1
|
Thongboontho R, Petcharat K, Munkong N, Khonthun C, Boondech A, Phromnoi K, Thim-uam A. Effects of Pogonatherum paniceum (Lamk) Hack extract on anti-mitochondrial DNA mediated inflammation by attenuating Tlr9 expression in LPS-induced macrophages. Nutr Res Pract 2023; 17:827-843. [PMID: 37780212 PMCID: PMC10522809 DOI: 10.4162/nrp.2023.17.5.827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES Mitochondrial DNA leakage leads to inflammatory responses via endosome activation. This study aims to evaluate whether the perennial grass water extract (Pogonatherum panicum) ameliorate mitochondrial DNA (mtDNA) leakage. MATERIALS/METHODS The major bioactive constituents of P. paniceum (PPW) were investigated by high-performance liquid chromatography, after which their antioxidant activities were assessed. In addition, RAW 264.7 macrophages were stimulated with lipopolysaccharide, resulting in mitochondrial damage. Quantitative polymerase chain reaction and enzyme-linked immunosorbent assay were used to examine the gene expression and cytokines. RESULTS Our results showed that PPW extract-treated activated cells significantly decrease reactive oxygen species and nitric oxide levels by reducing the p22phox and iNOS expression and lowering cytokine-encoding genes, including IL-6, TNF-α, IL-1β, PG-E2 and IFN-γ relative to the lipopolysaccharide (LPS)-activated macrophages. Furthermore, we observed that LPS enhanced the mtDNA leaked into the cytoplasm, increasing the transcription of Tlr9 and signaling both MyD88/Irf7-dependent interferon and MyD88/NF-κb p65-dependent inflammatory cytokine mRNA expression but which was alleviated in the presence of PPW extract. CONCLUSIONS Our data show that PPW extract has antioxidant and anti-inflammatory activities by facilitating mtDNA leakage and lowering the Tlr9 expression and signaling activation.
Collapse
Affiliation(s)
- Rungthip Thongboontho
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Mae Ka 56000, Thailand
| | - Kanoktip Petcharat
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Mae Ka 56000, Thailand
| | - Narongsuk Munkong
- Department of Pathology, School of Medicine, University of Phayao, Mae Ka 56000, Thailand
| | - Chakkraphong Khonthun
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Mae Ka 56000, Thailand
| | - Atirada Boondech
- Biology Program, Faculty of Science and Technology, Kamphaeng Phet Rajabhat University, Nakhon Chum 65000, Thailand
| | - Kanokkarn Phromnoi
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Mae Ka 56000, Thailand
| | - Arthid Thim-uam
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Mae Ka 56000, Thailand
| |
Collapse
|
2
|
Zhang Y, Zhang X, Zafar MH, Zhang J, Wang J, Yu X, Liu W, Wang M. Research progress in physiological effects of resistant substances of Urtica dioica L. on animal performance and feed conversion. FRONTIERS IN PLANT SCIENCE 2023; 14:1164363. [PMID: 37448866 PMCID: PMC10336547 DOI: 10.3389/fpls.2023.1164363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023]
Abstract
Several members of family Urticaceae are mainly found in the temperate and subtropical zones of the Northern Hemisphere and are important medicinal plants. Among them, Urtica dioica L. (Urticaceae) is an annual or perennial herb that has been used for feeding and medicinal purposes since long time and is the most exploited species of Urticaceae. Recently, it has received attention to be used as animal feed, as its fresh leaves fed to animals in moderate, dried, and other forms. This review details the advantages of U. dioica as an alternative feed in terms of germplasm specificity, nutritional composition, and feed application status. Its roots, stems, leaves, and seeds are rich in active ingredients. It has also been found to have anticancer effects through antioxidant action and promotion of apoptosis of cancer cells. In shady conditions, U. dioica is highly adaptable while under stressful conditions of drought; it also reduces light absorption and ensures carbon assimilation through light energy conversion efficiency. Therefore, it can be added to animal diets as a suitable feed to reduce costs and improve economic efficiency. This paper investigates the feasibility of using U. dioica as a feed and systematically presents the progress of research and exploitation of U. dioica.
Collapse
Affiliation(s)
- Yifan Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xin Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, China
| | - Muhammad Hammad Zafar
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jinying Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiasheng Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiang Yu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, China
| |
Collapse
|
3
|
Roy S, Ezati P, Khan A, Rhim JW. New opportunities and advances in quercetin-added functional packaging films for sustainable packaging applications: a mini-review. Crit Rev Food Sci Nutr 2023; 64:8464-8479. [PMID: 37074182 DOI: 10.1080/10408398.2023.2200553] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Recently, research on functional packaging films and their application to food preservation has been actively conducted. This review discusses recent advances and opportunities for using quercetin in developing bio-based packaging films for active food packaging. Quercetin is a plant-based yellow pigment flavonoid with many useful biological properties. Quercetin is also a GRAS food additive approved by the US FDA. Adding quercetin to the packaging system improves the physical performance as well as the functional properties of the film. Therefore, this review focused on quercetin's effect on the various packaging film properties, such as mechanical, barrier, thermal, optical, antioxidant, antimicrobial, and so on. The properties of films containing quercetin depend on the type of polymer and the interaction between the polymer and quercetin. Films functionalized with quercetin are useful in extending shelf life and maintaining the quality of fresh foods. Quercetin-added packaging systems can be very promising for sustainable active packaging applications.
Collapse
Affiliation(s)
- Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan, India
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara,India
| | - Parya Ezati
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Ajahar Khan
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Khater SI, Lotfy MM, Alandiyjany MN, Alqahtani LS, Zaglool AW, Althobaiti F, Ismail TA, Soliman MM, Saad S, Ibrahim D. Therapeutic Potential of Quercetin Loaded Nanoparticles: Novel Insights in Alleviating Colitis in an Experimental DSS Induced Colitis Model. Biomedicines 2022; 10:1654. [PMID: 35884960 PMCID: PMC9313390 DOI: 10.3390/biomedicines10071654] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is considered the main etiologic factor involved in inflammatory bowel disease (IBD). Integration of nanocarriers for natural therapeutic agents with antioxidant and anti-inflammatory potential is a novel promising candidate for curing IBD. Herein, the colonic antioxidant and anti-inflammatory effects of different concentrations of quercetin nanoparticles (QT-NPs) were evaluated using a dextran sulfate sodium (DSS)-induced colitis model. Following colitis induction, the efficacy and mechanistic actions of QT-NPs were evaluated by assessing lesion severity, molecular aids controlling oxidative stress and inflammatory response, and histopathological and immunohistochemistry examination of colonic tissues. Administration of QT-NPs, especially at higher concentrations, significantly reduced the disease activity index and values of fecal calprotectin marker compared to the colitic group. Colonic oxidant/antioxidant status (ROS, H2O2, MDA, SOD, CAT, GPX and TAC) was restored after treatment with higher concentrations of QT-NPs. Moreover, QT-NPs at levels of 20 mg/kg and, to a lesser extent, 15 mg/kg reduced Nrf2 and HO-1 gene expression, which was in line with decreasing the expression of iNOS and COX2 in colonic tissues. Higher concentrations of QT-NPs greatly downregulated pro-inflammatory cytokines; upregulated genes encoding occludin, MUC-2 and JAM; and restored the healthy architectures of colonic tissues. Taken together, these data suggest that QT-NPs could be a promising alternative to current IBD treatments.
Collapse
Affiliation(s)
- Safaa I. Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; (S.I.K.); (S.S.)
| | - Marwa M. Lotfy
- Faculty of Pharmacy, Zagazig University, Zagazig 44511, Egypt;
| | - Maher N. Alandiyjany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Quality and Development Affair, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia;
| | - Asmaa W. Zaglool
- Department of Animal Wealth Development, Genetic and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.A.I.); (M.M.S.)
| | - Mohamed Mohamed Soliman
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.A.I.); (M.M.S.)
| | - Saydat Saad
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; (S.I.K.); (S.S.)
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
5
|
PLA Nanofibers for Microenvironmental-Responsive Quercetin Release in Local Periodontal Treatment. Molecules 2022; 27:molecules27072205. [PMID: 35408602 PMCID: PMC9000246 DOI: 10.3390/molecules27072205] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 01/10/2023] Open
Abstract
The management of periodontitis remains a vital clinical challenge due to the interplay between the microorganisms of the dental biofilm and the host inflammatory response leading to a degenerative process in the surrounding tissues. Quercetin (QUE), a natural flavonol found in many foods, including apples, onions and tea, has exhibited prolonged and strong antibiofilm and anti-inflammatory effects both in vitro and in vivo. However, its clinical application is limited by its poor stability and water solubility, as well as its low bioavailability. Thus, in the present study, electrospun polylactic acid (PLA) nanofibers loaded with different amounts (5−10% w/w) of QUE were produced to rapidly respond to the acidic microenvironment typical of periodontal pockets during periodontal disease. This strategy demonstrated that PLA-QUE membranes can act as a drug reservoir releasing high QUE concentrations in the presence of oral bacterial infection (pH < 5.5), and thus limiting Pseudomonas aeruginosa PAO1 and Streptococcus mutans biofilm maturation. In addition, released QUE exerts antioxidant and anti-inflammatory effects on P. gingivalis Lipopolysaccharide (LPS)-stimulated human gingival fibroblast (HGFs). The reported results confirmed that PLA-QUE membranes could inhibit subgingival biofilm maturation while reducing interleukin release, thereby limiting host inflammatory response. Overall, this study provided an effective pH-sensitive drug delivery system as a promising strategy for treating periodontitis.
Collapse
|
6
|
Mbikay M, Chrétien M. Isoquercetin as an Anti-Covid-19 Medication: A Potential to Realize. Front Pharmacol 2022; 13:830205. [PMID: 35308240 PMCID: PMC8924057 DOI: 10.3389/fphar.2022.830205] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/26/2022] [Indexed: 12/30/2022] Open
Abstract
Isoquercetin and quercetin are secondary metabolites found in a variety of plants, including edible ones. Isoquercetin is a monoglycosylated derivative of quercetin. When ingested, isoquercetin accumulates more than quercetin in the intestinal mucosa where it is converted to quercetin; the latter is absorbed into enterocytes, transported to the liver, released in circulation, and distributed to tissues, mostly as metabolic conjugates. Physiologically, isoquercetin and quercetin exhibit antioxidant, anti-inflammatory, immuno-modulatory, and anticoagulant activities. Generally isoquercetin is less active than quercetin in vitro and ex vivo, whereas it is equally or more active in vivo, suggesting that it is primarily a more absorbable precursor to quercetin, providing more favorable pharmacokinetics to the latter. Isoquercetin, like quercetin, has shown broad-spectrum antiviral activities, significantly reducing cell infection by influenza, Zika, Ebola, dengue viruses among others. This ability, together with their other physiological properties and their safety profile, has led to the proposition that administration of these flavonols could prevent infection by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), or arrest the progression to severity and lethality of resulting coronavirus disease of 2019 (Covid-19). In silico screening of small molecules for binding affinity to proteins involved SARS-CoV-2 life cycle has repeatedly situated quercetin and isoquercetin near to top of the list of likely effectors. If experiments in cells and animals confirm these predictions, this will provide additional justifications for the conduct of clinical trials to evaluate the prophylactic and therapeutic efficacy of these flavonols in Covid-19.
Collapse
Affiliation(s)
- Majambu Mbikay
- Functional Endoproteolysis Laboratory, Montreal Clinical Research Institute, Montreal, QC, Canada
| | - Michel Chrétien
- Functional Endoproteolysis Laboratory, Montreal Clinical Research Institute, Montreal, QC, Canada
| |
Collapse
|
7
|
Antitumor effect of isoquercetin on tissue vasohibin expression and colon cancer vasculature. Oncotarget 2022; 13:307-318. [PMID: 35145607 PMCID: PMC8823695 DOI: 10.18632/oncotarget.28181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
Tumor cells trigger angiogenesis through the expression of angiogenic factors. Vasohibins (VASHs) are a family of peptides that regulate angiogenesis. Flavonoids have antiproliferative antitumor properties; however, few studies have highlighted their antiangiogenic potential. This study evaluated the flavonoid isoquercetin (Q3G) as an antitumor compound related to colon cancer vascularization and regulation of VASH1 and 2. Mice bearing xenogeneic colon cancer (n = 15) were divided into 3 groups: Q3G-treated (gavage, daily over a week), bevacizumab-treated (intraperitoneal, single dose), or untreated animals. Tumor growth, histological characteristics, blood vessel volume, and VASH1 and 2 expressions were analyzed. Q3G impaired tumor growth and vascularization, upregulated VASH1, and downregulated VASH2 in comparison to untreated animals. Mice treated with Q3G showed approximately 65% fewer blood vessels than untreated animals and 50% fewer blood vessels than mice treated with bevacizumab. Thus, we show that Q3G has antitumor activity, impairs vascularization, and differentially modulates VASH1 and 2 expressions in colon cancer.
Collapse
|
8
|
Schröder HC, Wang X, Neufurth M, Wang S, Müller WEG. Biomimetic Polyphosphate Materials: Toward Application in Regenerative Medicine. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:83-130. [PMID: 35697938 DOI: 10.1007/978-3-031-01237-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, inorganic polyphosphate (polyP) has attracted increasing attention as a biomedical polymer or biomaterial with a great potential for application in regenerative medicine, in particular in the fields of tissue engineering and repair. The interest in polyP is based on two properties of this physiological polymer that make polyP stand out from other polymers: polyP has morphogenetic activity by inducing cell differentiation through specific gene expression, and it functions as an energy store and donor of metabolic energy, especially in the extracellular matrix or in the extracellular space. No other biopolymer applicable in tissue regeneration/repair is known that is endowed with this combination of properties. In addition, polyP can be fabricated both in the form of a biologically active coacervate and as biomimetic amorphous polyP nano/microparticles, which are stable and are activated by transformation into the coacervate phase after contact with protein/body fluids. PolyP can be used in the form of various metal salts and in combination with various hydrogel-forming polymers, whereby (even printable) hybrid materials with defined porosities and mechanical and biological properties can be produced, which can even be loaded with cells for 3D cell printing or with drugs and support the growth and differentiation of (stem) cells as well as cell migration/microvascularization. Potential applications in therapy of bone, cartilage and eye disorders/injuries and wound healing are summarized and possible mechanisms are discussed.
Collapse
Affiliation(s)
- Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
9
|
Manzoor M, Muroi M, Ogawa N, Kobayashi H, Nishimura H, Chen D, Fasina OB, Wang J, Osada H, Yoshida M, Xiang L, Qi J. Isoquercitrin from Apocynum venetum L. produces an anti-obesity effect on obese mice by targeting C-1-tetrahydrofolate synthase, carbonyl reductase, and glutathione S-transferase P and modification of the AMPK/SREBP-1c/FAS/CD36 signaling pathway in mice in vivo. Food Funct 2022; 13:10923-10936. [DOI: 10.1039/d2fo02438a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, mice with high-fat-diet-induced obesity were used in investigating the anti-obesity effects of an aqueous extract and isoquercitrin from Apocynum venetum L.
Collapse
Affiliation(s)
- Majid Manzoor
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, P. R. China
| | - Makoto Muroi
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan
| | - Naoko Ogawa
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan
| | - Hiroki Kobayashi
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Haruna Nishimura
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Danni Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, P. R. China
| | - Opeyemi B. Fasina
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, P. R. China
| | - Jianyu Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, P. R. China
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Biotechnology and Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, P. R. China
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, P. R. China
| |
Collapse
|
10
|
Zhou W, Sha Y, Zeng J, Zhang X, Zhang A, Ge X. Computational Systems Pharmacology, Molecular Docking and Experiments Reveal the Protective Mechanism of Li-Da-Qian Mixture in the Treatment of Glomerulonephritis. J Inflamm Res 2021; 14:6939-6958. [PMID: 34949932 PMCID: PMC8689049 DOI: 10.2147/jir.s338055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/22/2021] [Indexed: 01/05/2023] Open
Abstract
Background Glomerulonephritis is a common urinary system disease among children. Growing evidence suggests that traditional Chinese medicine has potential in treating glomerulonephritis, such as Li-Da-Qian mixture. Although its anti-glomerulonephritis and alleviating hematuria effects have been reported, the exact mechanism of Li-Da-Qian mixture devoting to glomerulonephritis remains unexplored. It was necessary to explore the mechanism of Li-Da-Qian mixture against glomerulonephritis using modern technology, such as Chinese medicine database and molecular biological experiments. Methods Online databases were used to look up ingredients and predict targets of Li-Da-Qian mixture against glomerulonephritis. The intersecting targets of Li-Da-Qian mixture and glomerulonephritis were selected for enrichment analysis. Cytoscape software was applied to establish network and MCODE analysis. Molecular docking was used for the primary validation. Furthermore, we examined the function of the core compounds analyzed from Li-Da-Qian mixture to rescue LPS-induced inflammation in vivo and vitro. We also explored whether the core compounds can alleviate TGFβ1-induced renal fibrosis in mouse proximal tubular cells. Results Network pharmacological analysis of Li-Da-Qian evaluated 20 active ingredients including baicalein, luteolin and quercetin. A total of 113 key targets were screened, including IL6, VEGFA, TP53, EGF, MMP2, etc, and they were enriched in AGE-RAGE signaling pathway in diabetic complications, TNF and IL-17 signaling pathways. Moreover, the core ingredients succeeded in binding to the main targets via molecular docking, further identifying the anti-glomerulonephritis effects and improvement of vascular injury. Western blotting and qPCR also suggested that baicalein and luteolin can improve inflammation and restore disturbance of mesangial cells or kidney induced by LPS. In addition, baicalein and luteolin inhibited renal fibrosis in vitro.
Collapse
Affiliation(s)
- Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yugen Sha
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jingxia Zeng
- Pediatric Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaoyue Zhang
- Department of Chinese Medicine, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuhua Ge
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Pediatric Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Dhanya R. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomed Pharmacother 2021; 146:112560. [PMID: 34953390 DOI: 10.1016/j.biopha.2021.112560] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Quercetin, a bioflavonoid abundant in grapefruit, onion, berries, etc., has vast therapeutic potential, especially against Type 2 diabetes and its complications. Quercetin showed similar effects as that of metformin, (widely prescribed antidiabetic drug) in cell lines models (Sajan et al., 2010; Dhanya et al., 2017). In vivo findings also showcase it as a promising agent against diabetes and its pathophysiological complications. SCOPE AND APPROACH Quercetin can be produced on a large scale through a novel fermentation-based glycosylation strategy from cheap substrates and can be utilized as a dietary supplement. The review focuses on the mounting evidence pointing to Quercetin as a promising candidate for managing type 2 diabetes and its oxidative stress mediated pathophysiological complications. CONCLUSION Quercetin acts on multiple targets of diabetes and regulates key signalling pathways which improve the symptoms as well as the complications of Type 2 diabetes. However further studies are needed to improve the bioavailability and to establish a dosing regimen for Quercetin.
Collapse
Affiliation(s)
- R Dhanya
- Cardiovascular Diseases and Diabetes Biology Division, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud Post, Poojappura, Trivandrum 695014, Kerala, India.
| |
Collapse
|
12
|
Wang X, Bai J, Wang W, Zhang G, Yin S, Wang D. A comparative metabolomics analysis of the halophyte Suaeda salsa and Salicornia europaea. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1109-1122. [PMID: 32323170 DOI: 10.1007/s10653-020-00569-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/10/2020] [Indexed: 05/09/2023]
Abstract
Suaeda salsa and Salicornia europaea are both annual herbaceous species belonging to the Chenopodiaceae family, and often grow together through our observations in the Yellow River Delta Nature Reserve, and could be used as raw material to produce food and beverages in food industry due to its high nutritional value. In this study, we adopted widely targeted metabolomics to identify 822 and 694 metabolites in the leaves of S. salsa and S. europaea, respectively, to provide a basic data for the future development and utilization of these two species. We found that these two plants were rich in metabolic components with high medical value, such as flavonoids, alkaloids and coumarins. The high contents of branched chain amino acid in these two species may be an important factor for their adaptation to saline-alkali environments. In addition, the contents of glucosamine (FC = 7.70), maltose (FC = 9.34) and D-(+)-sucrose (FC = 7.19) increased significantly, and the contents of D-(+)-glucose, 2-propenyl (sinigrin) and fructose 1-phosphate were significantly increased in the leaves of S. salsa compared to S. europaea, indicating that some certain compounds in different plants have different sensitivity to salt stress. Our work provides new perspectives about important second metabolism pathways in salt tolerance between these two plants, which could be helpful for studying the tolerance mechanisms of wetland plants.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Wei Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Guangliang Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Shuo Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Dawei Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
13
|
Zhang J, Chen Z, Zhang L, Zhao X, Liu Z, Zhou W. A systems-based analysis to explore the multiple mechanisms of Shan Zha for treating human diseases. Food Funct 2021; 12:1176-1191. [PMID: 33432314 DOI: 10.1039/d0fo02433c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Shan Zha has garnered increasing attention in the field of functional foods and medicines due to its widely reported healing effects. However, the potential mechanisms of Shan Zha for human health benefits have not been fully interpreted. Therefore, in the current study, a systems-based method that integrates ADME evaluation, target fishing, gene ontology enrichment analysis, network pharmacology, and pathway analysis is proposed to clarify the underlying pharmacological mechanisms of Shan Zha. As a result, 45 active components of Shan Zha that interacted with 161 protein targets were screened and identified. Moreover, gene ontology enrichment, network and pathway analysis indicated that Shan Zha is beneficial for the treatment of cardiovascular system diseases, digestive system diseases, immune system diseases, inflammatory diseases, cancer, and other diseases through multiple mechanisms. Our study not only proposed an integrated method to comprehensively elucidate the complicated mechanisms of Shan Zha for the treatment of various disorders at the system level, but also provided a reference approach for the mechanistic research of other functional foods.
Collapse
Affiliation(s)
- Jingxiao Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Ziyi Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin 999077, Hong Kong Special Administrative Region
| | - Lilei Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Xiaoxiao Zhao
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, China
| | - Wei Zhou
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China. and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
14
|
Chen TH, Fu YS, Chen SP, Fuh YM, Chang C, Weng CF. Garcinia linii extracts exert the mediation of anti-diabetic molecular targets on anti-hyperglycemia. Biomed Pharmacother 2021; 134:111151. [DOI: 10.1016/j.biopha.2020.111151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
|
15
|
Manta K, Papakyriakopoulou P, Chountoulesi M, Diamantis DA, Spaneas D, Vakali V, Naziris N, Chatziathanasiadou MV, Andreadelis I, Moschovou K, Athanasiadou I, Dallas P, Rekkas DM, Demetzos C, Colombo G, Banella S, Javornik U, Plavec J, Mavromoustakos T, Tzakos AG, Valsami G. Preparation and Biophysical Characterization of Quercetin Inclusion Complexes with β-Cyclodextrin Derivatives to be Formulated as Possible Nose-to-Brain Quercetin Delivery Systems. Mol Pharm 2020; 17:4241-4255. [PMID: 32986435 DOI: 10.1021/acs.molpharmaceut.0c00672] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Quercetin (Que) is a flavonoid associated with high oxygen radical scavenging activity and potential neuroprotective activity against Alzheimer's disease. Que's oral bioavailability is limited by its low water solubility and extended peripheral metabolism; thus, nasal administration may be a promising alternative to achieve effective Que concentrations in the brain. The formation of Que-2-hydroxypropylated-β-cyclodextrin (Que/HP-β-CD) complexes was previously found to increase the molecule's solubility and stability in aqueous media. Que-methyl-β-cyclodextrin (Que/Me-β-CD) inclusion complexes were prepared, characterized, and compared with the Que/HP-β-CD complex using biophysical and computational methods (phase solubility, fluorescence and NMR spectroscopy, differential scanning calorimetry (DSC), and molecular dynamics simulations (MDS)) as candidates for the preparation of nose-to-brain Que's delivery systems. DSC thermograms, NMR, fluorescence spectroscopy, and MDS confirmed the inclusion complex formation of Que with both CDs. Differences between the two preparations were observed regarding their thermodynamic stability and inclusion mode governing the details of molecular interactions. Que's solubility in aqueous media at pH 1.2 and 4.5 was similar and linearly increased with both CD concentrations. At pH 6.8, Que's solubility was higher and positively deviated from linearity in the presence of HP-β-CD more than with Me-β-CD, possibly revealing the presence of more than one HP-β-CD molecule involved in the complex. Overall, water solubility of lyophilized Que/Me-β-CD and Que/HP-β-CD products was approximately 7-40 times and 14-50 times as high as for pure Que at pH 1.2-6.8. In addition, the proof of concept experiment on ex vivo permeation across rabbit nasal mucosa revealed measurable and similar Que permeability profiles with both CDs and negligible permeation of pure Que. These results are quite encouraging for further ex vivo and in vivo evaluation toward nasal administration and nose-to-brain delivery of Que.
Collapse
Affiliation(s)
- Konstantina Manta
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | - Paraskevi Papakyriakopoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | - Maria Chountoulesi
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | - Dimitrios A Diamantis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina 45110, Greece
| | - Dimitrios Spaneas
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | - Vasiliki Vakali
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 15771, Greece
| | - Nikolaos Naziris
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | - Maria V Chatziathanasiadou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina 45110, Greece
| | - Ioannis Andreadelis
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 15771, Greece
| | - Kalliopi Moschovou
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 15771, Greece
| | - Ioanna Athanasiadou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | - Paraskevas Dallas
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | - Dimitrios M Rekkas
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | - Costas Demetzos
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy
| | - Sabrina Banella
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy
| | - Uroš Javornik
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana 1001, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana 1001, Slovenia
| | - Thomas Mavromoustakos
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 15771, Greece
| | - Andreas G Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina 45110, Greece.,Institute of Materials Science and Computing, University Reasearch Center of Ioannina (URCI), Ioannina 45110, Greece
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou 15771, Greece
| |
Collapse
|
16
|
Wang Y, Tao B, Wan Y, Sun Y, Wang L, Sun J, Li C. Drug delivery based pharmacological enhancement and current insights of quercetin with therapeutic potential against oral diseases. Biomed Pharmacother 2020; 128:110372. [PMID: 32521458 DOI: 10.1016/j.biopha.2020.110372] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/24/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
The heavy burden of oral diseases such as oral cancers, dental caries, periodontitis, etc. and their consequence on the patient's quality of life demonstrated an urgent demand for developing effective therapeutics. Quercetin as a natural derived flavonoid, could be utilized in the therapeutic formulation of various diseases such as diabetes, breast cancer and asthma, owing to its prominent pharmacological values. In the last decade, the applications of quercetin as a natural compound in oral treatment have attracted increasing interest due to its multifunction including antioxidant, antibacterial, anti-inflammatory and antineoplastic activities. Besides, considering the low bioavailability of quercetin, great efforts have been made in its drug delivery systems to address the problem of limited application. Therefore, this review summarized the cutting-edge researches on versatile effects and enhanced bioavailability of quercetin resulting from innovative drug delivery systems, particularly focused on its potential against oral diseases. The application of quercetin would provide novel and promising therapeutic approach for clinical treatment, promoting the development of global dental public health.
Collapse
Affiliation(s)
- Yu Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, 130021, China
| | - Baoxin Tao
- Department of Oral Implantology, School of Medicine, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, China
| | - Yao Wan
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, 130021, China; Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yue Sun
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, 130021, China; Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Jiao Sun
- Department of Cell Biology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin Province, China.
| | - Chunyan Li
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
17
|
Adedayo BC, Jesubowale OS, Adebayo AA, Oboh G. Effect of Andrographis paniculata leaves extract on neurobehavioral and biochemical indices in scopolamine-induced amnesic rats. J Food Biochem 2020; 45:e13280. [PMID: 32441354 DOI: 10.1111/jfbc.13280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Andrographis paniculata is a medicinal herb that is used to treat various disease conditions due to its pharmacological properties. Thus, this study sought to assess the effect of A. paniculata extract on neurobehavioral and some biochemical parameters in scopolamine-induced amnesic rats. Thirty-five male rats were divided into seven groups and treated with aqueous extract of A. paniculata (50 and 500 mg/kg) and donepezil (5 mg/kg) for 14 days before administration of scopolamine. Behavioral studies (Morris water maze and Y-maze) were carried out to evaluate cognitive dysfunction in scopolamine-induced rats. Biochemical assays such as cholinesterases (AChE and BChE), monoamine oxidase (MAO), and purinergic activities were determined. Results revealed the presence of orientin, quercetin, caffeic acid, apigenin, and gallic acid in A. paniculata. Also, findings from this study showed that aqueous extract of A. paniculata had a modulatory effect on scopolamine-induced cognitive impairment and could be used in the management of memory loss. PRACTICAL APPLICATIONS: Aqueous extract of A. paniculata characterized revealed the presence of polyphenols which are antioxidants. The inhibitory activity possessed by A. paniculata on some enzymes linked to neurodegeneration could be due to the antioxidant activity. Given this, we recommend that results gotten from this study could be used to develop treatment therapy for neurodegeneration. However, in-depth studies should be carried out on the toxic effect of A. paniculata to ascertain a safe dose for treatment.
Collapse
Affiliation(s)
- Bukola Christiana Adedayo
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Oluwapelumi S Jesubowale
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Adeniyi Abiodun Adebayo
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Department of Chemical Sciences (Biochemistry Option), Joseph Ayo Babalola University, Ikeji-Arakeji, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
18
|
Saraswat AL, Maher TJ. Development and optimization of stealth liposomal system for enhanced in vitro cytotoxic effect of quercetin. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
de Oliveira CTP, Colenci R, Pacheco CC, Mariano PM, do Prado PR, Mamprin GPR, Santana MG, Gambero A, de Oliveira Carvalho P, Priolli DG. Hydrolyzed Rutin Decreases Worsening of Anaplasia in Glioblastoma Relapse. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:405-412. [DOI: 10.2174/1871527318666190314103104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/15/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
Abstract
Background:
Gliomas are aggressive and resilient tumors. Progression to advanced stages
of malignancy, characterized by cell anaplasia, necrosis, and reduced response to conventional surgery
or therapeutic adjuvant, are critical challenges in glioma therapy. Relapse of the disease poses a considerable
challenge for management. Hence, new compounds are required to improve therapeutic response.
As hydrolyzed rutin (HR), a compound modified via rutin deglycosylation, as well as some
flavonoids demonstrated antiproliferative effect for glioblastoma, these are considered potential epigenetic
drugs.
Objective:
The purpose of this study was to determine the antitumor activity and evaluate the potential
for modifying tumor aggressivity of rutin hydrolysates for treating both primary and relapsed glioblastoma.
Methods:
The glioblastoma cell line, U251, was used for analyzing cell cycle inhibition and apoptosis
and for establishing the GBM mouse model. Mice with GBM were treated with HR to verify antitumor
activity. Histological analysis was used to evaluate HR interference in aggressive behavior and
glioma grade. Immunohistochemistry, comet assay, and thiobarbituric acid reactive substance
(TBARS) values were used to evaluate the mechanism of HR action.
Results:
HR is an antiproliferative and antitumoral compound that inhibits the cell cycle via a p53-
independent pathway. HR reduces tumor growth and aggression, mainly by decreasing mitosis and necrosis
rates without genotoxicity, which is suggestive of epigenetic modulation.
Conclusion:
HR possesses antitumor activity and decreases anaplasia in glioblastoma, inhibiting progression
to malignant stages of the disease. HR can improve the effectiveness of response to conventional
therapy, which has a crucial role in recurrent glioma.
Collapse
Affiliation(s)
- Carlos Tadeu Parisi de Oliveira
- Medical School Sao Francisco University, Av Sao Francisco de Assis, 218, Braganca Paulista, Sao Paulo, CEP 12916-900, Brazil
| | - Renato Colenci
- Medical School Sao Francisco University, Av Sao Francisco de Assis, 218, Braganca Paulista, Sao Paulo, CEP 12916-900, Brazil
| | - Cesar Cozar Pacheco
- Medical School Sao Francisco University, Av Sao Francisco de Assis, 218, Braganca Paulista, Sao Paulo, CEP 12916-900, Brazil
| | - Patrick Moro Mariano
- Medical School Sao Francisco University, Av Sao Francisco de Assis, 218, Braganca Paulista, Sao Paulo, CEP 12916-900, Brazil
| | - Paula Ribeiro do Prado
- Medical School Sao Francisco University, Av Sao Francisco de Assis, 218, Braganca Paulista, Sao Paulo, CEP 12916-900, Brazil
| | - Gustavo Pignatari Rosas Mamprin
- Medical School Sao Francisco University, Av Sao Francisco de Assis, 218, Braganca Paulista, Sao Paulo, CEP 12916-900, Brazil
| | - Maycon Giovani Santana
- Nurse School Sao Francisco University, Av Sao Francisco de Assis, 218, Braganca Paulista, Sao Paulo, CEP 12916-900, Brazil
| | - Alessandra Gambero
- Medical School Sao Francisco University, Av Sao Francisco de Assis, 218, Braganca Paulista, Sao Paulo, CEP 12916-900, Brazil
| | - Patrícia de Oliveira Carvalho
- Medical School Sao Francisco University, Av Sao Francisco de Assis, 218, Braganca Paulista, Sao Paulo, CEP 12916-900, Brazil
| | - Denise Gonçalves Priolli
- Medical School Sao Francisco University, Av Sao Francisco de Assis, 218, Braganca Paulista, Sao Paulo, CEP 12916-900, Brazil
| |
Collapse
|
20
|
The Flavonoid Quercetin Induces AP-1 Activation in FRTL-5 Thyroid Cells. Antioxidants (Basel) 2019; 8:antiox8050112. [PMID: 31035637 PMCID: PMC6562732 DOI: 10.3390/antiox8050112] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
Previous studies have shown that quercetin inhibits thyroid function both in vitro and in vivo. An attempt to evaluate the effect of quercetin at the promoter level of the thyroid-specific genes led to the observation that this compound induces the basal activity of the reporter vector. Therefore, the action of quercetin has been evaluated on the basal activity of several reporter vectors: The PGL3 basic, promoter and control vectors from Promega, and a pSV-based chloramphenicol acetyltransferase (CAT) reporter vector. In the Fisher Rat Thyroid cell Line FRTL-5 thyroid cells transiently transfected, quercetin 10 μM increased the basal activity of all the reporter vectors evaluated, although the degree of the effect was significantly different among them. The analysis of the difference among the regulatory regions of these vectors identified the activator protein 1 (AP-1) binding site as one of the potential sites involved in the quercetin effect. Electromobility shift assay experiments showed that the treatment with quercetin induced the binding of a protein complex to an oligonucleotide containing the AP-1 consensus binding site. This is the first study showing an effect of quercetin on AP-1 activity in thyroid cells. Further studies are in progress to understand the role of AP-1 activation in the effects of quercetin on thyroid function.
Collapse
|
21
|
Shirani M, Alizadeh S, Mahdavinia M, Dehghani MA. The ameliorative effect of quercetin on bisphenol A-induced toxicity in mitochondria isolated from rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7688-7696. [PMID: 30666577 DOI: 10.1007/s11356-018-04119-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Recent studies have demonstrated that bisphenol A (BPA) has an adverse or toxic effect on the kidney. This study was designed to evaluate the ability of quercetin (QUER) to prevent BPA-induced mitochondrial dysfunction. Thirty-two healthy adult male Wistar rats were randomly divided into four groups, as follows: control group (olive oil), BPA group (250 mg/kg), BPA þ QUER group (250 mg/kg + 75 mg/kg), and QUER group (75 mg/kg). All treatments were orally administered for 14 days. Kidney mitochondria were isolated by administration of the different centrifugation method. Uric acid and creatinine were considered to be biomarkers of nephrotoxicity. The ameliorative effects of QUER on BPA toxicity were evaluated by determining the glutathione (GSH) content, CAT, the damage to the mitochondrial membrane, the reactive oxygen species (ROS), and lipid peroxidation (LPO). Administration of BPA significantly decreased kidney weight. In the kidney, BPA can deplete GSH content and CAT activity, increase the mitochondrial ROS formation, and enhances LPO and mitochondrial membrane damage. The pretreatment of mitochondria with QUER has the ability to reduce the toxic effects of BPA in isolated mitochondria. These findings suggest a potential role for QUER in protecting mitochondria from oxidative damage in kidney tissue.
Collapse
Affiliation(s)
- Maryam Shirani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Alizadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Amin Dehghani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
22
|
Isorhamnetin, Hispidulin, and Cirsimaritin Identified in Tamarix ramosissima Barks from Southern Xinjiang and Their Antioxidant and Antimicrobial Activities. Molecules 2019; 24:molecules24030390. [PMID: 30678248 PMCID: PMC6384871 DOI: 10.3390/molecules24030390] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 12/31/2022] Open
Abstract
As a natural potential resource, Tamarix ramosissima has been widely used as barbecue skewers for a good taste and unique flavor. The polyphenolics in the branch bark play a key role in the quality improvement. The purposes of the present work were to explore the polyphenolic composition of T. ramosissima bark extract and assess their potential antioxidant and antimicrobial activities. Hispidulin and cirsimaritin from T. ramosissima bark extract were first identified in the Tamarix genus reported with UPLC-MS analysis. Isorhamnetin (36.91 μg/mg extract), hispidulin (28.79 μg/mg extract) and cirsimaritin (13.35 μg/mg extract) are rich in the bark extract. The extract exhibited promising antioxidant activity with IC50 values of 117.05 μg/mL for 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 151.57 μg/mL for hydroxyl radical scavenging activities, as well as excellent reducing power with an EC50 of 93.77 μg/mL. The bark extract showed appreciable antibacterial properties against foodborne pathogens. Listeria monocytogenes was the most sensitive microorganism with the lowest minimum inhibitory concentration (MIC) value of 5 mg/mL and minimum bactericidal concentration (MBC) value of 10 mg/mL followed by S. castellani and S. aureus among the tested bacteria. The T. ramosissima bark extract showed significantly stronger inhibitory activity against Gram-positive than Gram-negative bacteria. Nevertheless, this extract failed to show any activity against tested fungi. Overall, these results suggested that T. ramosissima shows potential in improving food quality due to its highly efficacious antioxidant and antibacterial properties.
Collapse
|
23
|
Murayama H, Eguchi A, Nakamura M, Kawashima M, Nagahara R, Mizukami S, Kimura M, Makino E, Takahashi N, Ohtsuka R, Koyanagi M, Hayashi SM, Maronpot RR, Shibutani M, Yoshida T. Spironolactone in Combination with α-glycosyl Isoquercitrin Prevents Steatosis-related Early Hepatocarcinogenesis in Rats through the Observed NADPH Oxidase Modulation. Toxicol Pathol 2018; 46:530-539. [PMID: 29843569 DOI: 10.1177/0192623318778508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Administration of the diuretic, spironolactone (SR), can inhibit chronic liver diseases. We determined the effects of SR alone or in combination with the antioxidant α-glycosyl isoquercitrin (AGIQ) on hyperlipidemia- and steatosis-related precancerous lesions in high-fat diet (HFD)-fed rats subjected to a two-stage hepatocarcinogenesis model. Rats were fed with control basal diet or HFD, which was administered with SR alone or in combination with an antioxidant AGIQ in drinking water. An HFD increased body weight, intra-abdominal fat (adipose) tissue weight, and plasma lipids, which were reduced by coadministration of SR and AGIQ. SR and AGIQ coadministration also reduced hepatic steatosis and preneoplastic glutathione S-transferase placental form-positive foci, in association with decrease in NADPH oxidase (NOX) subunit p22phox-positive cells and an increase in active-caspase-3-positive cells in the foci. Hepatic gene expression analysis revealed that the coadministration of SR and AGIQ altered mRNA levels of lipogenic enzymes ( Scd1 and Fasn), antioxidant-related enzymes ( Catalase), NOX component ( P67phox), and anti-inflammatory transcriptional factor ( Pparg). Our results indicated that SR in combination with AGIQ had the potential of suppressing hyperlipidemia- and steatosis-related early hepatocarcinogenesis through the reduced expression of NOX subunits.
Collapse
Affiliation(s)
- Hirotada Murayama
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Ayumi Eguchi
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Misato Nakamura
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Masahi Kawashima
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Rei Nagahara
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Sayaka Mizukami
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,2 Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Masayuki Kimura
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,2 Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Emi Makino
- 3 Institute of Environmental Toxicology, Joso-shi, Ibaraki, Japan
| | | | - Ryoichi Ohtsuka
- 3 Institute of Environmental Toxicology, Joso-shi, Ibaraki, Japan
| | - Mihoko Koyanagi
- 4 Global Scientific and Regulatory Affairs, San-Ei Gen F. F. I., Inc., Toyonaka, Osaka, Japan
| | - Shim-Mo Hayashi
- 4 Global Scientific and Regulatory Affairs, San-Ei Gen F. F. I., Inc., Toyonaka, Osaka, Japan
| | | | - Makoto Shibutani
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Toshinori Yoshida
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| |
Collapse
|
24
|
Sherif IO. Uroprotective mechanism of quercetin against cyclophosphamide-induced urotoxicity: Effect on oxidative stress and inflammatory markers. J Cell Biochem 2018; 119:7441-7448. [PMID: 29775228 DOI: 10.1002/jcb.27053] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/23/2018] [Indexed: 12/27/2022]
Abstract
The urotoxicity is a common complication associated with patients receiving cyclophosphamide (CYP). This study was designed to investigate the uroprotective mechanism of quercetin (Quer) flavonoid against CYP induced urotoxicity via determination of oxidative stress markers as well as inflammatory mediators in bladder tissue. Forty male Wistar rats were divided into four groups; Normal group: received saline for 10 days. Quer control group: received quercetin 50 mg/kg/day for 10 days. CYP group: received saline for 10 days and injected with a single dose of 150 mg/kg CYP intraperitoneal (i.p) at day 8. The Quer + CYP group: received Quer 50 mg/kg/day for 10 days plus CYP 150 mg/kg i.p. injection at day 8. The CYP injection produced a significant elevation in bladder contents of malondialdehyde (MDA), and nitric oxide (NO), and bladder protein levels and expressions of tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) in addition to the upregulation of cyclooxygenase-2 (COX-2) bladder gene expression. Also, CYP injection showed a marked reduction in bladder levels of catalase, superoxide dismutase (SOD), and IL-10 when compared with normal group. Moreover, histopathological examination of the bladder showed degenerative alterations, severe edema, and inflammation following CYP injection. Quer attenuated the biochemical markers and histopathological changes induced by CYP. The uroprotective effect of Quer was exerted by restoring the balance between oxidative/antioxidative status and pro-/anti-inflammatory cytokines via its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Iman O Sherif
- Emergency Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
25
|
Guazelli CFS, Staurengo-Ferrari L, Zarpelon AC, Pinho-Ribeiro FA, Ruiz-Miyazawa KW, Vicentini FTMC, Vignoli JA, Camilios-Neto D, Georgetti SR, Baracat MM, Casagrande R, Verri WA. Quercetin attenuates zymosan-induced arthritis in mice. Biomed Pharmacother 2018; 102:175-184. [PMID: 29554596 DOI: 10.1016/j.biopha.2018.03.057] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by articular lesions, recruitment of inflammatory cells and increased levels of pro-inflammatory cytokine. The intra-articular administration of zymosan is an experimental model that promotes inflammatory parameters resembling RA. Therefore, this model was used to investigate the efficacy of quercetin as a treatment of articular inflammation. Treatment with quercetin dose-dependently reduced zymosan-induced hyperalgesia, articular edema and the recruitment of neutrophils to the knee joint cavity. Histological analysis confirmed that quercetin inhibited zymosan-induced arthritis. The treatment with quercetin also inhibited zymosan-induced depletion of reduced glutathione (GSH) levels, TNFα and IL-1β production, and gp91phox, prepro-endothelin-1 (preproET-1), and cyclooxygenase-2 mRNA expression. These molecular effects of quercetin were related to the inhibition of the nuclear factor kappa-B and induction of Nuclear factor erythroid 2- related factor (Nrf2)/home oxygenase (HO-1) pathway. Thus, quercetin exerted anti-inflammatory, analgesic and antioxidant effects in experimental arthritis, suggesting quercetin is a possible candidate for arthritis treatment.
Collapse
Affiliation(s)
- Carla F S Guazelli
- Departamento de Ciências Patológicas - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86051-990, Brazil
| | - Larissa Staurengo-Ferrari
- Departamento de Ciências Patológicas - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86051-990, Brazil
| | - Ana C Zarpelon
- Departamento de Ciências Patológicas - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86051-990, Brazil
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86051-990, Brazil
| | - Kenji W Ruiz-Miyazawa
- Departamento de Ciências Patológicas - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86051-990, Brazil
| | - Fabiana T M C Vicentini
- Farmacore Biotecnologia LTDA, Rua Edson Souto, 728, Lagoinha, 14095-250 Ribeirão Preto, Brazil
| | - Josiane A Vignoli
- Departamento de Bioquímica e Biotecnologia - Centro de Ciências Exatas, Universidade Estadual de Londrina 86057-970, Brazil
| | - Doumit Camilios-Neto
- Departamento de Bioquímica e Biotecnologia - Centro de Ciências Exatas, Universidade Estadual de Londrina 86057-970, Brazil
| | - Sandra R Georgetti
- Departamento de Ciências Farmacêuticas - Centro de Ciências de Saúde, Universidade Estadual de Londrina, Londrina 86038-350, Brazil
| | - Marcela M Baracat
- Departamento de Ciências Farmacêuticas - Centro de Ciências de Saúde, Universidade Estadual de Londrina, Londrina 86038-350, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas - Centro de Ciências de Saúde, Universidade Estadual de Londrina, Londrina 86038-350, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86051-990, Brazil.
| |
Collapse
|
26
|
Hawthorn Leaf Flavonoids Protect against Diabetes-Induced Cardiomyopathy in Rats via PKC- α Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2071952. [PMID: 29234372 PMCID: PMC5646339 DOI: 10.1155/2017/2071952] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/21/2017] [Indexed: 12/26/2022]
Abstract
Objectives DCM has become one of the main reasons of death in diabetic patients. In this study, we aimed to explore the hawthorn leaf flavonoids (HLF) protective effect against diabetes-induced cardiac injury and the underlying mechanisms in experimental rats. Methods Experimental diabetic model was induced by intraperitoneal injection of streptozotocin (STZ, 40 mg/kg) in rats after feeding with high-fat diet for 8 weeks. The diabetic rats received a 16-week treatment of different doses of HLF (50, 100, and 200). The morphological changes of myocardial cells were observed by light microscope; the concentration of antioxidant indicator and TNF-α and the expression of PKC-α mRNA, PKC-α, and NF-κB proteins were assessed as well. Results STZ-induced diabetes mellitus prompted blood glucose, cardiac injury, oxidative stress, and inflammation, accompanied with suppressed body weight. On the contrary, HLF administration improved body weight and blood glucose and attenuated myocardial structural abnormalities in diabetic rats. In addition, HLF decreased MDA level and enhanced SOD activities, inhibited TNF-α expression, and downregulated PKC-α mRNA, PKC-α, and NF-κB which were induced by diabetes. Conclusions HLF has a protective effect against diabetic cardiomyopathy in rats. The mechanism may be involved in reducing oxidative stress and inflammation via inactivation of the PKC-α signaling pathway.
Collapse
|
27
|
Ahama-Esseh K, Bodet C, Quashie-Mensah-Attoh A, Garcia M, Théry-Koné I, Dorat J, De Souza C, Enguehard-Gueiffier C, Boudesocque-Delaye L. Anti-inflammatory activity of Crateva adansonii DC on keratinocytes infected by Staphylococcus aureus: From traditional practice to scientific approach using HPTLC-densitometry. JOURNAL OF ETHNOPHARMACOLOGY 2017; 204:26-35. [PMID: 28392456 DOI: 10.1016/j.jep.2017.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/30/2017] [Accepted: 04/02/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLIGICAL RELEVANCE Leaves of Crateva adansonii DC (Capparidaceae), a small bush found in Togo, are widely used in traditional medicine to cure infectious abscesses. Traditional healers of Lomé harvest only budding leaves early in the morning, in specific area in order to prepare their drugs. AIM OF THE STUDY The main goal was to validate the ancestral picking practices, and to assess the activity of C. adansonii medicine towards infectious abscesses. MATERIALS AND METHODS A phytochemical screening of various C. adansonii leaf samples was performed using an original HPTLC-densitometry protocol and major flavonoids were identified and quantified. C. adansonii samples were collected in different neighborhoods of Lomé, at different harvesting-times and at different ages. Radical scavenging capacity, using DPPH assay, was used to quickly screen all extracts. Extracts were tested for anti-Staphylococcus aureus activity and anti-inflammatory effect on human primary keratinocytes infected by S. aureus. IL6, IL8 and TNFα expression and production were assessed by RT-PCR and ELISA assays. RESULTS Using antioxidant activity as selection criteria, optimal extracts were obtained with budding leaves, collected at 5:00am in Djidjolé neighborhood. This extract showed the strongest anti-inflammatory effect on S. aureus-infected keratinocytes by reducing IL6, IL8 and TNFα expression and production. None of the extracts inhibited the growth of S. aureus. CONCLUSIONS Those results validate the traditional practices and the potential of C. adansonii as anti-inflammatory drug. Our findings suggest that traditional healers should add to C. adansonii leaves an antibacterial plant of Togo Pharmacopeia, in order to improve abscess healing.
Collapse
Affiliation(s)
- Kplolali Ahama-Esseh
- Université de Tours, UMR INRA 1282 Infectiologie et Santé Publique, 31 avenue Monge, 37200 Tours, France; Université de Lomé, Laboratoire de Physiologie et de Biotechnologies végétales, Faculté des Sciences, BP 1515 Lomé, Togo; Université de Lomé, Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires, BP 1515 Lomé, Togo
| | - Charles Bodet
- Université de Poitiers, Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Poitiers, France
| | - Akossiwa Quashie-Mensah-Attoh
- Université de Lomé, Laboratoire de Physiologie et de Biotechnologies végétales, Faculté des Sciences, BP 1515 Lomé, Togo
| | - Magali Garcia
- Université de Poitiers, Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Poitiers, France; Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Isabelle Théry-Koné
- Université de Tours, UMR INRA 1282 Infectiologie et Santé Publique, 31 avenue Monge, 37200 Tours, France
| | - Joelle Dorat
- Université de Tours, UMR INRA 1282 Infectiologie et Santé Publique, 31 avenue Monge, 37200 Tours, France
| | - Comlan De Souza
- Université de Lomé, Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires, BP 1515 Lomé, Togo
| | - Cécile Enguehard-Gueiffier
- Université de Tours, UMR INSERM 1069 N2C Nutrition Croissance et Cancer, 31 avenue Monge, 37200 Tours, France
| | - Leslie Boudesocque-Delaye
- Université de Tours, UMR INRA 1282 Infectiologie et Santé Publique, 31 avenue Monge, 37200 Tours, France.
| |
Collapse
|
28
|
de Araújo GR, Rabelo ACS, Meira JS, Rossoni-Júnior JV, Castro-Borges WD, Guerra-Sá R, Batista MA, Silveira-Lemos DD, Souza GHBD, Brandão GC, Chaves MM, Costa DC. Baccharis trimera inhibits reactive oxygen species production through PKC and down-regulation p47 phox phosphorylation of NADPH oxidase in SK Hep-1 cells. Exp Biol Med (Maywood) 2016; 242:333-343. [PMID: 28103717 DOI: 10.1177/1535370216672749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Baccharis trimera, popularly known as "carqueja", is a native South-American plant possessing a high concentration of polyphenolic compounds and therefore high antioxidant potential. Despite the antioxidant potential described for B. trimera, there are no reports concerning the signaling pathways involved in this process. So, the aim of the present study was to assess the influence of B. trimera on the modulation of PKC signaling pathway and to characterize the effect of the nicotinamide adenine dinucleotide phosphate oxidase enzyme (NOX) on the generation of reactive oxygen species in SK Hep-1 cells. SK-Hep 1 cells were treated with B. trimera, quercetin, or rutin and then stimulated or not with PMA/ionomycin and labeled with carboxy H2DCFDA for detection of reactive oxygen species by flow cytometer. The PKC expression by Western blot and enzyme activity was performed to evaluate the influence of B. trimera and quercetin on PKC signaling pathway. p47 phox and p47 phox phosphorylated expression was performed by Western blot to evaluate the influence of B. trimera on p47 phox phosphorylation. The results showed that cells stimulated with PMA/ionomycin (activators of PKC) showed significantly increased reactive oxygen species production, and this production returned to baseline levels after treatment with DPI (NOX inhibitor). Both B. trimera and quercetin modulated reactive oxygen species production through the inhibition of PKC protein expression and enzymatic activity, also with inhibition of p47 phox phosphorylation. Taken together, these results suggest that B. trimera has a potential mechanism for inhibiting reactive oxygen species production through the PKC signaling pathway and inhibition subunit p47 phox phosphorylation of nicotinamide adenine dinucleotide phosphate oxidase.
Collapse
Affiliation(s)
- Glaucy Rodrigues de Araújo
- 1 Center for Research in Biological Sciences - NUPEB, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil
| | | | - Janaína Serenato Meira
- 2 Department of Biological Sciences, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil
| | - Joamyr Victor Rossoni-Júnior
- 1 Center for Research in Biological Sciences - NUPEB, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil
| | - William de Castro-Borges
- 1 Center for Research in Biological Sciences - NUPEB, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil.,2 Department of Biological Sciences, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil
| | - Renata Guerra-Sá
- 1 Center for Research in Biological Sciences - NUPEB, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil.,2 Department of Biological Sciences, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil
| | - Maurício Azevedo Batista
- 3 Postgraduate Program in Parasitology, Immunology Laboratory and Genomic Parasites, Federal University of Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Denise da Silveira-Lemos
- 3 Postgraduate Program in Parasitology, Immunology Laboratory and Genomic Parasites, Federal University of Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Gustavo Henrique Bianco de Souza
- 1 Center for Research in Biological Sciences - NUPEB, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil.,4 Department of Pharmaceutical Sciences - DEFAR, Program Postgraduate Pharmaceutical Sciences (CIPHARMA), School of Pharmacy, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil
| | - Geraldo Célio Brandão
- 4 Department of Pharmaceutical Sciences - DEFAR, Program Postgraduate Pharmaceutical Sciences (CIPHARMA), School of Pharmacy, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil
| | - Míriam Martins Chaves
- 5 Department of Biochemistry and Immunology, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Daniela Caldeira Costa
- 1 Center for Research in Biological Sciences - NUPEB, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil.,2 Department of Biological Sciences, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil
| |
Collapse
|
29
|
Selvi RB, Swaminathan A, Chatterjee S, Shanmugam MK, Li F, Ramakrishnan GB, Siveen KS, Chinnathambi A, Zayed ME, Alharbi SA, Basha J, Bhat A, Vasudevan M, Dharmarajan A, Sethi G, Kundu TK. Inhibition of p300 lysine acetyltransferase activity by luteolin reduces tumor growth in head and neck squamous cell carcinoma (HNSCC) xenograft mouse model. Oncotarget 2016; 6:43806-18. [PMID: 26517526 PMCID: PMC4791268 DOI: 10.18632/oncotarget.6245] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/14/2015] [Indexed: 01/01/2023] Open
Abstract
Chromatin acetylation is attributed with distinct functional relevance with respect to gene expression in normal and diseased conditions thereby leading to a topical interest in the concept of epigenetic modulators and therapy. We report here the identification and characterization of the acetylation inhibitory potential of an important dietary flavonoid, luteolin. Luteolin was found to inhibit p300 acetyltransferase with competitive binding to the acetyl CoA binding site. Luteolin treatment in a xenografted tumor model of head and neck squamous cell carcinoma (HNSCC), led to a dramatic reduction in tumor growth within 4 weeks corresponding to a decrease in histone acetylation. Cells treated with luteolin exhibit cell cycle arrest and decreased cell migration. Luteolin treatment led to an alteration in gene expression and miRNA profile including up-regulation of p53 induced miR-195/215, let7C; potentially translating into a tumor suppressor function. It also led to down-regulation of oncomiRNAs such as miR-135a, thereby reflecting global changes in the microRNA network. Furthermore, a direct correlation between the inhibition of histone acetylation and gene expression was established using chromatin immunoprecipitation on promoters of differentially expressed genes. A network of dysregulated genes and miRNAs was mapped along with the gene ontology categories, and the effects of luteolin were observed to be potentially at multiple levels: at the level of gene expression, miRNA expression and miRNA processing.
Collapse
Affiliation(s)
- Ruthrotha B Selvi
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Jakkur, Bangalore, India
| | - Amrutha Swaminathan
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Jakkur, Bangalore, India
| | - Snehajyoti Chatterjee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Jakkur, Bangalore, India
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Feng Li
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gowsica B Ramakrishnan
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Jakkur, Bangalore, India
| | | | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - M Emam Zayed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Jeelan Basha
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Jakkur, Bangalore, India
| | - Akshay Bhat
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Jakkur, Bangalore, India
| | | | - Arunasalam Dharmarajan
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Bentley, Western Australia, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia.,School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Bentley, Western Australia, Australia
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Jakkur, Bangalore, India
| |
Collapse
|
30
|
Gasparotto Junior A, dos Reis Piornedo R, Assreuy J, Da Silva-Santos JE. Nitric oxide and K ir 6.1 potassium channel mediate isoquercitrin-induced endothelium-dependent and independent vasodilation in the mesenteric arterial bed of rats. Eur J Pharmacol 2016; 788:328-334. [DOI: 10.1016/j.ejphar.2016.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/30/2016] [Accepted: 08/03/2016] [Indexed: 01/05/2023]
|
31
|
Wang W, Sun C, Mao L, Ma P, Liu F, Yang J, Gao Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.07.004] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Liu L, Li H, Xu RH, Li PL. Expolysaccharides fromBifidobacterium animalisRH activates RAW 264.7 macrophages through toll-like receptor 4. FOOD AGR IMMUNOL 2016. [DOI: 10.1080/09540105.2016.1230599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
33
|
Orfali GDC, Duarte AC, Bonadio V, Martinez NP, de Araújo MEMB, Priviero FBM, Carvalho PO, Priolli DG. Review of anticancer mechanisms of isoquercitin. World J Clin Oncol 2016; 7:189-199. [PMID: 27081641 PMCID: PMC4826964 DOI: 10.5306/wjco.v7.i2.189] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/19/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
This review was based on a literature search of PubMed and Scielo databases using the keywords “quercetin, rutin, isoquercitrin, isoquercitin (IQ), quercetin-3-glucoside, bioavailability, flavonols and favonoids, and cancer” and combinations of all the words. We collected relevant scientific publications from 1990 to 2015 about the absorption, bioavailability, chemoprevention activity, and treatment effects as well as the underlying anticancer mechanisms of isoquercitin. Flavonoids are a group of polyphenolic compounds widely distributed throughout the plant kingdom. The subclass of flavonols receives special attention owing to their health benefits. The main components of this class are quercetin, rutin, and IQ, which is a flavonoid and although mostly found as a glycoside, is an aglycone (lacks a glycoside side chain). This compound presents similar therapeutic profiles to quercetin but with superior bioavailability, resulting in increased efficacy compared to the aglycone form. IQ has therapeutic applications owing to its wide range of pharmacological effects including antioxidant, antiproliferative, anti-inflammatory, anti-hypertensive, and anti-diabetic. The protective effects of IQ in cancer may be due to actions on lipid peroxidation. In addition, the antitumor effect of IQ and its underlying mechanism are related to interactions with Wnt signaling pathway, mixed-lineage protein kinase 3, mitogen-activated protein kinase, apoptotic pathways, as well proinflammatory protein signaling. This review contributed to clarifying the mechanisms of absorption, metabolism, and actions of IQ and isoquercitrin in cancer.
Collapse
|
34
|
Alleviation of collagen-induced arthritis by the benzoxathiole derivative BOT-4-one in mice: Implication of the Th1- and Th17-cell-mediated immune responses. Biochem Pharmacol 2016; 110-111:47-57. [PMID: 27005941 DOI: 10.1016/j.bcp.2016.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/18/2016] [Indexed: 12/24/2022]
Abstract
Autoimmune rheumatoid arthritis is characterized by chronic inflammation and hyperplasia in the synovial joints. Although the cause of rheumatoid arthritis is largely unknown, substantial evidence has supported the importance of immune cells and inflammatory cytokines in the initiation and progression of this disease. Herein, we demonstrated that the benzoxathiole derivative 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo[1,3]oxathiol-4-one (BOT-4-one) alleviated type II collagen-induced arthritis in a mouse model. The levels of pro-inflammatory cytokines are elevated in both human patients with rheumatoid arthritis and mice with collagen-induced arthritis. BOT-4-one treatment reduced the levels of pro-inflammatory cytokines in mice and endotoxin-stimulated macrophages. BOT-4-one treatment suppressed the polarization of Th1- and Th17-cell subsets by inhibiting the expression and production of their lineage-specific master transcription factors and cytokines, as well as activation of signal transducer and activator of transcription proteins. In addition, BOT-4-one inhibited mitogen-activated protein kinase and NF-kappaB signaling as well as the transcriptional activities and DNA-binding of transcription factors, including activator protein-1, cAMP response element-binding protein and NF-kappaB. Our results suggest that BOT-4-one may have therapeutic potential for the treatment of chronic inflammation associated with autoimmune rheumatoid arthritis.
Collapse
|
35
|
Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis. Drug Discov Today 2016; 21:632-9. [PMID: 26905599 DOI: 10.1016/j.drudis.2016.02.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/01/2016] [Accepted: 02/16/2016] [Indexed: 11/22/2022]
Abstract
Atopic dermatitis (AD) is an inflammatory skin disease. Over the past few decades, AD has become more prevalent worldwide. Quercetin, a naturally occurring polyphenol, shows antioxidant, anti-inflammatory, and antiallergic activities. Several recent clinical and preclinical findings suggest quercetin as a promising natural treatment for inflammatory skin diseases. Significant progress in elucidating the molecular mechanisms underlying the anti-AD properties of quercetin has been achieved in the recent years. Here, we discuss the use of quercetin as treatment for AD, with a particular focus on the molecular basis of its effect. We also briefly discuss the approaches to improve the bioavailability of quercetin.
Collapse
|
36
|
Immunomodulatory Activities of the Benzoxathiole Derivative BOT-4-One Ameliorate Pathogenic Skin Inflammation in Mice. J Invest Dermatol 2016; 136:107-16. [DOI: 10.1038/jid.2015.384] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/15/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
|
37
|
Kim BH, Choi MS, Lee HG, Lee SH, Noh KH, Kwon S, Jeong AJ, Lee H, Yi EH, Park JY, Lee J, Joo EY, Ye SK. Photoprotective Potential of Penta-O-Galloyl-β-DGlucose by Targeting NF-κB and MAPK Signaling in UVB Radiation-Induced Human Dermal Fibroblasts and Mouse Skin. Mol Cells 2015; 38:982-90. [PMID: 26537189 PMCID: PMC4673413 DOI: 10.14348/molcells.2015.0169] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/21/2015] [Accepted: 09/04/2015] [Indexed: 01/01/2023] Open
Abstract
Exposure of the skin to ultraviolet radiation can cause skin damage with various pathological changes including inflammation. In the present study, we identified the skin-protective activity of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (pentagalloyl glucose, PGG) in ultraviolet B (UVB) radiation-induced human dermal fibroblasts and mouse skin. PGG exhibited antioxidant activity with regard to intracellular reactive oxygen species (ROS) generation as well as ROS and reactive nitrogen species (RNS) scavenging. Furthermore, PGG exhibited anti-inflammatory activity, inhibiting the activation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, resulting in inhibition of the expression of pro-inflammatory mediators. Topical application of PGG followed by chronic exposure to UVB radiation in the dorsal skin of hairless mice resulted in a significant decrease in the progression of inflammatory skin damages, leading to inhibited activation of NF-κB signaling and expression of pro-inflammatory mediators. The present study demonstrated that PGG protected from skin damage induced by UVB radiation, and thus, may be a potential candidate for the prevention of environmental stimuli-induced inflammatory skin damage.
Collapse
Affiliation(s)
- Byung-Hak Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Biomedical Science Project (BK21 PLUS), Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Mi Sun Choi
- Department of Herbal Biotechnology, Daegu Haany University, Gyeongsan 38610,
Korea
| | - Hyun Gyu Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Song-Hee Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Kum Hee Noh
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Sunho Kwon
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Ae Jin Jeong
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Haeri Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Eun Hee Yi
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Jung Youl Park
- Industry-Academic Cooperation Foundation, Hanbat National University, Daejeon 305-719,
Korea
| | - Jintae Lee
- Department of Cosmeceutical Science, Daegu Haany University, Gyeongsan 38610,
Korea
| | - Eun Young Joo
- Department of Herbal Biotechnology, Daegu Haany University, Gyeongsan 38610,
Korea
| | - Sang-Kyu Ye
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Biomedical Science Project (BK21 PLUS), Seoul National University College of Medicine, Seoul 110-799,
Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul 110-799,
Korea
| |
Collapse
|
38
|
Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem Toxicol 2014; 68:267-82. [DOI: 10.1016/j.fct.2014.03.018] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 01/10/2023]
|
39
|
An evaluation of 3-rhamnosylquercetin, a glycosylated form of quercetin, against the myotoxic and edematogenic effects of sPLA 2 from Crotalus durissus terrificus. BIOMED RESEARCH INTERNATIONAL 2014; 2014:341270. [PMID: 24696848 PMCID: PMC3947839 DOI: 10.1155/2014/341270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 12/14/2022]
Abstract
This paper shows the results of quercitrin effects on the structure and biological activity of secretory phospholipase (sPLA2) from Crotalus durissus terrificus, which is the main toxin involved in the pharmacological effects of this snake venom. According to our mass spectrometry and circular dichroism results, quercetin was able to promote a chemical modification of some amino acid residues and modify the secondary structure of C. d. terrificus sPLA2. Moreover, molecular docking studies showed that quercitrin can establish chemical interactions with some of the crucial amino acid residues involved in the enzymatic activity of the sPLA2, indicating that this flavonoid could also physically impair substrate molecule access to the catalytic site of the toxin. Additionally, in vitro and in vivo assays showed that the quercitrin strongly diminished the catalytic activity of the protein, altered its Vmax and Km values, and presented a more potent inhibition of essential pharmacological activities in the C. d. terrificus sPLA2, such as its myotoxicity and edematogenic effect, in comparison to quercetin. Thus, we concluded that the rhamnose group found in quercitrin is most likely essential to the antivenom activities of this flavonoid against C. d. terrificus sPLA2.
Collapse
|
40
|
Pandey RP, Parajuli P, Koirala N, Lee JH, Park YI, Sohng JK. Glucosylation of isoflavonoids in engineered Escherichia coli. Mol Cells 2014; 37:172-7. [PMID: 24599002 PMCID: PMC3935630 DOI: 10.14348/molcells.2014.2348] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 11/27/2022] Open
Abstract
A glycosyltransferase, YjiC, from Bacillus licheniformis has been used for the modification of the commercially available isoflavonoids genistein, daidzein, biochanin A and formononetin. The in vitro glycosylation reaction, using UDP-α-D-glucose as a donor for the glucose moiety and aforementioned four acceptor molecules, showed the prominent glycosylation at 4' and 7 hydroxyl groups, but not at the 5(th) hydroxyl group of the A-ring, resulting in the production of genistein 4'-O-β-D-glucoside, genistein 7-O-β-D-glucoside (genistin), genistein 4',7-O-β-D-diglucoside, biochanin A-7-O-β-D-glucoside (sissotrin), daidzein 4'-O-β-D-glucoside, daidzein 7-O-β-D-glucoside (daidzin), daidzein 4', 7-O-β-D-diglucoside, and formononetin 7-O-β-D-glucoside (ononin). The structures of all the products were elucidated using high performance liquid chromatography-photo diode array and high resolution quadrupole time-of-flight electrospray ionization mass spectrometry (HR QTOFESI/MS) analysis, and were compared with commercially available standard compounds. Significantly higher bioconversion rates of all four isoflavonoids was observed in both in vitro as well as in vivo bioconversion reactions. The in vivo fermentation of the isoflavonoids by applying engineered E. coli BL21(DE3)/ΔpgiΔzwfΔushA overexpressing phosphoglucomutase (pgm) and glucose 1-phosphate uridyltransferase (galU), along with YjiC, found more than 60% average conversion of 200 μM of supplemented isoflavonoids, without any additional UDP-α-D-glucose added in fermentation medium, which could be very beneficial to large scale industrial production of isoflavonoid glucosides.
Collapse
Affiliation(s)
- Ramesh Prasad Pandey
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Asan 336-708,
Korea
| | - Prakash Parajuli
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Asan 336-708,
Korea
| | - Niranjan Koirala
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Asan 336-708,
Korea
| | - Joo Ho Lee
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Asan 336-708,
Korea
| | - Yong Il Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon 420-743,
Korea
| | - Jae Kyung Sohng
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Asan 336-708,
Korea
| |
Collapse
|
41
|
Kim A, Im M, Yim NH, Jung YP, Ma JY. Aqueous extract of Bambusae Caulis in Taeniam inhibits PMA-induced tumor cell invasion and pulmonary metastasis: suppression of NF-κB activation through ROS signaling. PLoS One 2013; 8:e78061. [PMID: 24205091 PMCID: PMC3810142 DOI: 10.1371/journal.pone.0078061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/13/2013] [Indexed: 02/05/2023] Open
Abstract
Bamboo shavings (Bambusae Caulis in Taeniam, BCT) are widely used as a traditional Chinese medicine to control hypertension and cardiovascular disease, and to alleviate fever, vomiting, and diarrhea. It has been demonstrated that BCT reduces ovalbumin-induced airway inflammation by regulating pro-inflammatory cytokines, and decreases tumor growth in tumor-bearing mice. However, the effects of BCT on the metastatic potential of malignant cancer cells and the detailed mechanism of its anti-metastatic activity have not been examined previously. In this study, we investigated whether an aqueous extract of BCT (AE-BCT) reduces the metastatic potential of HT1080 cells, and elucidated the underlying anti-metastatic mechanism. In addition, we examined whether AE-BCT administration inhibits pulmonary metastasis of intravenously injected B16F10 cells in C57BL/6J mice. AE-BCT (50–250 µg/ml) dose-dependently suppressed colony-forming activity under anchorage-dependent and -independent growth conditions. Pretreatment with AE-BCT efficiently inhibited cell migration, invasion, and adhesion. AE-BCT also dramatically suppressed PMA-induced MMP-9 activity and expression by blocking NF-κB activation and ERK phosphorylation. Production of intracellular ROS, a key regulator of NF-κB-induced MMP-9 activity, was almost completely blocked by pretreatment with AE-BCT. Furthermore, daily oral administration of AE-BCT at doses of 50 and 100 mg/kg efficiently inhibited lung metastasis of B16F10 cells injected into the tail veins of C57BL/6J mice with no systemic toxicity. These results demonstrate that AE-BCT significantly reduced the metastatic activity of highly malignant cancer cells by suppressing MMP-9 activity via inhibition of ROS-mediated NF-κB activation. These results indicate that AE-BCT may be a safe natural product for treatment of metastatic cancer.
Collapse
Affiliation(s)
- Aeyung Kim
- Korean Medicine (KM)-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine (KIOM), Daejeon, Republic of Korea
| | - Minju Im
- Korean Medicine (KM)-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine (KIOM), Daejeon, Republic of Korea
| | - Nam-Hui Yim
- Korean Medicine (KM)-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine (KIOM), Daejeon, Republic of Korea
| | - Young Pil Jung
- Korean Medicine (KM)-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine (KIOM), Daejeon, Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine (KM)-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine (KIOM), Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|