycogen synthase kinase 3β (GSK3β-KM). Functions of endothelial progenitor cells, proliferation, migration, secretion and network formation of endothelial progenitor cells were assessed in vitro. The expression of phospho-glycogen synthase kinase 3β, β-catenin and cyclinD1 in endothelial progenitor cells was detected by Western blot. The in vivo function re-endothelialization and vasodilation were also analyzed by artery injury model transplanted with glycogen synthase kinase 3β-inhibited endothelial progenitor cells. We demonstrated that while the proliferation, migration, network formation as well as VEGF and NO secretion were impaired in apolipoprotein E-deficient endothelial progenitor cells, glycogen synthase kinase 3β inhibition significantly improved all these functions. Apolipoprotein E-deficient endothelial progenitor cells showed decreased phospho-glycogen synthase kinase 3β, β-catenin and cyclinD1 expression, whereas these signals were enhanced by glycogen synthase kinase 3β inhibition and accompanied with β-catenin nuclear translocation. Our in vivo model showed that glycogen synthase kinase 3β inhibition remarkably increased re-endothelial and vasodilation. Taken together, our data suggest that inhibition of glycogen synthase kinase 3β is associated with endothelial progenitor cell biological functions both in vitro and in vivo. It might be an important interference target in hypercholesterolemia microenvironment.
Collapse
Affiliation(s)
- Bin Cui
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Jun Jin
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Xiaohan Ding
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Mengyang Deng
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Shiyong Yu
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - MingBao Song
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Yang Yu
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Xiaohui Zhao
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Jianfei Chen
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Lan Huang
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| |
Collapse
|
14
|
Shin SH, Lee EJ, Chun J, Hyun S, Kang SS. ULK2 Ser 1027 Phosphorylation by PKA Regulates Its Nuclear Localization Occurring through Karyopherin Beta 2 Recognition of a PY-NLS Motif. PLoS One 2015; 10:e0127784. [PMID: 26052940 PMCID: PMC4460075 DOI: 10.1371/journal.pone.0127784] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/18/2015] [Indexed: 11/23/2022] Open
Abstract
Uncoordinated 51-like kinase 2 (ULK2), a member of the serine/threonine kinase family, plays an essential role in the regulation of autophagy in mammalian cells. Given the role of autophagy in normal cellular homeostasis and in multiple diseases, improved mechanistic insight into this process may result in the development of novel therapeutic approaches. Here, we present evidence that ULK2 associates with karyopherin beta 2 (Kapβ2) for its transportation into the nucleus. We identify a potential PY-NLS motif (774gpgfgssppGaeaapslRyvPY795) in the S/P space domain of ULK2, which is similar to the consensus PY-NLS motif (R/K/H)X2–5PY. Using a pull-down approach, we observe that ULK2 interacts physically with Kapβ2 both in vitro and in vivo. Confocal microscopy confirmed the co-localization of ULK2 and Kapβ2. Localization of ULK2 to the nuclear region was disrupted by mutations in the putative Kapβ2-binding motif (P794A). Furthermore, in transient transfection assays, the presence of the Kapβ2 binding site mutant (the cytoplasmic localization form) was associated with a substantial increase in autophagy activity (but a decrease in the in vitro serine-phosphorylation) compared with the wild type ULK2. Mutational analysis showed that the phosphorylation on the Ser1027 residue of ULK2 by Protein Kinase A (PKA) is the regulatory point for its functional dissociation from Atg13 and FIP 200, nuclear localization, and autophagy. Taken together, our observations indicate that Kapβ2 interacts with ULK2 through ULK2’s putative PY-NLS motif, and facilitates transport from the cytoplasm to the nucleus, depending on its Ser1027 residue phosphorylation by PKA, thereby reducing autophagic activity.
Collapse
Affiliation(s)
- Sung Hwa Shin
- Department of Biology Education, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungbuk, Republic of Korea
| | - Eun Jeoung Lee
- Department of Internal Medicine, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungbuk, Republic of Korea
| | - Jaesun Chun
- Department of Biology Education, Korea National University of Education, Taeseongtabyeon-ro, Heungdeok-gu, Cheongju, Chungbuk, Republic of Korea
| | - Sunghee Hyun
- Department of Biomedical Laboratory Science, Eulji University, Daejeon, Republic of Korea
| | - Sang Sun Kang
- Department of Biology Education, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungbuk, Republic of Korea
- * E-mail:
| |
Collapse
|
15
|
Prada CF, Álvarez-Velilla R, Díaz-Gozález R, Pérez-Pertejo Y, Balaña-Fouce R, Reguera RM. Identification and characterization of the regions involved in the nuclear translocation of the heterodimeric leishmanial DNA topoisomerase IB. PLoS One 2013; 8:e73565. [PMID: 24023887 PMCID: PMC3759442 DOI: 10.1371/journal.pone.0073565] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/16/2013] [Indexed: 01/09/2023] Open
Abstract
Leishmania donovani, the causative organism for visceral leishmaniasis, contains a unique heterodimeric DNA-topoisomerase IB (LdTopIB). LdTopIB is a heterodimer made up of a large subunit and a small subunit that must interact with each other to build an active enzyme able to solve the topological tensions on the DNA. As LdTopIB is located within the nucleus, one or more nuclear localization signals (NLS) should exist to ensure its nuclear translocation. In this report three novel NLS have been identified through a sequential deletion study of the genes encoding of both subunits fused to that encoding the green fluorescent protein (GFP). NLS1 is a highly basic sequence of 43 amino acids in the C-terminal extension of the large protomer. We found two well-defined sequences in the small protomer: NLS2 is a 10-amino acid motif located in the N-terminal extension of the protein; NLS3 consists of a complex region of 28 amino acids placed in the vicinity of the catalytic Tyr-222 included at the conserved SKINY signature within the C-terminal. Furthermore, by means of yeast cell viability assays, conducted with several LdTopIB chimeras lacking any of the NLS motives, we have revealed that both subunits are transported independently to the nucleus. There was no evidence of LdTopIB accumulation in mitochondria or association to the kinetoplast DNA network. The results rule out the former hypothesis, which attributes nucleocytoplasmic transport of LdTopIB entirely to the large subunit. The LdTopIB is localized to the nucleus only.
Collapse
Affiliation(s)
- Christopher F. Prada
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, León, Spain
| | - Raquel Álvarez-Velilla
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, León, Spain
| | - Rosario Díaz-Gozález
- Instituto de Parasitología y Biomedicina "López-Neyra", Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, León, Spain
- * E-mail:
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, León, Spain
| |
Collapse
|
16
|
Shin SH, Kang SS. Phosphorylation of Tip60 Tyrosine 327 by Abl Kinase Inhibits HAT Activity through Association with FE65. Open Biochem J 2013. [PMID: 24044023 PMCID: PMC3772572 DOI: 10.2174/1874091x20130622002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The transfer of acetyl groups from acetyl coenzyme A to the ε amino group of internal lysine residues is catalyzed by Tip60, which is in the MYST family of nuclear histone acetyltransferases (HATs). The tyrosine phosphorylation of Tip60 seems to be a unique modification. We present evidence that Tip60 is modified on tyrosine 327 by Abl kinase. We show that this causes functional changes in HAT activity and the subcellular localization of TIP60, which forms a complex with Abl kinase. The Tip60 mutation Y327F abolished tyrosine phosphorylation, reduced the inhibition of Tip60 HAT activity, and caused G0-G1 arrest and association with FE65. Thus, our findings for the first time suggested a novel regulation mechanism of Tip60. Regulation was through phosphorylation of tyrosine 327 by Abl tyrosine kinase and depended on environmental conditions, suggesting that the tyrosine residue of Tip60 is important for the activation process.
Collapse
Affiliation(s)
- Sung Hwa Shin
- Department of Biology Education, Chungbuk National University, 410 Seongbong Road, Heungdok-gu, Cheongju, Chungbuk, 361-763, Republic of Korea ; Bio Center, Chungbuk Technopark, Ochang-eup, Cheongwon, Chungbuk, 363-883, Republic of Korea
| | | |
Collapse
|
17
|
Shin SH, Kang SS. Phosphorylation of Tip60 Tyrosine 327 by Abl Kinase Inhibits HAT Activity through Association with FE65. Open Biochem J 2013; 7:66-72. [PMID: 24044023 DOI: 10.2174/1874091x20130621002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 05/21/2013] [Accepted: 05/27/2013] [Indexed: 11/22/2022] Open
Abstract
The transfer of acetyl groups from acetyl coenzyme A to the ε amino group of internal lysine residues is catalyzed by Tip60, which is in the MYST family of nuclear histone acetyltransferases (HATs). The tyrosine phosphorylation of Tip60 seems to be a unique modification. We present evidence that Tip60 is modified on tyrosine 327 by Abl kinase. We show that this causes functional changes in HAT activity and the subcellular localization of TIP60, which forms a complex with Abl kinase. The Tip60 mutation Y327F abolished tyrosine phosphorylation, reduced the inhibition of Tip60 HAT activity, and caused G0-G1 arrest and association with FE65. Thus, our findings for the first time suggested a novel regulation mechanism of Tip60. Regulation was through phosphorylation of tyrosine 327 by Abl tyrosine kinase and depended on environmental conditions, suggesting that the tyrosine residue of Tip60 is important for the activation process.
Collapse
Affiliation(s)
- Sung Hwa Shin
- Department of Biology Education, Chungbuk National University, 410 Seongbong Road, Heungdok-gu, Cheongju, Chungbuk, 361-763, Republic of Korea ; Bio Center, Chungbuk Technopark, Ochang-eup, Cheongwon, Chungbuk, 363-883, Republic of Korea
| | | |
Collapse
|
18
|
Kang SS, Shin SH. Phosphorylation of human chromosome maintenance 1 mediates association with 14-3-3 proteins. Anim Cells Syst (Seoul) 2013. [DOI: 10.1080/19768354.2013.801366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|