1
|
López-Briceño IA, Ramírez-Bello J, Montúfar-Robles I, Barbosa-Cobos RE, Ángulo-Ramírez AV, Valencia-Pacheco G. IRF5 Variants Are Risk Factors for Systemic Lupus Erythematosus in Two Mexican Populations. J Clin Rheumatol 2024; 30:283-290. [PMID: 39271190 DOI: 10.1097/rhu.0000000000002121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Interferon regulatory factor 5 ( IRF5 ) is one of the pivotal genes implicated in systemic lupus erythematosus (SLE) among diverse ethnic groups, including Europeans, Asians, Hispanics, and Africans. Notably, its significance appears particularly pronounced among Hispanic populations. Previous studies have identified several single-nucleotide variants within IRF5 , such as rs2004640G/T, rs2070197T/C, and rs10954213G/A, as associated with susceptibility to SLE among patients from Mexico City. However, the population of Yucatan, located in the Southeast of Mexico and characterized by a greater Amerindian genetic component, remains largely unexplored in this regard. OBJECTIVES Our study aimed to replicate the observed association between IRF5 variants and susceptibility to SLE among patients from Central Mexico and Yucatan. Furthermore, we investigated the impact of IRF5 rs59110799G/T, a variant that has not been previously studied in SLE individuals. METHOD Our study included 204 SLE patients and 160 controls from Central Mexico, as well as 184 SLE patients and 184 controls from Yucatan. All participants were females 18 years and older. We employed a TaqMan assay to detect the presence of the following single-nucleotide variants: rs2004640G/T, rs2070197T/C, rs10954213G/A, and rs59110799G/T. Furthermore, we utilized 2 distinct web tools and databases to predict the potential functional implications of IRF5 variants. RESULTS In SLE patients from Central Mexico, several IRF5 alleles showed significant associations with the disease following adjustment by the Bonferroni test: the rs2070197C allele (odds ratio [OR], 2.08), the rs10954213A allele (OR, 1.59), and the rs59110799G allele (OR, 1.71). Conversely, among patients from Yucatan, the following alleles showed associations: rs2004640T (OR, 1.51), rs2070197C (OR, 1.62), rs10954213A (OR, 1.67), and rs59110799G (OR, 1.44). CONCLUSION Our findings highlight genetic variations between Mexican populations and emphasize the role of IRF5 as a risk factor in SLE patients from both Central Mexico and Yucatan.
Collapse
Affiliation(s)
- Isaac A López-Briceño
- From the Laboratorio de Hematología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi," Universidad Autónoma de Yucatán, Yucatan
| | - Julian Ramírez-Bello
- Subdirección de Investigación Clínica, Instituto Nacional de Cardiología Ignacio Chávez
| | | | | | | | - Guillermo Valencia-Pacheco
- From the Laboratorio de Hematología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi," Universidad Autónoma de Yucatán, Yucatan
| |
Collapse
|
2
|
Fumeron F, Velho G, Alzaid F, El Boustany R, Vandiedonck C, Bonnefond A, Froguel P, Potier L, Marre M, Balkau B, Roussel R, Venteclef N. Genetic variants of interferon-response factor 5 are associated with the incidence of chronic kidney disease: the D.E.S.I.R. study. Genes Immun 2023; 24:303-308. [PMID: 37978231 PMCID: PMC10721545 DOI: 10.1038/s41435-023-00229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Inflammation has been associated with renal diseases. The Interferon Regulatory Factor (IRF)-5 is a key transcription factor in the pro-inflammatory polarization of M1-like macrophages. GWAS have reported that the IRF5 locus is associated with autoimmune diseases and with the estimated glomerular filtration rate (eGFR). We study whether allelic variations in IRF5 are associated with the incidence of chronic kidney disease (CKD) in a general population. We genotyped eleven IRF5 SNPs in the French D.E.S.I.R. cohort from the general population (n = 4820). Associations of SNPs with baseline renal parameters were assessed. Data were analyzed for three endpoints during a 9-year follow-up, incidence of:at least stage 3 CKD, the KDIGO criterion "certain drop in eGFR", and incidence of micro/macro albuminuria. In the cross-sectional analysis, rs10954213 and rs10954214 were associated with eGFR and rs1874328 with urinary albumin/creatinine ratio (ACR). Rs3807306, rs11761199, rs78658945, rs1874328, rs10954213 and rs11770589 were associated with the incidence of stage 3 CKD in multi-adjusted models. Rs4731532, rs3807306, and rs11761199 were associated with the incidence of CKD defined by the KDIGO. Rs4731532, rs3807306, rs11761199 and rs79288514 were associated with the incidence of micro/macro albuminuria. Our results support the hypothesis of the importance of IRF5 mediated macrophage polarization in the etiology of CKD.
Collapse
Affiliation(s)
- Frédéric Fumeron
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Paris, France.
| | - Gilberto Velho
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Paris, France
| | - Fawaz Alzaid
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Paris, France
- Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ray El Boustany
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Paris, France
| | - Claire Vandiedonck
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Paris, France
| | - Amélie Bonnefond
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Philippe Froguel
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Louis Potier
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Paris, France
- Department of Diabetology, Endocrinology and Nutrition, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, DHU FIRE, Paris, France
| | - Michel Marre
- Clinique Ambroise Paré, Neuilly-sur-Seine, France
| | - Beverley Balkau
- Centre for Research in Epidemiology and Population Health (CESP), INSERM, UMR-S 1018, University Paris-Sud, University Versailles Saint-Quentin, Villejuif, France
| | - Ronan Roussel
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Paris, France
- Department of Diabetology, Endocrinology and Nutrition, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, DHU FIRE, Paris, France
| | - Nicolas Venteclef
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Paris, France
| |
Collapse
|
3
|
Xiao XY, Chen Q, Shi YZ, Li LW, Hua C, Zheng H. Risk factors of systemic lupus erythematosus: an overview of systematic reviews and Mendelian randomization studies. Adv Rheumatol 2023; 63:42. [PMID: 37596678 DOI: 10.1186/s42358-023-00323-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/02/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND The etiology of systemic lupus erythematosus is complex and incurable. A large number of systematic reviews have studied the risk factors of it. Mendelian randomization is an analytical method that uses genetic data as tool variables to evaluate the causal relationship between exposure and outcome. OBJECTIVE To review the systematic reviews and Mendelian randomization studies that focused on the risk factors of systemic lupus erythematosus and shed light on the development of treatments for its prevention and intervention. METHODS From inception to January 2022, we systematically searched MEDLINE (via PubMed) and Embase for related systematic reviews and Mendelian randomization studies. Extract relevant main data for studies that meet inclusion criteria. The quality of systematic reviews was assessed by using Assessment of Multiple Systematic Reviews 2 (AMSTAR-2). Finally, the risk factors are scored comprehensively according to the results' quantity, quality, and consistency. RESULTS Our study involved 64 systematic reviews and 12 Mendelian randomization studies. The results of systematic reviews showed that diseases (endometriosis, atopic dermatitis, allergic rhinitis), lifestyle (smoking, drinking, vaccination), and gene polymorphism influenced the incidence of systemic lupus erythematosus. The results of Mendelian randomization studies identified the role of disease (periodontitis, celiac disease), trace elements (selenium, iron), cytokines (growth differentiation factor 15), and gut microbiome in the pathogenesis of systemic lupus erythematosus. CONCLUSION We should pay attention to preventing and treating systemic lupus erythematosus in patients with endometriosis, celiac disease, and periodontitis. Take appropriate dietary supplements to increase serum iron and selenium levels to reduce the risk of systemic lupus erythematosus. There should be no excessive intervention in lifestyles such as smoking and drinking.
Collapse
Affiliation(s)
- Xin-Yu Xiao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Wenjiang District, Chengdu, 610000, China
| | - Qian Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Wenjiang District, Chengdu, 610000, China
| | - Yun-Zhou Shi
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Wenjiang District, Chengdu, 610000, China
| | - Li-Wen Li
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Wenjiang District, Chengdu, 610000, China
| | - Can Hua
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Wenjiang District, Chengdu, 610000, China
| | - Hui Zheng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Wenjiang District, Chengdu, 610000, China.
| |
Collapse
|
4
|
Papadopoulos VE, Skarlis C, Evangelopoulos ME, Mavragani CP. Type I interferon detection in autoimmune diseases: challenges and clinical applications. Expert Rev Clin Immunol 2021; 17:883-903. [PMID: 34096436 DOI: 10.1080/1744666x.2021.1939686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Accumulating data highlights that the dysregulation of type I interferon (IFN) pathways plays a central role in the pathogenesis of several systemic and organ-specific autoimmune diseases. Advances in understanding the role of type I IFNs in these disorders can lead to targeted drug development as well as establishing potential disease biomarkers. AREAS COVERED Here, we summarize current knowledge regarding the role of type I IFNs in the major systemic, as well as organ-specific, autoimmune disorders, including prominent inflammatory CNS disorders like multiple sclerosis. EXPERT OPINION Type I IFN involvement and its clinical associations in a wide spectrum of autoimmune diseases represents a promising area for research aiming to unveil common pathogenetic pathways in systemic and organ-specific autoimmunity.
Collapse
Affiliation(s)
- Vassilis E Papadopoulos
- Demyelinating Diseases Unit, First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Skarlis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Eleftheria Evangelopoulos
- Demyelinating Diseases Unit, First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Meng Y, He Y, Zhang J, Xie Q, Yang M, Chen Y, Wu Y. Association of GTF2I gene polymorphisms with renal involvement of systemic lupus erythematosus in a Chinese population. Medicine (Baltimore) 2019; 98:e16716. [PMID: 31374066 PMCID: PMC6709260 DOI: 10.1097/md.0000000000016716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The purposes of the study was to validate the relationship between General transcription factor II-I (GTF2I) genetic variants and kidney involvements of systemic lupus erythematosus (SLE) patients in a Chinese Han population.Samples from 400 SLE patients and 400 age- and sex-matched healthy controls were collected and genotyped by improved multiplex ligation detection reaction technique. The relationship between gene polymorphism of rs117026326, rs73366469, and susceptibility, progression of SLE were analyzed.The present study provided evidence that rs117026326 and rs73366469 were both associated with SLE susceptibility (both C vs T: P < .001). The analysis of dominant, recessive disease model provided us with further validation (P < .001). Both gene polymorphisms are associated with a triad of disease manifestations among SLE patients. Patients carrying genotype TT of rs117026326 had lower 24-hour urinary total protein (24 hours UTP, g/24 hours), 24-hour urinary protein level (g/L·24 hours), lower frequency of the proteinuria and lupus nephritis (LN). Patients carrying genotype TT at rs73366469 had higher 24-hour urinary protein level, higher frequency of the proteinuria, LN and positive anti-dsDNA than those with other genotypes.This study identified the involvement of GTF2I gene polymorphisms in development of SLE, particularly in renal involvement.
Collapse
Affiliation(s)
- Yanming Meng
- Department of Laboratory Medicine and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan
| | - Yao He
- Department of Laboratory Medicine and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan
| | - Junlong Zhang
- Department of Laboratory Medicine and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan
| | - Qibing Xie
- Department of Rheumatology, West China Hospital, Sichuan University
| | - Min Yang
- Department of Rheumatology, West China Hospital, Sichuan University
| | - Yuning Chen
- Department of Medical Laboratory, Xindu District People's Hospital of Chengdu, Chengdu, China
| | - Yongkang Wu
- Department of Laboratory Medicine and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan
| |
Collapse
|
6
|
Antonczyk A, Krist B, Sajek M, Michalska A, Piaszyk-Borychowska A, Plens-Galaska M, Wesoly J, Bluyssen HAR. Direct Inhibition of IRF-Dependent Transcriptional Regulatory Mechanisms Associated With Disease. Front Immunol 2019; 10:1176. [PMID: 31178872 PMCID: PMC6543449 DOI: 10.3389/fimmu.2019.01176] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/09/2019] [Indexed: 12/24/2022] Open
Abstract
Interferon regulatory factors (IRFs) are a family of homologous proteins that regulate the transcription of interferons (IFNs) and IFN-induced gene expression. As such they are important modulating proteins in the Toll-like receptor (TLR) and IFN signaling pathways, which are vital elements of the innate immune system. IRFs have a multi-domain structure, with the N-terminal part acting as a DNA binding domain (DBD) that recognizes a DNA-binding motif similar to the IFN-stimulated response element (ISRE). The C-terminal part contains the IRF-association domain (IAD), with which they can self-associate, bind to IRF family members or interact with other transcription factors. This complex formation is crucial for DNA binding and the commencing of target-gene expression. IRFs bind DNA and exert their activating potential as homo or heterodimers with other IRFs. Moreover, they can form complexes (e.g., with Signal transducers and activators of transcription, STATs) and collaborate with other co-acting transcription factors such as Nuclear factor-κB (NF-κB) and PU.1. In time, more of these IRF co-activating mechanisms have been discovered, which may play a key role in the pathogenesis of many diseases, such as acute and chronic inflammation, autoimmune diseases, and cancer. Detailed knowledge of IRFs structure and activating mechanisms predisposes IRFs as potential targets for inhibition in therapeutic strategies connected to numerous immune system-originated diseases. Until now only indirect IRF modulation has been studied in terms of antiviral response regulation and cancer treatment, using mainly antisense oligonucleotides and siRNA knockdown strategies. However, none of these approaches so far entered clinical trials. Moreover, no direct IRF-inhibitory strategies have been reported. In this review, we summarize current knowledge of the different IRF-mediated transcriptional regulatory mechanisms and how they reflect the diverse functions of IRFs in homeostasis and in TLR and IFN signaling. Moreover, we present IRFs as promising inhibitory targets and propose a novel direct IRF-modulating strategy employing a pipeline approach that combines comparative in silico docking to the IRF-DBD with in vitro validation of IRF inhibition. We hypothesize that our methodology will enable the efficient identification of IRF-specific and pan-IRF inhibitors that can be used for the treatment of IRF-dependent disorders and malignancies.
Collapse
Affiliation(s)
- Aleksandra Antonczyk
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Bart Krist
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Malgorzata Sajek
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Agata Michalska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Anna Piaszyk-Borychowska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Martyna Plens-Galaska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
7
|
Thompson CD, Matta B, Barnes BJ. Therapeutic Targeting of IRFs: Pathway-Dependence or Structure-Based? Front Immunol 2018; 9:2622. [PMID: 30515152 PMCID: PMC6255967 DOI: 10.3389/fimmu.2018.02622] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
The interferon regulatory factors (IRFs) are a family of master transcription factors that regulate pathogen-induced innate and acquired immune responses. Aberration(s) in IRF signaling pathways due to infection, genetic predisposition and/or mutation, which can lead to increased expression of type I interferon (IFN) genes, IFN-stimulated genes (ISGs), and other pro-inflammatory cytokines/chemokines, has been linked to the development of numerous diseases, including (but not limited to) autoimmune and cancer. What is currently lacking in the field is an understanding of how best to therapeutically target these transcription factors. Many IRFs are regulated by post-translational modifications downstream of pattern recognition receptors (PRRs) and some of these modifications lead to activation or inhibition. We and others have been able to utilize structural features of the IRFs in order to generate dominant negative mutants that inhibit function. Here, we will review potential therapeutic strategies for targeting all IRFs by using IRF5 as a candidate targeting molecule.
Collapse
Affiliation(s)
- Cherrie D Thompson
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|
8
|
Wang X, Guo J, Wang Y, Xiao Y, Wang L, Hua S. Genetic variants of interferon regulatory factor 5 associated with the risk of community-acquired pneumonia. Gene 2018; 679:73-80. [PMID: 30176312 DOI: 10.1016/j.gene.2018.08.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/02/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
Interferon regulatory factor 5 (IRF5) is a key transcription factor involved in the control of the expression of pro-inflammatory cytokines and immune responses to infection, and multiple polymorphisms of the IFR5 gene have been shown to be associated with autoimmune and infectious diseases. Several studies have investigated single nucleotide polymorphisms (SNPs) in a number of genes associated with the susceptibility to or severity and outcome of community-acquired pneumonia (CAP), but no research has yet been conducted on the role of IRF5 gene polymorphisms in CAP. In this study, we investigated the effects of four IFR5 variants, rs77571059, rs2004640, rs10954213, and rs3807306 on the susceptibility to CAP by genotyping 228 CAP patients and 177 healthy donors. Our results indicated that IFR5 variants rs77571059 and rs2004640 and haplotype GTAA were associated with the susceptibility to CAP and rs77571059 was related to the severity of the disease, suggesting that IFR5 variants may contribute to the pathogenesis of CAP and may serve as prognostic markers of CAP susceptibility and outcome.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, Changchun 130021, PR China.
| | - Jia Guo
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, Changchun 130021, PR China
| | - Ying Wang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Jilin University, Changchun 130021, PR China
| | - Yue Xiao
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Jilin University, Changchun 130021, PR China
| | - Liying Wang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Jilin University, Changchun 130021, PR China.
| | - Shucheng Hua
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
9
|
Sy BT, Hoan NX, Tong HV, Meyer CG, Toan NL, Song LH, Bock CT, Velavan TP. Genetic variants of interferon regulatory factor 5 associated with chronic hepatitis B infection. World J Gastroenterol 2018; 24:248-256. [PMID: 29375210 PMCID: PMC5768943 DOI: 10.3748/wjg.v24.i2.248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate possible effects of IRF5 polymorphisms in the 3’ UTR region of the IFR5 locus on susceptibility to hepatitis B virus (HBV) infection and progression of liver diseases among clinically classified Vietnamese patients.
METHODS Four IFR5 SNPs (rs13242262A/T, rs77416878C/T, rs10488630A/G, and rs2280714T/C) were genotyped in clinically classified HBV patients [chronic hepatitis B (CHB). n = 99; liver cirrhosis (LC), n = 131; hepatocellular carcinoma (HCC), n = 149] and in 242 healthy controls by direct sequencing and TaqMan real-time PCR assays.
RESULTS Comparing patients and controls, no significant association was observed for the four IFR5 variants. However, the alleles rs13242262T and rs10488630G contributed to an increased risk of liver cirrhosis (LC vs CHB: OR = 1.5, 95%CI: 1.1-2.3, adjusted P = 0.04; LC vs CHB: OR = 1.7, 95%CI: 1.1-2.6, adjusted P = 0.019). Haplotype IRF5*TCGT constructed from 4 SNPs was observed frequently in LC compared to CHB patients (OR = 2.1, 95%CI: 1.2-3.3, adjusted P = 0.008). Haplotype IRF5*TCAT occurred rather among CHB patients than in the other HBV patient groups (LC vs CHB: OR = 0.4, 95%CI: 0.2-0.8, adjusted P = 0.03; HCC vs CHB: OR = 0.3, 95%CI: 0.15-0.7, adjusted P = 0.003). The IRF5*TCAT haplotype was also associated with increased levels of ALT, AST and bilirubin.
CONCLUSION Our study shows that IFR5 variants may contribute as a host factor in determining the pathogenesis in chronic HBV infections.
Collapse
Affiliation(s)
- Bui Tien Sy
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Nghiem Xuan Hoan
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
- Institute of Tropical Medicine, University of Tübingen, Tübingen 72074, Germany
| | - Hoang Van Tong
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Christian G Meyer
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
- Institute of Tropical Medicine, University of Tübingen, Tübingen 72074, Germany
| | - Nguyen Linh Toan
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Le Huu Song
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Claus-Thomas Bock
- Institute of Tropical Medicine, University of Tübingen, Tübingen 72074, Germany
- Department of Infectious Diseases, Robert Koch Institute, Berlin 13302, Germany
| | - Thirumalaisamy P Velavan
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
- Institute of Tropical Medicine, University of Tübingen, Tübingen 72074, Germany
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| |
Collapse
|
10
|
Matta B, Song S, Li D, Barnes BJ. Interferon regulatory factor signaling in autoimmune disease. Cytokine 2017; 98:15-26. [PMID: 28283223 DOI: 10.1016/j.cyto.2017.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
Abstract
Interferon regulatory factors (IRFs) play critical roles in pathogen-induced innate immune responses and the subsequent induction of adaptive immune response. Dysregulation of IRF signaling is therefore thought to contribute to autoimmune disease pathogenesis. Indeed, numerous murine in vivo studies have documented protection from or enhanced susceptibility to particular autoimmune diseases in Irf-deficient mice. What has been lacking, however, is replication of these in vivo observations in primary immune cells from patients with autoimmune disease. These types of studies are essential as the majority of in vivo data support a protective role for IRFs in Irf-deficient mice, yet IRFs are often found to be overexpressed in patient immune cells. A significant body of work is beginning to emerge from both of these areas of study - mouse and human.
Collapse
Affiliation(s)
- Bharati Matta
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY 11030, United States
| | - Su Song
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY 11030, United States
| | - Dan Li
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY 11030, United States
| | - Betsy J Barnes
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY 11030, United States.
| |
Collapse
|